Let X be a complete simply connected Riemannian manifold of dimension ≥2 and pinched negative curvature, X(∞) its boundary at infinity, Γ a non-elemantary discrete group of isometries of X.
We consider the Gromov product of a,b∈X relative to x∈X, (a,b)x:=12(d(x,a)+d(x,b)−d(a,b)). Based on the Busemann function, consider the horospherical distance (relative to ξ∈X(∞)), given a geodesic ray γ with γ(0)=y and γ(∞)=ξ, βξ(x,y):=by(x,ξ)=limt→∞d(x,γ(t))−d(y,γ(t)).
Given ξ,η∈X(∞), ξ≠η, and an→ξ,bn→η, then (ξ,η)x:=limn→∞(an,bn)x (this limit exists and is independent on the chosen sequences, see above). If ξ=γ(∞) and η=γ(−∞) for a geodesic γ, given z=γ(0) (or any other point in γ), (ξ,η)x=limn(γ(n),γ(−n))x=limn12(d(x,γ(n))+d(x,γ(−n))−d(γ(n),γ(−n))=limn12(d(x,γ(n))+d(x,γ(−n))−(d(γ(n),z)+d(z,γ(−n)))=limn12(d(x,γ(n))−d(z,γ(n)))+limn12(d(x,γ(−n))−d(z,γ(−n))=12(bξ(x,z)+bη(x,z)).
For the following see [Bridson, Haefliger, Chapter III.H Propositions 3.7 and 3.21] or [Bourdon 1995].
Lemma. For any x∈X, the function dx(ξ,η):={e−(ξ,η)x if ξ≠η,0 otherwise, defines a metric on X(∞) which induces the same topology as the cone topology. Moreover, for any x,y∈X dy(ξ,η)=e12(bξ(x,y)+bη(x,y))dx(ξ,η).
The above result will be used to state some regularity properties of Gibbs cocycles.