User Tools

Site Tools


simpsons

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
simpsons [2021/06/24 11:49] tahzibisimpsons [Unknown date] (current) – removed - external edit (Unknown date) 127.0.0.1
Line 1: Line 1:
  
-Simpsons e Fourier: 
-{{youtube>3c2xgVn6KCc?small}} 
- 
-Teorema de Parseval: 
- 
-{{youtube>9kjiIYJPU0o?small}} 
- 
- 
- 
-Sejam $f, g : [-\pi, \pi] \rightarrow \mathbb{R}$ funções Rieman integráveis e $f(x) \sim \sum_{-\infty}^{\infty} c_n e^{inx}, g(x) \sim \sum_{-\infty}^{\infty} \gamma_n e^{inx} $ respectivas séries de Fourier. Então: 
-  - $\lim_{N \rightarrow \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)- S_N(f, x)|^2 dx = 0.$ 
-  - $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g}(x) dx = \sum_{-\infty}^{\infty} c_n \overline{\gamma}_n$ 
-  - $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2  dx = \sum_{-\infty}^{\infty} |c_n|^2.$ 
- 
-Observe que a terceira afirmação é consequeência imediata da segunda, assumindo $f=g.$ 
simpsons.1624546182.txt.gz · Last modified: 2021/06/24 11:49 by tahzibi