open-problems
This is an old revision of the document!
Error loading plugin vshare
ParseError: syntax error, unexpected 'fn' (T_STRING), expecting :: (T_PAAMAYIM_NEKUDOTAYIM)
More info is available in the error log.
ParseError: syntax error, unexpected 'fn' (T_STRING), expecting :: (T_PAAMAYIM_NEKUDOTAYIM)
More info is available in the error log.
Ali Tahzibi: Let $f: \mathbb{T}^3 \rightarrow \mathbb{T}^3$ be an Anosov diffeomorphism with $E^{uu} \oplus E^u \oplus E^s$ decomposition. Let $\mu$ be an invariant probability measure such that $h_{\mu}(f, \mathcal{F}^{uu}) = h_{top}(f, \mathcal{F}^{uu}).$ Is it true that $\mu$ is m.m.e?
open-problems.1619264072.txt.gz · Last modified: 2021/04/24 08:34 by tahzibi
Discussion
Ali Tahzibi: Let $f: \mathbb{T}^3 \rightarrow \mathbb{T}^3$ be an Anosov diffeomorphism with $E^{uu} \oplus E^u \oplus E^s$ decomposition. Let $\mu$ be an invariant probability measure such that $h_{\mu}(f, \mathcal{F}^{uu}) = h_{top}(f, \mathcal{F}^{uu}).$ Is it true that $\mu$ is m.m.e?