User Tools

Site Tools


ebsd2021:tema9

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ebsd2021:tema9 [2021/09/30 11:00] escolaebsd2021:tema9 [2021/09/30 12:19] (current) escola
Line 68: Line 68:
  
 **Lemma 3.** For every $\xi\in X(\infty)$ and $x\in X$ there is a unique geodesic ray $\sigma_{x,\xi}\colon\mathbb R^+\to X$ such that $\sigma_{x,\xi}(0)=x$ and $\sigma_{x,\xi}(\infty)=\xi$. **Lemma 3.** For every $\xi\in X(\infty)$ and $x\in X$ there is a unique geodesic ray $\sigma_{x,\xi}\colon\mathbb R^+\to X$ such that $\sigma_{x,\xi}(0)=x$ and $\sigma_{x,\xi}(\infty)=\xi$.
 +
 +Note that Lemmas 1-3 correspond Lemma 1 in [[ebsd2021:tema8|]].
  
 **Lemma 4.** Let $\sigma\colon\mathbb R\to\infty$ be a geodesic, $y:=\sigma(0)$, and $\xi=\sigma(\infty)$. Then for every $x\in X$ the limit **Lemma 4.** Let $\sigma\colon\mathbb R\to\infty$ be a geodesic, $y:=\sigma(0)$, and $\xi=\sigma(\infty)$. Then for every $x\in X$ the limit
ebsd2021/tema9.1633010413.txt.gz · Last modified: 2021/09/30 11:00 by escola