User Tools

Site Tools


ebsd2021:tema7

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
ebsd2021:tema7 [2021/06/28 16:08] – external edit 127.0.0.1ebsd2021:tema7 [2021/09/09 16:49] (current) escola
Line 1: Line 1:
-Tema 7+**Tema 7: Hadamard manifolds - part 2** 
 + 
 +__Convexity properties__ 
 + 
 +We continue exploring the convexity properties on Hadamard manifolds. 
 + 
 +//Convex function:// A function $f:M\to\mathbb R$ is //convex// if for every geodesic $\gamma$ the composition $f\circ\gamma:\mathbb R\to\mathbb R$ is convex.  
 + 
 + 
 +//Convex set:// A set $C\subset M$ is //convex// if for every $x,y\in C$ the segment $xy\subset C$. 
 + 
 + 
 +Here are examples of convex sets: if $f:M\to\mathbb R$ is a convex function then $f^{-1}(-\infty,\alpha]$ is a convex set for all $\alpha\in\mathbb R$. Indeed, let $f(x)\leq \alpha$ and $f(y)\leq\alpha$, and let $\gamma:[0,t]\to M$ be the segment $xy$. Since $f\circ\gamma:[0,t]\to \mathbb R$ is convex, it is bounded by $\alpha$ and so $xy\subset f^{-1}(-\infty,\alpha]$. The main result of this subsection is the following. 
 + 
 +**Proposition 1.** If $\gamma_1,\gamma_2$ are geodesics on $M$, then $t\mapsto d(\gamma_1(t),\gamma_2(t))$ 
 +is convex. 
 + 
 +**Proof.** Fix $t_1,t_2$, let $t=\tfrac{t_1+t_2}{2}$, and let $x$ be the midpoint of the segment 
 +$\gamma_1(t_1)\gamma_2(t_2)$. 
 +By the triangle inequality, 
 +$$ 
 +d(\gamma_1(t),\gamma_2(t))\leq d(\gamma_1(t),x)+d(x,\gamma_2(t)). 
 +$$ 
 +By Corollary 2 of the previous post, $d(\gamma_1(t),x)\leq \tfrac{d(\gamma_1(t_2),\gamma_2(t_2))}{2}$ 
 +and $d(x,\gamma_2(t))\leq \tfrac{d(\gamma_1(t_1),\gamma_2(t_1))}{2}$, thus 
 +$$ 
 +d(\gamma_1(t),\gamma_2(t))\leq \frac{d(\gamma_1(t_1),\gamma_2(t_1))+d(\gamma_1(t_2),\gamma_2(t_2))}{2}\cdot 
 +$$ 
 + 
 +**Corollary 1.** If $C$ is a convex set, then $x\mapsto d(x,C)$ is a convex function. 
 + 
 +**Proof.** For simplicity, assume that $C$ is closed (the general case follows by approximating $d(x,C)$ 
 +by $d(x,y)$ for $y\in C$). Fix a geodesic $\gamma$, and $x=\gamma(t_1)$, $y=\gamma(t_2)$. 
 +Let $\overline{x},\overline{y}$ s.t. $d(x,C)=d(x,\overline{x})$ and $d(y,C)=d(y,\overline{y})$. 
 +If $z,\overline{z}$ are the midpoints of $xy,\overline{x}\overline{y}$ then by the previous proposition:  
 +$$ 
 +d(z,C)\leq d(z,\overline{z})\leq \frac{d(x,\overline x)+d(y,\overline y)}{2}=\frac{d(x,C)+d(y,C)}{2}\cdot 
 +$$ 
 + 
 + 
 + 
 + 
 +__Bruhat-Ti ts characterization of nonpositive curvature__ 
 + 
 +The next result, due to Bruhat and Ti ts, is an alternate characterization of nonpositive curvature. 
 +We state it for Riemannian manifolds, but it also works for complete metric spaces. 
 + 
 + 
 +**Theorem 1.** (Bruhat-Ti ts) Let $M$ be a complete Riemannian manifold. Then $M$ is Hadamard iff for 
 +any points $x,y\in M$ there is a point $m\in M$ (the midpoint of $xy$) s.t. 
 +$$ 
 +d(z,m)^2\leq \tfrac{1}{2}\left[d(z,x)^2+d(z,y)^2\right]-\tfrac{1}{4}d(x,y)^2, \ \ \forall z\in M. 
 +$$ 
 + 
 +Intuitively, the above inequality states that the triangle $xyz$ is thinner than the respective 
 +euclidean triangle. Indeed, in zero curvature we obtain equality, by Stewart's theorem. 
 +For a proof, see Ballmann's lecture notes. 
 + 
 +The above theorem gives another proof of Corollary 3 of the last post. 
 +For that, let $D=\ell(xy)$ and $E=\ell(by)$. By the Bruhat-Ti ts theorem applied to 
 +the triangle $abc$ with midpoint $y$ and to the triangle $aby$ with midpoint $x$, we have: 
 +\begin{align*} 
 +&E^2\leq \tfrac{1}{2}\left[A^2+C^2\right]-\tfrac{1}{4}B^2\\ 
 +&\\ 
 +&D^2\leq \tfrac{1}{2}\left[\left(\tfrac{B}{2}\right)^2+E^2\right]-\tfrac{1}{4}C^2. 
 +\end{align*} 
 + 
 +Substituting the first inequality into the second, we get that 
 +$$ 
 +D^2\leq \tfrac{B^2}{8}+\tfrac{A^2}{4}+\tfrac{C^2}{4}-\tfrac{B^2}{8}-\tfrac{C^2}{4}=\tfrac{A^2}{4}\cdot 
 +$$ 
 + 
 + 
 + 
 +__Flat strip theorem__ 
 + 
 +A consequence of the previous results is the so-called flat strip theorem. 
 + 
 +**Theorem 2.** (Flat strip theorem) Let $M$ be a Hadamard manifold, and let $\gamma_1,\gamma_2$ be two geodesics. If the function $t\mapsto d(\gamma_1(t),\gamma_2(t))$ is bounded, then $\gamma_1,\gamma_2$ 
 +bound a flat strip, i.e. a convex region isometric to the convex hull of two parallel lines in the euclidean 
 +plane. 
 + 
 +**Proof.** By Proposition 1, $d(\gamma_1(t),\gamma_2(t))$ is constant. For $t_1<t_2$, consider the quadrilateral $Q$ with vertices $\gamma_1(t_1),\gamma_2(t_1),\gamma_2(t_2),\gamma_1(t_2)$, and let $\alpha,\beta,\delta,\theta$ be its angles. 
 +We claim that $\alpha+\beta=\pi$. 
 +For that, consider the triangle $\gamma_1(t_1)\gamma_2(t_1)\gamma_1(t)$ for $t>t_1$, with angles 
 +$\alpha,\beta_t,\theta_t$. We have $\beta=\lim\limits_{t\to\infty}\beta_t$. 
 +By the last post, $\alpha+\beta_t\leq \pi$, and so taking $t\to\infty$ we conclude that 
 +$\alpha+\beta\leq \pi$. If we apply the same calculations for $t\to-\infty$, we get that 
 +$(\pi-\alpha)+(\pi-\beta)\leq \pi$, i.e. $\alpha+\beta\geq\pi$, therefore 
 +$\alpha+\beta=\pi$. Similarly, $\delta+\theta=\pi$, and so $\alpha+\beta+\delta+\theta=2\pi$. 
 +By Corollary 2 of the last post, $Q$ is flat. Since this holds for all $t_1<t_2$, the proof is complete. 
 + 
 + 
 + 
  
 ~~DISCUSSIONS~~ ~~DISCUSSIONS~~
ebsd2021/tema7.1624907298.txt.gz · Last modified: 2021/06/28 16:08 by 127.0.0.1