simpsons
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| simpsons [2021/06/24 11:45] – tahzibi | simpsons [Unknown date] (current) – removed - external edit (Unknown date) 127.0.0.1 | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | Teorema de Parseval: | ||
| - | Sejam $f, g : [-\pi, \pi] \rightarrow \mathbb{R}$ funções Rieman integráveis e $f(x) \sim \sum_{-\infty}^{\infty} c_n e^{inx}, g(x) \sim \sum_{-\infty}^{\infty} \gamma_n e^{inx} $ respectivas séries de Fourier. Então: | ||
| - | - $\lim_{N \rightarrow \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)- S_N(f, x)|^2 dx = 0.$ | ||
| - | - $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g}(x) dx = \sum_{-\infty}^{\infty} c_n \overline{\gamma}_n$ | ||
| - | - \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 | ||
| - | |||
| - | Observe que a terceira afirmação é consequeência imediata da segunda, assumindo $f=g.$ | ||
simpsons.1624545925.txt.gz · Last modified: 2021/06/24 11:45 by tahzibi