User Tools

Site Tools


ebsd2021:tema9

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ebsd2021:tema9 [2021/09/22 09:41] escolaebsd2021:tema9 [2021/09/30 12:19] (current) escola
Line 1: Line 1:
 +**Tema 9: Busemann functions and horospherical foliations**
 +
 We will always assume that $X$ is a Hadamard manifold, that is, a simply connected complete Riemannian manifold of nonpositive curvature. We consider the topology of uniform convergence on bounded subsets.  We will always assume that $X$ is a Hadamard manifold, that is, a simply connected complete Riemannian manifold of nonpositive curvature. We consider the topology of uniform convergence on bounded subsets. 
  
-Recall again that a function $f\colon X\to\bR$ is \emph{convexif for any geodesic $c\colon X\to\bR$ the composition $f\circ c\colon \bR\to\bR$ is convex. A set $B\subset X$ is \emph{convexif for any pair $p,q\in B$ the connecting geodesic is in $B$. +Recall again that a function $f\colon X\to\mathbb R$ is //convex// if for any geodesic $c\colon X\to\mathbb R$ the composition $f\circ c\colon \mathbb R\to\mathbb R$ is convex. A set $B\subset X$ is //convex// if for any pair $p,q\in B$ the connecting geodesic is in $B$. 
  
 Note that the pointwise limit  of convex functions is convex. Note that the pointwise limit  of convex functions is convex.
  
-**Example 1** The distance function $d\colon X\times X\to\bR$ is convex.+**Example 1.** The distance function $d\colon X\times X\to\mathbb R$ is convex.
   
- Given $y\in X$, $x\mapsto d_y(x)\eqdef d(y,x)$ is convex and Lipschitz with Lipschitz constant 1. Indeed,+**Example 2.** Given $y\in X$, $x\mapsto d_y(x):= d(y,x)$ is convex and Lipschitz with Lipschitz constant 1. Indeed,
 $$ $$
  d(y,x)-d(y,z)\le d(x,z), \quad  d(y,x)-d(y,z)\le d(x,z), \quad
Line 13: Line 15:
 $$  $$
  
 +**Example 3.** If $\sigma_1,\sigma_2\colon I\to X$ are geodesics, then $t\in I\mapsto d(\sigma_1(t),\sigma_2(t))$ is convex.
  
 +**Example 4.** If $\sigma_{x,x'},\sigma_{y,y'}\subset X$ are geodesics rays connecting $x$ and $x'$ and $y$ and $y'$, respectively, then $d_H(\sigma_{x,x'},\sigma_{y,y'})\le \max\{d(x,y),d(x',y')\}$.
  
- If $\sigma_1,\sigma_2\colon I\to X$ are geodesics, then $t\in I\mapsto d(\sigma_1(t),\sigma_2(t))$ is convex.  +**Example 5.** Given $y\in X$, the function $x\mapsto d(x,y)$ is convex and 1-Lipschitz. Hence, given some geodesic $\sigma\colon\mathbb R\to X$, for every $t\ge0$, 
- +
- If $\sigma_{x,x'},\sigma_{y,y'}\subset X$ are geodesics rays connecting $x$ and $x'$ and $y$ and $y'$, respectively, then $d_H(\sigma_{x,x'},\sigma_{y,y'})\le \max\{d(x,y),d(x',y')\}$. +
- %BBallmann 5.+
- +
- Given $y\in X$, the function $x\mapsto d(x,y)$ is convex and 1-Lipschitz. Hence, given some geodesic $\sigma\colon\bR\to X$, for every $t\ge0$, +
 $$ $$
  x\mapsto d(\sigma(t),x)-t  x\mapsto d(\sigma(t),x)-t
Line 26: Line 25:
 is convex. It follows that (using the existence of the limit, shown below) the  function  is convex. It follows that (using the existence of the limit, shown below) the  function 
 $$ $$
- x\mapsto h(x)\eqdef\lim_{t\to\infty}d(x,\sigma(t))-t+ x\mapsto h(x):=\lim_{t\to\infty}d(x,\sigma(t))-t
 $$   $$  
 is convex and 1-Lipschitz. For every $x\in X$, consider the geodesic connecting $x$ with $\sigma(t)$, its intersection points with $\partial B_r(x)$ contains exactly two points $x_1^t,x_2^t$ satisfying $d(x,x_1^t)=r=d(x,x_2^t)$ and hence is convex and 1-Lipschitz. For every $x\in X$, consider the geodesic connecting $x$ with $\sigma(t)$, its intersection points with $\partial B_r(x)$ contains exactly two points $x_1^t,x_2^t$ satisfying $d(x,x_1^t)=r=d(x,x_2^t)$ and hence
Line 40: Line 39:
 $$ $$
  
-Recall that two geodesics $\sigma_1,\sigma_2\colon\bR\to X$ are \emph{(forward) asymptoticif+Recall that two geodesics $\sigma_1,\sigma_2\colon\mathbb B\to X$ are //(forward) asymptotic// if
 $$ $$
- d_H(\sigma_1(\bR^+),\sigma_2(\bR^+))<\infty,+ d_H(\sigma_1(\mathbb R^+),\sigma_2(\mathbb R^+))<\infty,
 $$ $$
 where $d_H$ denotes the Hausdorff distance. In other words, this defines a relation between geodesic rays.  where $d_H$ denotes the Hausdorff distance. In other words, this defines a relation between geodesic rays. 
-Note that being forward asymptotic is an equivalence relation. The set of equivalence classes of asymptotic geodesics is called \emph{sphere at infinityor also \emph{boundary at infinityand denoted by $X(\infty)$. Given a geodesic ray $\sigma\colon\bR^+\to X$, denote by $\sigma(\infty)$ the equivalence class it is contained in.+Note that being forward asymptotic is an equivalence relation. The set of equivalence classes of asymptotic geodesics is called //sphere at infinity// or also //boundary at infinity// and denoted by $X(\infty)$. See the previous post (Tema 8). Given a geodesic ray $\sigma\colon\mathbb R^+\to X$, denote by $\sigma(\infty)$ the equivalence class it is contained in.
  
-**Lemma 1** +**Lemma 1.** For every $\xi\in X(\infty)$ and $x\in X$ there is at most one geodesic ray such that $\sigma(0)=x$ and $\sigma(\infty)=\xi$.
- For every $\xi\in X(\infty)$ and $x\in X$ there is at most one geodesic ray such that $\sigma(0)=x$ and $\sigma(\infty)=\xi$.+
  
-**Proof.** +**Proof.** Recall that $t\mapsto d(\sigma_1(t),\sigma_2(t))$ is convex. Hence, $\sigma_1(0)=\sigma_2(0)$ and $\sigma_1(\infty)=\sigma_2(\infty)$ implies $\sigma_1=\sigma_2$. 
- Recall that $t\mapsto d(\sigma_1(t),\sigma_2(t))$ is convex. Hence, $\sigma_1(0)=\sigma_2(0)$ and $\sigma_1(\infty)=\sigma_2(\infty)$ implies $\sigma_1=\sigma_2$. $\qed$+
  
  
 We will use the following lemma. We will use the following lemma.
  
-\begin{lemma}[{\cite[Lemma 2.1]{Bal:95}}]\label{lem:rays} +**Lemma 2.** (see [Lemma 2.1, Ballmann]Given a geodesic ray $\sigma\colon\mathbb R^+\to X$ and $x\in X$, for $n\in\mathbb N$ denote by $\sigma_n\colon[0,d(x,\sigma(n)]\to X$  the geodesic segment from $x$ to $\sigma(n)$. Then for every $R>0$ and $\varepsilon>0$, for $n,m\in\mathbb N$ sufficiently large, it holds
- Given a geodesic ray $\sigma\colon\bR^+\to X$ and $x\in X$, for $n\in\bN$ denote by $\sigma_n\colon[0,d(x,\sigma(n)]\to X$  the geodesic segment from $x$ to $\sigma(n)$. Then for every $R>0$ and $\varepsilon>0$, for $n,m\in\bN$ sufficiently large, it holds+
 $$ $$
  d(\sigma_n(t),\sigma_m(t))<\varepsilon  d(\sigma_n(t),\sigma_m(t))<\varepsilon
  \quad\text{ for all }t\in[0,R].  \quad\text{ for all }t\in[0,R].
 $$  $$
-Moreover, $\sigma_n$ converges to a geodesic ray $\sigma_{x,\xi}\colon\bR^+\to X$ which is asymptotic to $\sigma$: for every $R>0$ and $\varepsilon>0$, for $n$ sufficiently large+Moreover, $\sigma_n$ converges to a geodesic ray $\sigma_{x,\xi}\colon\mathbb R^+\to X$ which is asymptotic to $\sigma$: for every $R>0$ and $\varepsilon>0$, for $n$ sufficiently large
 $$ $$
  d(\sigma_{x,\xi}(t),\sigma_n(t))<\varepsilon  d(\sigma_{x,\xi}(t),\sigma_n(t))<\varepsilon
  \quad\text{ for all }t\in[0,R].  \quad\text{ for all }t\in[0,R].
 $$  $$
-\end{lemma}+
  
 The following is now an immediate consequence. The following is now an immediate consequence.
  
-\begin{lemma} +**Lemma 3.** For every $\xi\in X(\infty)$ and $x\in X$ there is a unique geodesic ray $\sigma_{x,\xi}\colon\mathbb R^+\to X$ such that $\sigma_{x,\xi}(0)=x$ and $\sigma_{x,\xi}(\infty)=\xi$.
- For every $\xi\in X(\infty)$ and $x\in X$ there is a unique geodesic ray $\sigma_{x,\xi}\colon\bR^+\to X$ such that $\sigma_{x,\xi}(0)=x$ and $\sigma_{x,\xi}(\infty)=\xi$. +
-\end{lemma}+
  
 +Note that Lemmas 1-3 correspond Lemma 1 in [[ebsd2021:tema8|]].
  
-%Ballmann Lemma 2.2, topologia em X(infty) +**Lemma 4.** Let $\sigma\colon\mathbb R\to\infty$ be a geodesic, $y:=\sigma(0)$, and $\xi=\sigma(\infty)$. Then for every $x\in X$ the limit
- +
-\begin{lemma} +
- Let $\sigma\colon\bR\to\infty$ be a geodesic, $y\eqdef\sigma(0)$, and $\xi=\sigma(\infty)$. Then for every $x\in X$ the limit+
 $$ $$
  b_y(x,\xi)  b_y(x,\xi)
- \eqdef \lim_{t\to\infty}d(x,\sigma(t))-t+ := \lim_{t\to\infty}d(x,\sigma(t))-t
 $$  $$
 exists. exists.
-\end{lemma} 
  
-\begin{proof} +**Proof.** Check that the triangle inequality and $d(y,\sigma(t))=t$ together imply
-Check that the triangle inequality and $d(y,\sigma(t))=t$ together imply+
 $$ $$
  0  0
Line 114: Line 104:
 \end{split}$$ \end{split}$$
 Hence, the sequence is nonincreasing and bounded from below, hence converging. Hence, the sequence is nonincreasing and bounded from below, hence converging.
-\end{proof}+ 
 +We showed above that $b_y(\cdot,\xi)$ is convex and Lipschitz with Lipschitz constant 1. For the following, we largely follow [Lecture I Chapter 3, Ballmann-Gromov-Schröder].  
 + 
 +**Lemma 5.** For every $x\in X$ and $\xi\in X(\infty)$, the function $h=b_y(\cdot,\xi)\colon X\to\mathbb R$ 
 +  * is convex, 
 +  * is Lipschitz with Lipschitz constant 1, 
 +  * for $x\in X$, $r>0$ there are unique $x_1,x_2\in \partial B_r(x)$ such that $\lvert h(x_1)-h(x_2)\rvert=2r$, 
 +  * is $C^1$ with $\lVert{\rm grad}  h\rVert=1$, 
 +  * is $C^2$. 
 + 
 + 
 +**Proof.**The first three properties were shown in Example 5. To prove the forth one, fix $r>0$ and consider the unit speed vector field $x\mapsto\eta(x)$ such that $\eta(x)$ is the unique unit speed vector of the unit speed geodesic from $x$ to $x_1\in\partial B_r(x)$ that $h(x_1)=h(x)+r$. 
 +As $x_1=x_1(x,r)$ is unique, this is a continuous vector field $\eta$ on $X$. Let $c\colon[-\varepsilon,\varepsilon]\to B_r(x)$ be a unit speed geodesic with $c(0)=x$. We prove that $h\circ c$ is differentiable and satisfies $(h\circ c)'(0) =\langle \dot c(0),\eta(x)\rangle$. Hence, by continuity of $\eta$, $h$ is differentiable with ${\rm grad} h= \eta$, proving the claim.  To simplify notation, adding a constant, let us assume that $h(x)=0$, $h(x_1)=r$, and $h(x_2)=-r$. Lipschitz continuity of $h$ implies 
 +\[ 
 + \lvert h(c(s))-h(x_i)\rvert 
 + \le d(c(s),x_i) 
 +\] 
 +and hence 
 +\[ 
 + -d(c(s),x_1)+h(x_1) 
 + \le h(c(s)) 
 + \le d(c(s),x_2)+h(x_2), 
 +\] 
 +which implies 
 +\[ 
 + -d(c(s),x_1)+r 
 + := h_1(s) 
 + \le h(c(s)) 
 + \le h_2(s) 
 + := d(c(s),x_2)-r. 
 +\] 
 +Note that $h(c(0))=h(x)=h_1(0)=h_2(0)$. The first variation formula implies 
 +\[ 
 + h_1'(0) 
 + = \frac{d}{ds}h_1(s)|_{s=0} 
 + = \langle \dot c(0),\eta(x)\rangle 
 + = h_2'(0). 
 +\] 
 +This shows that $h\circ c$ is differentiable and $(h\circ c)'(0) =\langle \dot c(0),\eta(x)\rangle$, proving the claim. To conclude the proof, just note that $h$ is $C^2$ was shown in [Heintze-Im Hof '77] (see also [Proposition 3.2, Ballmann '95). 
 + 
 +Given $y\in X$ and $\xi\in X(\infty)$, the function 
 +\[ 
 + x\mapsto b_y(x,\xi) 
 +\] 
 +is the //Busemann function// associated to $y$ and $\xi$. The level sets 
 +\[ 
 + H(\alpha) 
 + := \{x\colon b_y(x,\xi)=\alpha\} 
 +\] 
 +are the //horospheres// based at $\xi\in X(\infty)$.  
 +Note that 
 +\[ 
 + \sigma_{y,\xi}(\alpha)\in H(\alpha). 
 +\] 
 +The level sets only depend on $\xi$ and not on $y$. In particular, ${\rm grad} b_y(x,\xi)$ does not depend on $y$. The value $b_y(x,\xi)$ is the signed distance of $x$ from the horosphere through $y$ or, in other words, the distance between the horospheres through $x$ and $y$, respectively.  
 + 
 +Denote by ${\rm Hor}_{x,\xi}$ the horosphere based at $\xi$ through $x\in X$. Given $v\in SX$, denote also by ${\rm Hor}_v$ the horosphere based at $c_v(\infty)\in X(\infty)$ through $c_v(0)\in X$.  
 +To take a dynamical systems-point of view, let us introduce the so-called //horospherical foliations//. Given $v\in SX$, let $y:= c_v(0)$, $\xi^+:= c_v(\infty)$ and $\xi^-:= c_v(-\infty)$. Then 
 +\[\begin{split} 
 + W^{cs}(v) 
 + := \{w\in SX\colon c_w(\infty)=c_v(\infty)\} 
 + = \{-{\rm grad} b_y(x,\xi^+)\colon x\in X\},\\ 
 + W^{cu}(v) 
 + := \{w\in SX\colon c_w(-\infty)=c_v(-\infty)\} 
 + = \{{\rm grad} b_y(x,\xi^-)\colon x\in X\}  
 +\end{split}\] 
 +is the //weak stable// or //center stable leaf// through $v$ and the //weak unstable leaf// or //center unstable leaf// through $v$, respectively. 
 +Each of them is subfoliated by un-/stable leafs. Here 
 +\[\begin{split} 
 + W^s(v) 
 + &:=\{-{\rm grad} b_y(x,\xi^+)\colon x\in {\rm Hor}_v\},\\ 
 + W^u(v) 
 + &:= \{{\rm grad} b_y(x,\xi^-)\colon x\in {\rm Hor}_{-v}\}, 
 +\end{split}\] 
 +define the //stable// and //unstable leaf// through $v$, respectively.  
  
ebsd2021/tema9.1632314516.txt.gz · Last modified: 2021/09/22 09:41 by escola