User Tools

Site Tools


ebsd2021:tema12

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
ebsd2021:tema12 [2021/09/22 10:21] escolaebsd2021:tema12 [2021/09/22 10:24] (current) escola
Line 1: Line 1:
 +**Tema 12: Busemann densities**
 +
 Given a Hadamard manifold $X$ and a discrete group of isometries $\Gamma$, a family of Borel measures $\{\mu_p\colon p\in X\}$ on $X(\infty)$ is an //$\alpha$-dimensional Busemann density// if it satisfies: Given a Hadamard manifold $X$ and a discrete group of isometries $\Gamma$, a family of Borel measures $\{\mu_p\colon p\in X\}$ on $X(\infty)$ is an //$\alpha$-dimensional Busemann density// if it satisfies:
   * ${\rm supp}\mu\subset\Lambda(\Gamma)$,   * ${\rm supp}\mu\subset\Lambda(\Gamma)$,
Line 49: Line 51:
 together with the analogous upper bound. together with the analogous upper bound.
  
-**Lemma 4.** $\Gamma x\subset{\rm supp}\mu_{p,x,s}\subset\overline{\Gamma x}$.+**Lemma 3.** $\Gamma x\subset{\rm supp}\mu_{p,x,s}\subset\overline{\Gamma x}$.
  
  
Line 59: Line 61:
 A priori, the limit measure may depend on the subsequence $(s_k)_k$.  A priori, the limit measure may depend on the subsequence $(s_k)_k$. 
  
-**Lemma 5.** For every $p\in X$, the weak limit $\mu_p:=\lim_{k\to\infty}\mu_{p,x,s_k}$ exists. The family of measures $\{\mu_p\colon p\in X\}$ is a $\delta(\Gamma)$-dimensional Busemann density.+**Lemma 4.** For every $p\in X$, the weak limit $\mu_p:=\lim_{k\to\infty}\mu_{p,x,s_k}$ exists. The family of measures $\{\mu_p\colon p\in X\}$ is a $\delta(\Gamma)$-dimensional Busemann density.
  
 The Busemann density is also called //Patterson-Sullivan measure//. The Busemann density is also called //Patterson-Sullivan measure//.
Line 120: Line 122:
 **Lemma.** For every $p\in X$, ${\rm supp} \mu_p=X(\infty)$.  **Lemma.** For every $p\in X$, ${\rm supp} \mu_p=X(\infty)$. 
  
-Denote by ${\rm pr}\colon \overline X\times X\setminus D\to X(\infty)$ the projection $\pr_y(x)$, which for every $x\in \overline X$ and $y\in X$, $y\ne x$, assigns +Denote by ${\rm pr}\colon \overline X\times X\setminus D\to X(\infty)$ the projection ${\rm pr}_y(x)$, which for every $x\in \overline X$ and $y\in X$, $y\ne x$, assigns 
 \[ \[
  {\rm pr}_y(x):=\sigma_{y,x}(\infty).  {\rm pr}_y(x):=\sigma_{y,x}(\infty).
 \]   \]  
-Denote by $S_{d(y,x)}(y)$ the sphere of radius $d(y,x)$ and center $y$. For $\xi:= \pr_y(x)$ let+Denote by $S_{d(y,x)}(y)$ the sphere of radius $d(y,x)$ and center $y$. For $\xi:{\rm pr}_y(x)$ let
 \[ \[
  B^\rho_r(\xi)  B^\rho_r(\xi)
ebsd2021/tema12.1632316886.txt.gz · Last modified: 2021/09/22 10:21 by escola · Currently locked by: 216.73.216.101