User Tools

Site Tools


ebsd2021:tema2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
ebsd2021:tema2 [2021/06/28 16:10] – external edit 127.0.0.1ebsd2021:tema2 [2021/08/31 15:19] (current) escola
Line 1: Line 1:
-Tema 2+**Tema 2: Geodesic flows in Hamiltonian dynamics** 
 + 
 +**Symplectic form and symplectic manifold** 
 + 
 +We start recalling some known facts on linear algebra. 
 +Let $V$ be a vector space. 
 + 
 + 
 +//Symplectic bilinear map//: We say that a map 
 +$\omega:V\times V\to\mathbb R$ is //symplectic// if it is: 
 +  * bilinear: $\omega$ is linear on each coordinate. 
 +  * antisymmetric: $\omega(x,y)=-\omega(y,x)$ for all $x,y\in V$. 
 +  * non-degenerate: the map $x\in V\mapsto \omega_x(\cdot)=\omega(x,\cdot)\in V^*$ is an isomorphism, i.e. $\omega(x,y)=0$ for all $y\in V$ iff $x=0$. 
 + 
 +In this case, we call $(V,\omega)$ a //symplectic vector space//. 
 + 
 +Symplectic bilinear forms have canonical representations: 
 +if $\omega$ is symplectic, then there is a basis 
 +$\{x_1,\ldots,x_n,y_1,\ldots,y_n\}$ s.t.  
 +$$ 
 +\left\{ 
 +\begin{array}{l} 
 +\omega(x_i,x_j)=\omega(y_i,y_j)=0\\ 
 +\omega(x_i,y_j)=\delta_{i,j} 
 +\end{array}\right. 
 +,\ \ \forall i,j=1,\ldots,n. 
 +$$ 
 +In particular, $V$ has even dimension, equal to $2n$. In this basis, $\omega$ takes the form 
 +$$ 
 +\omega(x,y)=x^T  
 +\left[ 
 +\begin{array}{ccc|ccc} 
 +&&&&&\hspace{.2cm}\\ 
 +&0&&&{\rm Id}&\\ 
 +&&&\hspace{.2cm}&&\\ \hline 
 +&&&&&\\ 
 +&{\rm -Id}&&&0&\\ 
 +&&&&&\\ 
 +\end{array}\right] 
 +y. 
 +$$ 
 + 
 +Here is the prototype of a symplectic vector space: given $(E,\langle\cdot,\cdot\rangle)$ a vector space 
 +with inner product, let $V=E\times E$ and define $\omega:V\times V\to \mathbb R$ by 
 +$$ 
 +\omega((x_1,y_1),(x_2,y_2))= \langle y_1,x_2\rangle - \langle x_1,y_2\rangle. 
 +$$ 
 +Then $(V,\omega)$ is a symplectic vector space. The literature usually considers $E=\mathbb R^n$  
 +for this example, in which case the symplectic bilinear map is defined in $\mathbb R^{2n}$. 
 + 
 + 
 +With respect to the symplectic structure, there are some special subspaces. 
 + 
 +//Isotropic and Lagrangian subspaces:// Let $(V,\omega)$ be a symplectic vector space. Given 
 +a subspace $Y\subset V$, define 
 +$$ 
 +Y^\omega=\{x\in V:\omega(x,y)=0\text{ for all }y\in Y\}. 
 +$$ 
 +It is easy to see that ${\rm dim}(Y)+{\rm dim}(Y^\omega)=2n$. 
 +We call $Y$: 
 +  * //isotropic// if $Y\subset Y^\omega$, i.e. if $\omega(x,y)=0$ for all $x,y\in Y$. Clearly ${\rm dim}(Y)\leq n$. 
 +  * //Lagrangian// if it is isotropic and ${\rm dim}(Y)=n$. Alternatively, $Y$ is Lagrangian iff $Y=Y^\omega$. 
 + 
 + 
 +The next definition introduces the symplectic structure on manifolds. 
 +Let $M$ be a $m$-dimensional differentiable manifold, and recall the definition of a symplectic 
 +form (which is the choice of symplectic bilinear maps on each tangent space of $M$). 
 + 
 +//Symplectic manifold:// We call $(M,\omega)$ a// symplectic manifold// if $M$ is a differentiable manifold and $\omega$ is a symplectic form on $M$. 
 + 
 + 
 +In particular, $m=2n$ is even. The simplest example of a symplectic manifold is $(\mathbb R^{2n},\omega)$ as defined above: if $(x_1,\ldots,x_n,$ $p_1,\ldots,p_n)$ denotes the coordinates of $\mathbb R^{2n}$, then 
 +$$ 
 +\omega=dx_1\wedge dp_1+\cdots+dx_n\wedge dp_n. 
 +$$ 
 + 
 +Compare this with Riemannian manifolds. A Riemannian manifold is a differentiable manifold 
 +equipped with a Riemannian metric. The difference between metrics and two-forms is that the 
 +first is symmetric, while the other is antisymmetric. This simple difference makes the two 
 +contexts extremely different. 
 + 
 + 
 +**$TM$ is a symplectic manifold** 
 + 
 +We already know that $(TM,\omega)$ is a symplectic manifold. Let us complete this discussion showing another definition of $\omega$. 
 + 
 +//1--form $\Theta$ on $TM$:// Define the 1--form $\Theta$ on $TM$ taking 
 +$\Theta_v:TTM_v\to\mathbb R$ by 
 +$$ 
 +\Theta_v(x,y)=\langle x,v\rangle. 
 +$$ 
 + 
 + 
 +Above, $TTM_v\cong TM_p\times TM_p$ via the horizontal and vertical coordinates. 
 + 
 +**Lemma.** We have $d\Theta=\omega$. In particular, $\omega$ is closed. 
 + 
 + 
 +**Hamiltonian vector fields** 
 + 
 +Let $(M,\omega)$ be a symplectic manifold, and let $H:M\to\mathbb R$ be a $C^1$ function. 
 +The derivative $dH$ is a 1--form.  
 + 
 +//Hamiltonian vector field:// The //Hamiltonian vector field// of $H$ is the unique 
 +vector field $X_H:M\to TM$ defined by 
 +$$ 
 +\omega_p(\cdot,X_H(p))=dH_p(\cdot). 
 +$$ 
 +The flow generated by $X_H$ is called the //Hamiltonian flow// of $H$.  
 + 
 + 
 +In other words, the contraction 1--form $\omega(\cdot,X_H)$ equals the derivative $dH$. 
 +Existence and uniqueness follow from the non-degeneracy of $\omega$. 
 + 
 + 
 +Let us express the Hamiltonian vector field in the prototypical example of $(\mathbb R^{2n},\omega)$. 
 +Let $H:\mathbb R^{2n}\to\mathbb R$ be a $C^1$ function. 
 +We will show that $X_H$ satisfies the //Hamilton equations//
 +For $(v,w)\in\mathbb R^{2n}$, we have 
 +$$ 
 +dH(v,w)=\sum_{i=1}^n\tfrac{\partial H}{\partial x_i}v_i+\sum_{i=1}^n\tfrac{\partial H}{\partial p_i}w_i. 
 +$$ 
 +On the other expression, if $X_H=(X,Y)=(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ then  
 +$$ 
 +\omega((v,w),X_H)=\sum_{i=1}^n w_iX_i-\sum_{i=1}^n v_iY_i. 
 +$$ 
 +Comparing the last two equations, we conclude that $X_i=\tfrac{\partial H}{\partial p_i}$ 
 +and $Y_i=-\tfrac{\partial H}{\partial x_i}$ for $i=1,\ldots,n$, and so 
 +the Hamilton equations 
 +$$ 
 +\left\{ 
 +\begin{array}{l} 
 +X=\tfrac{\partial H}{\partial p}\\ 
 +\\ 
 +Y =-\tfrac{\partial H}{\partial x} 
 +\end{array} 
 +\right. 
 +$$ 
 +characterize $X_H$. 
 + 
 + 
 +The Halmiltonian vector field has some important invariance properties. 
 +Let $\phi=\{\phi^t\}$ be flow generated by $X_H$.  
 + 
 +**Theorem.** The following holds: 
 + 
 +(1) $H\circ\phi^t=H$ for all $t\in\mathbb R$, hence $H$ is constant along flow lines. 
 + 
 +(2) $\omega$ is preserved by $\phi$, i.e. 
 +$\omega(d\phi^t v,d\phi^t w)=\omega(v,w)$ for all $v,w\in TM$ with same basepoint 
 +and all $t\in\mathbb R$. 
 + 
 +(3) $\phi$ preserves the volume form $\omega^n$. 
 + 
 + 
 +**The geodesic flow is a Hamiltonian flow** 
 + 
 +We already know that $(TM,\omega)$ is a symplectic manifold. 
 +We claim that the geodesic flow $g:TM\to TM$ is the Hamiltonian flow 
 +of the function $G:TM\to\mathbb R$ defined by 
 +$$ 
 +G(v)=\tfrac{1}{2}\langle v,v\rangle. 
 +$$ 
 +To prove this, write $X_G=(X,Y)$. For $\xi=(x,y)\in TTM$, we have 
 +$$ 
 +\omega(\xi,X_G)=\langle y,X\rangle-\langle x,Y\rangle. 
 +$$ 
 +If $x,y\in TM_v$, let $Z:(-\varepsilon,\varepsilon)\to TM$ s.t. $Z(0)=v$ and  
 +$Z'(0)=(\dot{c}(0),\nabla_{c}Z(0))=\xi$ where $c=\pi\circ Z$. Then 
 +$$ 
 +dG_v(\xi)=\tfrac{d}{dt}|_{t=0}(G\circ Z)=\tfrac{d}{dt}|_{t=0}\tfrac{1}{2}\langle Z(t),Z(t)\rangle=\langle Z,\nabla_{\dot{c}}Z\rangle(0)= 
 +\langle v,y\rangle=\langle y,v\rangle 
 +$$ 
 +and so $(X,Y)=(v,0)$. This later vector is the generator of the geodesic flow, and so the assertion is proved. 
 + 
 + 
  
 ~~DISCUSSIONS~~ ~~DISCUSSIONS~~
ebsd2021/tema2.1624907416.txt.gz · Last modified: 2021/06/28 16:10 by 127.0.0.1