User Tools

Site Tools


ebsd2021:tema3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
ebsd2021:tema3 [2021/06/28 16:09] – external edit 127.0.0.1ebsd2021:tema3 [2021/08/31 22:38] (current) escola
Line 1: Line 1:
-Tema 3+**Tema 3: Jacobi equation in Hamiltonian dynamics** 
 + 
 +Recall that the Jacobi equation is defined by the equation $J''+R(\gamma',J) 
 +\gamma'=0$, which is a second order differential equation (ODE) in the manifold. Using an orthonormal frame of parallel vector fields, this equation can be rewritten as the ODE in $\mathbb R^n$, see the first post. 
 +The benefit of this latter representation is that the underlying space is fixed. Finally, 
 +the ODE also has a matrix form, see also the first post. In this section, we will  
 +consider the generalization of this point of view and study it from the perpective 
 +of Hamiltonian vector fields. 
 + 
 + 
 +Let $(E,\langle\cdot,\rangle)$ be a vector space with inner product, and define 
 +\begin{align*} 
 +{\rm End}(E)&=\{A:E\to E:A \text{ is linear}\}\\ 
 +{\rm Sym}(E)&=\{A:E\to E:A\text{ is linear and symmetric}\}. 
 +\end{align*} 
 +Also, let $(E\times E,\omega)$ be the canonical symplectic vector space, as defined in the second post.  
 + 
 + 
 +//Curvature operator:// A //curvature operator// on $E$ is a $C^\infty$ map 
 +$R:\mathbb R\to {\rm Sym}(E)$. 
 + 
 +From now on, fix a curvature operator $R$. 
 + 
 + 
 +//Jacobi equation, Jacobi field, and Jacobi tensor:// The //Jacobi equation// is  
 +$$ 
 +\ddot{J}(t)+R(t)J(t)=0 
 +$$ 
 +A solution $J:\mathbb R\to E$ of the Jacobi equation is called a //Jacobi field//. The Jacobi equation has the matrix version 
 +$$ 
 +\ddot{B}(t)+R(t)B(t)=0, 
 +$$ 
 +and a solution $B:\mathbb R\to {\rm End}(E)$ of it is called a //Jacobi tensor//. 
 + 
 +We can interpret Jacobi solutions as Hamiltonian vector fields of a //time-dependent// 
 +Hamiltonian function. 
 + 
 +//Time-dependent Hamiltonian function:// For each $t\in\mathbb R$, define the function 
 +$H_t:E\times E\to\mathbb R$ by 
 +$$ 
 +H_t(x,y)=\tfrac{1}{2}\left[\langle y,y\rangle+\langle R(t)x,x\rangle\right]. 
 +$$ 
 +We have 
 +\begin{align*} 
 +\tfrac{\partial H_t}{\partial x}(x,y)\cdot(v,w)&=\tfrac{1}{2}\left[\langle R(t)v,x\rangle+\langle R(t)x,v\rangle\right] 
 += \langle R(t)x,v\rangle\\ 
 +\tfrac{\partial H_t}{\partial y}(x,y)\cdot(v,w)&=\tfrac{1}{2}\left[\langle w,y\rangle+\langle y,w\rangle\right] 
 += \langle y,w\rangle, 
 +\end{align*} 
 +and so the Hamilton equations are 
 +$$ 
 +\left\{ 
 +\begin{array}{l} 
 +\dot{X}=\tfrac{\partial H_t}{\partial y}(X,Y)=Y\\ 
 +\\ 
 +\dot{Y}=-\tfrac{\partial H_t}{\partial x}(X,Y)=-R(t)X 
 +\end{array} 
 +\right., 
 +$$ 
 +whose solutions are exactly the Jacobi solutions $(X,Y)=(J,J')$. 
 + 
 +To study how to generate these solutions, note that if $(A,\dot{A}),(B,\dot{B})$ are Jacobi tensors then 
 +\begin{align*} 
 +&\omega((A(t)x,\dot{A}(t)x),(B(t)y,\dot{B}(t)y))=\langle \dot{A}(t)x,B(t)y\rangle - \langle A(t)x,\dot{B}(t)y\rangle\\ 
 +&\langle B(t)^T\dot{A}(t)x,y\rangle - \langle \dot{B}(t)^TA(t)x,y\rangle= 
 +\left\langle \left[B(t)^T\dot{A}(t)-\dot{B}(t)^TA(t)\right]x,y\right\rangle. 
 +\end{align*} 
 +This motivates the following definition. 
 + 
 +//Wronskian:// Given two Jacobi tensors $A,B$, the //Wronskian// of $A,B$ is the function 
 +$\Omega(A,B):\mathbb R\to {\rm End}(E)$ defined by 
 +$$ 
 +\Omega(A,B)(t)=B(t)^T\dot{A}(t)-\dot{B}(t)^TA(t). 
 +$$ 
 + 
 +Hence $\omega((A(t)x,\dot{A}(t)x),(B(t)y,\dot{B}(t)y))=\langle \Omega(A,B)(t)x,y\rangle$. 
 +The Wronskian has important invariance properties. 
 + 
 +**Lemma 1.** If $A,B$ are Jacobi tensors then $\Omega(A,B)$ is constant. 
 + 
 +**Proof.** 
 +Differentiating, we have 
 +\begin{align*} 
 +&\frac{d}{dt}\Omega(A,B)=\frac{d}{dt}\left[B(t)^T\dot{A}(t)-\dot{B}(t)^TA(t)\right]\\ 
 +&=\left[\dot{B}(t)^T\dot{A}(t)+B(t)^T\ddot{A}(t)\right]-\left[\ddot{B}(t)^TA(t)+\dot{B}(t)^T\dot{A}(t)\right]\\ 
 +&=B(t)^T\ddot{A}(t)-\ddot{B}(t)^TA(t)=B(t)^T[-R(t)A(t)]-[-R(t)B(t)]^TA(t)\\ 
 +&=-B(t)^TR(t)A(t)+B(t)^TR(t)A(t)=0, 
 +\end{align*} 
 +where in the last passage we used that $R(t)$ is symmetric. 
 + 
 +It is also useful to see that $\Omega(A,B)=0$ iff $\dot{B}B^{-1}=(\dot{A}A^{-1})^T$ (regardless 
 +$A,B$ are Jacobi tensors). The proof is by direct calculation. 
 +In particular, $\Omega(A,A)=0$ iff $\dot{A}A^{-1}\in{\rm Sym}(E)$. 
 + 
 +**Lemma 2.** Given $A,B\in{\rm End}(E)$, let  
 +$$ 
 +L=\{(Ax,Bx):x\in E\}. 
 +$$ 
 +Then $L$ is isotropic iff $A^TB\in{\rm Sym}(E)$. If additionally the map $x\mapsto (Ax,Bx)$ is injective, 
 +then $L$ is Lagrangian. In particular, the graph 
 +$$ 
 +L=\{(x,Ax):x\in E\} 
 +$$ 
 +is Lagrangian iff $A\in{\rm Sym}(E)$. 
 + 
 +**Proof.** 
 +We have 
 +\begin{align*} 
 +\omega((Ax,Bx),(Ay,By))=\langle Bx,Ay\rangle-\langle Ax,By\rangle=\langle (A^TB-B^TA)x,y\rangle, 
 +\end{align*} 
 +hence $L$ is isotropic iff $A^TB=B^TA$. The other claims are direct. 
 + 
 + 
 +**Corollary.** 
 +If $A$ is a Jacobi tensor, then 
 +$$ 
 +L_t=\{(A(t)x,\dot{A}(t)x):x\in E\} 
 +$$ 
 +defines a family of isotropic subspaces iff $\Omega(A,A)=0$. 
 +Hence, $L_a$ is isotropic for some $a\in\mathbb R$ iff $L_t$ is isotropic for all $t$. 
 +In particular, $\{L_t\}$ is a family of Lagrangians iff $\Omega(A,A)=0$ and ${\rm dim}(L_t)={\rm dim}(E)$ 
 +for every $t$. 
 + 
 +**Proof.** 
 +By Lemma 1, $\Omega(A,A)$ is constant. We have 
 +$\Omega(A,A)(t)=0$ iff $A(t)^TA(t)\in{\rm Sym}(E)$ iff $L_t$ is isotropic. 
 + 
 +Here is a simple example: if $A$ is a Jacobi tensor with $A(a)=0$, then 
 +$\Omega(A,A)(a)=0$ and so $\{L_t\}$ is a family of isotropic subspaces. If additionally $\dot{A}(a)={\rm Id}$, 
 +then $L_a$ is a Lagrangian. 
 + 
 +Coming back to the Hamilton equations, they define for $a,t\in\mathbb R$ a symplectic map (that  
 +preserves the symplectic form $\omega$) $\psi_{a,t}:E\times E\to E\times E$ 
 +given by 
 +$$ 
 +\psi_{a,t}(J(a),\dot{J}(a))=(J(t),\dot{J}(t)). 
 +$$ 
 +Note that $\psi_{a,a}={\rm Id}$. Nowadays the family $\{\psi_{a,t}\}$ is called a //Hamiltonian isotopy//
 +In the terminology of the last corollary, $L_t=\psi_{a,t}L_a$ and so $\{L_t\}$ is a family of deformations 
 +of $L_a$ induced by the Hamiltonian isotopy. 
 + 
 +//Lagrangian deformation:// $\{L_t\}$ as above is called a //Lagrangian deformation// if each  
 +$L_t$ is a Lagrangian subspace. 
 + 
 +As we will see next, Lagrangian deformations are related to the absence of conjugate points. 
 + 
 +**No conjugate points** 
 + 
 +Conjugate points are the infinitesimal notion of positions where geodesics focus together. 
 +If we expect that chaos is related to divergence of geodesics, then chaotic geodesic flows 
 +have no conjugate points. 
 + 
 +//No conjugate points:// We say that the Jacobi equation $\ddot{J}(t)+R(t)J(t)=0$ has  
 +//no conjugate points// on $[a,b]$ if every Jacobi field $J$ s.t. $J(a)=0$ and $\dot{J}(a)\neq 0$ 
 +satisfies $J(t)\neq 0$ for all $t\in (a,b]$. 
 + 
 + 
 +Alternatively, there are no conjugate points on $[a,b]$ iff the Jacobi tensor  
 +$A$ with $A(a)=0$ and $\dot{A}={\rm Id}$ is non-singular for all $t\in(a,b]$. 
 +In this case, $L_t=\{(A(t)x,\dot{A}(t)x):x\in E\}$ is a Lagrangian graph for all $t\in(a,b]$ 
 +(but not for $t=a$). The next result provides a result in the other direction. 
 + 
 +**Proposition.** 
 +Assume that $L_t=\psi_{a,t}L_a$ is a Lagrangian graph for all $t\in[a,b]$. Then  
 +the Jacobi equation has no conjugate points on $[a,b]$. 
 + 
 +Note that the condition of the proposition is slightly stronger than the one obtained 
 +in the preceding paragraph. 
 + 
 +**Proof.** By assumption, $L_t=\{(B(t),\dot{B}(t)):t\in E\}$ where $B(t)$ is non-singular for $t\in[a,b]$ and satisfies the 
 +Jacobi equation. Let $A(t)$ be the solution of the Jacobi equation with $A(a)=0$ and $\dot{A}(a)={\rm Id}$.  
 +We wish to prove that $A(t)$ is non-singular for all $t\in (a,b]$. The idea is that, being the generator of Lagrangian 
 +graphs, $B$ encodes all the information of Jacobi fields and hence $A$ is uniquely 
 +determined by $B$. To see that, we show that the derivative of $B^{-1}A$ only depends on $B$, and hence 
 +$A(t)$ has an explicit formula in terms of $B$. In the sequel, we will omit the parameter $t$ when possible. 
 +Recall that: 
 +  * $L$ is isotropic implies that $\Omega(B,B)=0$ and so $\dot{B}B^{-1}\in{\rm Sym}(E)$. 
 +  * $\Omega(A,B)=\Omega(A,B)(a)=B(a)^T$, hence 
 +$$ 
 +B^{-1}\dot{A}=B^{-1}(B^{-1})^TB(a)^T+B^{-1}\dot{B}B^{-1}A. 
 +$$ 
 +Therefore,  
 +\begin{align*} 
 +\dot{\widehat{B^{-1}A}}=-B^{-1}\dot{B}B^{-1}A+B^{-1}\dot{A}=B^{-1}(B^{-1})^TB(a)^T 
 +\end{align*} 
 +and so 
 +$$ 
 +A(t)=B(t)\int_a^t B(s)^{-1}[B(s)^{-1}]^TB(a)^Tds 
 +$$ 
 +is non-singular for all $t\in(a,b]$. 
 + 
 + 
 + 
  
 ~~DISCUSSIONS~~ ~~DISCUSSIONS~~
ebsd2021/tema3.1624907397.txt.gz · Last modified: 2021/06/28 16:09 by 127.0.0.1