fubini-tonelli
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| fubini-tonelli [2023/06/30 09:05] – tahzibi | fubini-tonelli [2023/06/30 09:13] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 11: | Line 11: | ||
| <WRAP center round info 60%> | <WRAP center round info 60%> | ||
| - | $f \feq 0$ ou $f \in L^1$. | + | $f \geq 0$ ou $f \in L^1$. |
| </ | </ | ||
| Line 23: | Line 23: | ||
| </ | </ | ||
| - | Sejam $X=Y=[0, 1]\$ com $\sigma-$álgebras de Borel e $\mu=Leb$, $\nu$ medida de contágem (não é $\sigma-$finita). Seja $D = \{(x, x)\}$ o diagonal. então: | + | Sejam $X=Y=[0, 1]$ com $\sigma-$álgebras de Borel e $\mu=Leb$, $\nu$ medida de contágem (não é $\sigma-$finita). Seja $D = \{(x, x)\}$ o diagonal. então: |
| - | $\int 1_{D} d (\mu \times \nu) = \mu \times \nu(D) = \infty, \int\int 1_D d\nu d\mu = 1,\int\int 1_D d\mu d\nu =0. $ | + | $$\int 1_{D} d (\mu \times \nu) = \mu \times \nu(D) = \infty, \int\int 1_D d\nu d\mu = 1,\int\int 1_D d\mu d\nu =0. $$ |
| + | |||
| + | entretanto se $(X, \mathcal{M}, | ||
fubini-tonelli.1688126755.txt.gz · Last modified: 2023/06/30 09:05 by tahzibi