User Tools

Site Tools


ebsd2021:tema8

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
ebsd2021:tema8 [2021/09/13 15:59] – created escolaebsd2021:tema8 [2021/09/14 09:16] (current) escola
Line 1: Line 1:
-Tema 8+**Tema 8: Boundary at infinity of Hadamard manifolds** 
 + 
 +In this topic, we provide some (equivalent) ways to compactify a Hadamard manifold $M$. 
 + 
 +**Asymptotic rays** 
 + 
 +A ray is a geodesic $\gamma:[0,\infty)\to M$. 
 + 
 +//Asymptotic rays:// Two rays $\gamma_1,\gamma_2:[0,\infty)\to M$ are //asymptotic// if the function $t\in [0,\infty)\mapsto d(\gamma_1(t),\gamma_2(t))$ is bounded. In this case, we write $\gamma_1\sim\gamma_2$. 
 + 
 +It is easy to check that $\sim$ is an equivalence relation. 
 + 
 +//Boundary at infinity $M(\infty)$:// The //boundary at infinit//y of $M$ is the set of equivalence relations of $\sim$, 
 +$$ 
 +M(\infty)=\{[\gamma]:\gamma\text{ is a ray}\}. 
 +$$ 
 + 
 + 
 +Every $p\in M$ defines a map $f_p:SM_p\to M(\infty)$ by $f_p(v)=[\gamma_v]$. 
 + 
 +**Lemma 1.** The map $f_p$ is a bijection. 
 + 
 +**Proof.** We start proving injectivity. If $f_p(v)=f_p(w)$ then $\gamma_v\sim\gamma_w$ and so 
 +$d(t)=d(\gamma_v(t),\gamma_w(t))$ is uniformly bounded for $t\geq 0$. By convexity, $d(t)={\rm const}$, and so $d(t)=d(0)=0$. This implies that $v=w$. 
 +Now we prove that $f_p$ is surjective. Fix a ray $\gamma$. For each $n$, 
 +let $\gamma_{v_n}=$ ray starting at $p$ and passing through $\gamma(n)$, say 
 +$\gamma_{v_n}(t_n)=\gamma(n)$. Passing to a subsequence, 
 +we can assume that $v_n\to v$. We claim that $\gamma_v\sim \gamma$, 
 +with $d(\gamma_v(t),\gamma(t))\leq d(p,\gamma(0))$ for all $t\geq 0$. 
 +To see that, start observing that 
 +$d(\gamma_v(t),\gamma(t))=\lim\limits_{n\to\infty}d(\gamma_{v_n}(t),\gamma(t))$. 
 +By convexity, the function $d(\gamma_{v_n}(t),\gamma(t))$ is non-increasing in  
 +$[0,t_n]$. \footnote{The function $f_n(t)=d(\gamma_{v_n}(t),\gamma(t))$ satisfies $f_n''(t)\geq 0$ and 
 +$f_n'(t_n)=0$. If $f_n'(t_*)>0$ for some $0\leq t_*\leq t_n$, then $f_n'(t)>0$ for all $t\geq t_*$, 
 +a contradiction.} 
 +Hence, for $t_n>t$ we have $d(\gamma_{v_n}(t),\gamma(t))\leq d(p,\gamma(0))$. 
 + 
 +**Lemma 2.** 
 +For every $p,q\in M$, the composition $f_q^{-1}\circ f_p:SM_p\to SM_q$ 
 +is an homeomorphism. 
 + 
 +//Sphere topology on $M(\infty)$:// The //sphere topology// on $M(\infty)$ is the topology that makes any $f_p$ an homeomorphism. 
 + 
 + 
 +By Lemma 2, the definition does not depend on $p$. In particular, $M(\infty)$ is homeomorphic to a sphere of $\mathbb R^n$. There is another way to understand this topology, that actually characterizes the topology of the union $\overline{M}=M\cup M(\infty)$. For $p\in M$, let $B_1(p)\subset TM_p$ be the closed unit ball centered at the origin. Define the map $\varphi=\varphi_p:B_1(p)\to \overline{M}$ by 
 +$$ 
 +\varphi(v)= 
 +\left\{ 
 +\begin{array}{ll} 
 +{\rm exp}_p\left(\tfrac{\|v\|}{1-\|v\|}v\right)&,\text{ if }\|v\|<1,\\ 
 +&\\ 
 +f_p(v)&,\text{ if }\|v\|=1. 
 +\end{array} 
 +\right. 
 +$$ 
 +  
 +**Theorem 1.** (Eberlein-O'Neil) The map $\varphi$ is an homeomorphism. 
 + 
 +Hence $\overline{M}$ is homeomorphic to a closed ball of $\mathbb R^n$. The topology of $\overline{M}$ is called the //cone topology//
  
 ~~DISCUSSIONS~~ ~~DISCUSSIONS~~
ebsd2021/tema8.1631559541.txt.gz · Last modified: 2021/09/13 15:59 by escola