User Tools

Site Tools


envelope

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
envelope [2023/06/23 11:10] – created tahzibienvelope [2023/06/23 11:23] (current) – external edit 127.0.0.1
Line 1: Line 1:
- 
 Seja $f: [a, b] \rightarrow \mathbb{R}$ uma função. Então definimos envelopes superior e inferior de $f$. Seja $f: [a, b] \rightarrow \mathbb{R}$ uma função. Então definimos envelopes superior e inferior de $f$.
 De fato definimos dois operadores que uma transforma cada função em uma função semi-contínua superior e outra que transforma em semi-contínua inferior. De fato definimos dois operadores que uma transforma cada função em uma função semi-contínua superior e outra que transforma em semi-contínua inferior.
Line 6: Line 5:
 Seja $f$ uma função qualquer e definimos envelope superior $\mathcal{S}(f)(x) = \inf_{\delta > 0} \sup_{|x-y| < \delta} f(y).$ Seja $f$ uma função qualquer e definimos envelope superior $\mathcal{S}(f)(x) = \inf_{\delta > 0} \sup_{|x-y| < \delta} f(y).$
 </WRAP> </WRAP>
 +
 +<WRAP  round info >
 +Seja $f$ uma função qualquer e definimos envelope inferior $\mathcal{I}(f)(x) = \sup_{\delta > 0} \inf_{|x-y| < \delta} f(y).$
 +</WRAP>
 +
 +É um bom exercício, mostrar que se $f$ é limitada então o envelope superior (respectivamente inferior) é uma função semi-contínua superior (respectivamente inferior). Além disso, $f$ é semi-contínua superior (inferior) se coincide com seu envelope superior (inferior). em particular $f$ é contínua se somente se as envelopes coincidem. 
 +
 +
 +As funções envelope sempre são Lebesgue mensuráveis, pois são semi-contínuas. Lembrem que para uma função semi-contínua superior, por definição $f^{-1}(-\infty, \lambda)$ é um conjunto aberto para qualquer $\lambda \in \mathbb{R}$.
 +
 +Agora a relação mágica entre Riemann e Lebesgue:
 +
 +<WRAP center round tip 60%>
 +Seja $f: [a, b] \rightarrow \mathbb{R}$ uma função limitada. Então
 +$$
 + R. \overline{\int_{a}^{b}} f dx = \int_{[a, b]} \mathcal{S}(f) dx.
 +$$ 
 +</WRAP>
 +Na equaçõa acima, $R. \overline{\int_{a}^{b}} f dx$ representa integral de Riemann superior da $f$, entquanto outro lado da igualdade é a integral de Lebesgue de seu envelope superior.
 +
 +De uma forma similar 
 +$$
 + R. \underline{\int_{a}^{b}} f dx = \int_{[a, b]} \mathcal{I}(f) dx.
 +$$ 
 +
 +Assim, fica claro que as integrais superior e inferior de Riemann são integral de Lebesgue de envelopes da função. Portanto é fácil ver que a integral de Riemann existe e é igual a integral de Lebesgue se somente se os pontos de continuidade tem medida de Lebesgue nula. 
  
envelope.1687529455.txt.gz · Last modified: 2023/06/23 11:10 by tahzibi