User Tools

Site Tools


simpsons

This is an old revision of the document!


Error loading plugin vshare
ParseError: syntax error, unexpected 'fn' (T_STRING), expecting :: (T_PAAMAYIM_NEKUDOTAYIM)
More info is available in the error log.

Simpsons e Fourier: 3c2xgVn6KCc

Teorema de Parseval:

9kjiIYJPU0o

Sejam $f, g : [-\pi, \pi] \rightarrow \mathbb{R}$ funções Rieman integráveis e $f(x) \sim \sum_{-\infty}^{\infty} c_n e^{inx}, g(x) \sim \sum_{-\infty}^{\infty} \gamma_n e^{inx} $ respectivas séries de Fourier. Então:

  1. $\lim_{N \rightarrow \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)- S_N(f, x)|^2 dx = 0.$
  2. $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g}(x) dx = \sum_{-\infty}^{\infty} c_n \overline{\gamma}_n$
  3. \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{-\infty}^{\infty} |c_n|^2.$

Observe que a terceira afirmação é consequeência imediata da segunda, assumindo $f=g.$

simpsons.1624546146.txt.gz · Last modified: 2021/06/24 11:49 by tahzibi