User Tools

Site Tools


ebsd2021:tema1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
ebsd2021:tema1 [2021/06/28 16:10] – external edit 127.0.0.1ebsd2021:tema1 [2021/08/31 22:34] (current) escola
Line 1: Line 1:
-Tema1-Minicurso Knieper+**Tema 1: The geodesic flow, the tangent bundle $TTM$, Jacobi fields** 
 + 
 + 
 +**The geodesic flow** 
 + 
 +Let $M$ be a closed (compact and boundaryless) Riemannian manifold. We represent 
 +the covariant derivation by $\nabla$. The tangent bundle of $M$, denoted by $TM$, 
 +is a manifold with dimension $2n$. An element $v\in TM$ represents a speed 
 +of a curve in $M$. Writing $v\in (TM)_p$ means that $p$ is the basepoint of $v$, e.g. 
 +the curve $\gamma(t)$ for which $\gamma'(0)=v$ satisfies $\gamma(0)=p$. 
 + 
 +Among the curves in $M$, there is a class of them which is highly important in the geometric 
 +viewpoint: the geodesics are the curves in $M$ that minimize locally the distance between two points. 
 +In other words, let $\gamma$ be a curve parametrized by arc length, then we say that 
 +$\gamma$ is a geodesic if the distance in $M$ between $\gamma(t)$ and $\gamma(t')$ is exactly 
 +$|t-t'|$ whenever $t\approx t'$. This property has an infinitesimal analogue, given by the equality 
 +$$ 
 +\gamma''=0, 
 +$$ 
 +where $\gamma''$ represents the covariant derivative $\nabla_{\gamma'}\gamma'$. Therefore 
 +geodesics are the curves with no acceleration. 
 + 
 +In local coordinates, if $\gamma(t)=(x_1(t),\ldots,x_n(t))$, then $\gamma$ is a geodesic iff 
 +$$ 
 +\frac{d^2x_k}{dt^2}+\sum_{i,j}\Gamma_{ij}^k\frac{dx_i}{dt}\frac{dx_j}{dt}=0,\ \text{ for }k=1,2,\ldots,n. 
 +$$ 
 +This is a system of second order differential equation, hence for all initial conditions 
 +$\gamma(0),\gamma'(0)$ it has a unique solution. 
 +  
 + 
 +The //geodesic flow// on $M$ is $g=\{g^t\}:TM\to TM$ with $g^t(v)=\gamma_v'(t)$, where 
 +$\gamma_v(t)$ is the unique geodesic such that $\gamma_v'(0)=v$. 
 + 
 + 
 +In other words, $g^t$ sends a speed vector $v$ 
 +to the speed vector at time $t$ of the evolution of the geodesic in the direction of $v$. 
 +If $\gamma$ is a geodesic, then the norm of $\gamma'$ is constant. Therefore, if we want to analyze  
 +the geodesic flow, we can restrict ourselves to unit vectors. Letting 
 +$N:=T^1M$, the unit tangent bundle of $M$ (which is a manifold with dimension $2n-1$), 
 +we also call the restriction $g=\{g^t\}:N\to N$ the geodesic flow on $M$. 
 + 
 + 
 + 
 +**Geometry of the tangent bundle $TTM$** 
 + 
 +In order to understand properties of $g$ is Anosov, we need to understand 
 +the derivative $Dg$. This derivative is a flow on $TN$, the tangent bundle of $N$. This latter tangent  
 +bundle is a fiber bundle with fibers of dimension $2n-1$. More generally, since 
 +$g$ is defined in the whole tangle bundle $TM$, $Dg$ is defined in $TTM$, which is a fiber bundle  
 +with fibers of dimension $2n$. The fiber bundle $TTM$ has a special geometry on its own, 
 +as we will now see.  
 + 
 + 
 +__Horizontal and vertical vectors__ 
 + 
 +To understand $TTM$, we need to consider curves in $TM$ and their velocities. 
 +Recall that $TM$ is a fiber bundle whose fibers are vertical subspaces isomorphic to $\mathbb R^n$. 
 +We use this property introduce vertical and horizontal vectors on $TTM$. More generally, 
 +for $\xi\in (TTM)_v$, $v\in TM$, we will define a decomposition of $\xi$ into its horizontal and vertical components. 
 + 
 +Since $TM$ is fibered by vertical subspaces, it is easy to define vertical vectors in $TTM$ 
 +(and horizontal components). 
 +Consider the natural projection $\pi:TM\to M$, $\pi(v)=\gamma_v(0)$, the basis point of $v$. 
 +Then $d\pi$ measures how much curves in $ TM$ move on $M$ (with respect to their base points). 
 + 
 +//Vertical vectors:// $\xi\in TTM$ is called a //vertical vector// if $\xi\in {\rm ker}(d\pi)$. 
 +Denote the vertical vectors at $(TTM)_v$ by $V(v)$. 
 + 
 +Since $d\pi$ is surjective, each $V(v)$ has dimension $n$ and so 
 +the space of vertical vectors is a subbundle of $TTM$ of dimension $n$. 
 +By definition, vertical vectors are those $\xi=X'(0)$ tangent to curves $X(t)$ whose basepoint does not move infinitesimally at $t=0$. As we will see, $d\pi(\xi)$ will represent the horizontal component of $\xi$, 
 +so that $\xi$ is vertical iff its horizontal component is zero.  
 + 
 +Since the above definition is intrinsic, we now show how to generate vertical vectors in a simple way. 
 +Letting $p=\pi(v)$, we will lift $(TM)_p$ to vertical vectors in $(TTM)_v$. Given $w\in (TM)_p$, 
 +consider $X(t)=v+tw$, which is a curve on $TM$. It satisfies $X(0)=v$ and $\pi\circ X=p$, so 
 +$w=X'(0)\in V(v)$. This defines an isomorphism $(TM)_p\to V(v)$. 
 + 
 +Defining horizontal vectors is a little bit more complicated. We want them to be those that 
 +represent no displacement inside the fibers of $TM$. If $TM$ was a product, this would be easy. 
 +The tool to trivialize $TM$ is by parallel transport, hence we will define horizontal vectors 
 +as those obtained from parallel transport. This is measured by covariant derivatives, as follows. 
 +Let $X(t)$ be a curve on $TM$ with $X(0)=v\in TM$. If $c=\pi\circ X$, then $X$ is a vector field 
 +over $c$. The variation of $X$ along $c$ at $t=0$ is $\nabla_{\dot{c}}X(0)$, so we arrive at the following 
 +definition. 
 + 
 +//Connection map//: The //connection map// is the $\kappa:TTM\to TM$ defined by 
 +$\kappa(\xi)=\nabla_{\dot{c}}X(0)$ for some (any) $X:(-\varepsilon,\varepsilon)\to TM$ 
 +s.t. $X'(0)=\xi$, where $c=\pi\circ X$. 
 + 
 + 
 +//Horizontal vectors:// $\xi\in TTM$ is called a //horizontal vector// if $\xi\in{\rm ker}(\kappa)$. 
 +Denote the horizontal vectors at $(TTM)_v$ by $H(v)$. 
 + 
 +This amounts to saying that the displacement inside the fibers of $TM$ is zero. 
 +The space of horizontal vectors is also a subbundle of $TTM$ of dimension $n$, because 
 +$\kappa$ is surjective (exercise). 
 +We will see below that $\kappa(\xi)$ represents the vertical component of $\xi$, so that 
 +$\xi$ is horizontal iff its vertical component is zero. 
 + 
 +Now we show how to lift $(TM)_p$ to horizontal vectors in $(TTM)_v$. 
 +Given $w\in (TM)_p$, let $c$ be a curve on $M$ with $c'(0)=w$, and let 
 +$X(t)$ be the parallel transport of $v$ along $c$. Then $X'(0)$ is a horizontal  
 +vector. This defines an isomorphism $L_v:(TM)_p\to H(v)$, see the next lemma. 
 +In other words, we consider all possible parallel transports of $v$. 
 +It is worth understanding the above definitions when $M=\mathbb R^n$, in which case 
 +vertical/horizontal vectors are really vertical/horizontal. 
 + 
 + 
 +The map $L_v$ is related to $d\pi$ and $\kappa$. 
 + 
 +**Lemma 1.** The following are true. 
 + 
 +(1) $L_v:(TM)_p\to H(v)$ is an isomorphism. 
 + 
 +(2) $d\pi\circ L_v={\rm Id}_{(TM)_p}$, hence $V(v)\cap H(v)=\{0\}$. 
 + 
 +(3) The restrictions $d\pi\restriction_{H(v)}$ and $\kappa\restriction_{V(v)}$ 
 +are isomorphisms onto $(TM)_p$. In particular, $(TTM)_v=H(v)\oplus V(v)$. 
 + 
 + 
 + 
 +**Proof.** (1) By definition, ${\rm Im}(L_v)\subset H(v)$. It is clear that $L_v$ is injective. 
 +Since both $(TM)_p$ and $H(v)$ have dimension $n$, the result follows. 
 + 
 + 
 +(2) Let $w\in (TM)_p$, let $c$ be a curve on $M$ with $c'(0)=w$, and let $X(t)$ be the parallel 
 +transport of $v$ along $c$. We have $L_v(w)=X'(0)$, hence  
 +$$ 
 +d\pi\circ L_v(w)=\tfrac{d}{dt}|_{t=0}(\pi\circ X)=c'(0)=w. 
 +$$ 
 +Now assume that $\xi\in V(v)\cap H(v)$. By (1), $\xi=L_v(w)$. 
 +Since $\xi\in V(v)$, we have $d\pi(\xi)=0$ and so 
 +$$ 
 +w=(d\pi\circ L_v)(w)=d\pi(\xi)=0\ \Rightarrow \ \xi=0. 
 +$$ 
 + 
 + 
 +(3) Since we have injective linear maps from $(TM)_p$ to both $V(v),H(v)$, we have that 
 +$V(v),H(v)$ have dimension at least $n$. Therefore, it is enough to prove injectivity. 
 +If $\xi\in H(v)$ with $d\pi(\xi)=0$, then $\xi\in V(v)$ and so $\xi\in V(v)\cap H(v)=\{0\}$. 
 +Similarly, if $\xi\in V(v)$ with $\kappa(\xi)=0$ then $\xi\in H(v)$ and so $\xi\in V(v)\cap H(v)=\{0\}$. 
 + 
 + 
 +Now the following proposition is direct. 
 + 
 +**Proposition 2.** For each $v\in TM$, the map $j_v:(TTM)_v\to (TM)_p\times (TM)_p$, 
 +$$ 
 +j_v(\xi)=(d\pi(\xi),\kappa(\xi)), 
 +$$ 
 +is an isomorphism. Also, $j_v$ maps $V(v)$ to $\{0\}\times (TM)_p$ and $H(v)$ 
 +to $(TM)_p\times\{0\}$. 
 + 
 + 
 +We call $\xi_h=d\pi(\xi)$ the //horizontal component// of $\xi$, and 
 +$\xi_v=\kappa(\xi)$ the //vertical component// of $\xi$. 
 + 
 +In this coordinates, it is easy to identify the generator of the geodesic flow. 
 +If $v\in TM$, then the generator at $v$ is $\xi=X'(0)$ for $X(t)=g^t(v)$. 
 +The curve $\gamma=\pi\circ X$ is the geodesic with $\gamma'(0)=v$, hence 
 +$$ 
 +j_v(\xi)=(D\pi(\xi),\nabla_{\gamma'}X)=(\gamma'(0),\nabla_{\gamma'}\gamma'(0))=(v,0). 
 +$$ 
 + 
 + 
 +__The tangent bundle $TN$__ 
 + 
 +Now we identify the tangent bundle of $N=T^1M$, using the identification   
 +$(TTM)_v\cong (TM)_p\times (TM)_p$. 
 + 
 +//Tangent bundle of $N$//: The //tangent bundle// $TN$ is the subbundle of $TTM$ whose fibers are 
 +$$ 
 +(TN)_v=\{(v_1,v_2)\in (TM)_p\times (TM)_p:v_2\perp v\}. 
 +$$ 
 + 
 +This is easy to see: if $X(t)$ be a curve on $N$, then 
 +$$ 
 +\langle X,X\rangle=1\ \Rightarrow\ 2\langle \nabla_{\dot{c}}X,X\rangle=0\ \Rightarrow\ \kappa(X'(0))=\nabla_{\dot{c}}X(0)\in v^\perp. 
 +$$ 
 + 
 +Hence $(TN)_v \subset \{(v_1,v_2)\in (TM)_p\times (TM)_p:v_2\perp v\}$. Since both subspaces 
 +have dimension $2n-1$, we conclude the equality.  
 + 
 +__Sasaki metric__ 
 + 
 +The symmetry obtained in the representation of $TTM$ allows to introduce 
 +a product Riemannian metric on $TTM$. 
 +Let $\langle \cdot,\cdot\rangle$ be the metric on $M$. 
 + 
 + 
 +//Sasaki metric//: The //Sasaki metric// is the metric on $TTM$ given in the above coordinates by 
 +$$ 
 +\langle \xi,\eta\rangle_{\rm Sas}=\langle \xi_h,\eta_h\rangle+\langle \xi_v,\eta_v\rangle. 
 +$$ 
 + 
 + 
 +__Symplectic form__ 
 + 
 +The symmetry of $TTM$ also allows to define a symplectic form on $TM$. Recall the definition below. 
 + 
 +//Symplectic form//: Given a manifold $M$, a //symplectic form// on $M$ is a 2--form 
 +$\omega$ s.t.: 
 +(1) $\omega$ is closed, i.e. $d\omega=0$. 
 +(2) $\omega$ is non-degenerate, i.e. if $Y\in (TM)_p\mapsto \omega(X,Y)$ is the null 
 +map then $X=0$. 
 +The pair $(M,\omega)$ is called a {\em symplectic manifold}. 
 + 
 + 
 +//Symplectic form on $TM$//: Define the //symplectic form// $\omega$ on $TM$ by 
 +$$ 
 +\omega(\xi,\eta)=\langle \xi_v,\eta_h\rangle-\langle \xi_h,\eta_v\rangle. 
 +$$ 
 + 
 +Below, we will show that $\omega$ is invariant under the geodesic flow. 
 + 
 + 
 +**Jacobi fields** 
 + 
 + 
 +Jacobi vector fields are fields obtained as variations of geodesics. If one thinks for a second, 
 +that is exactly what we need to understand $Dg^t(\xi)$: we consider a curve $X(s)$ on $N$ such that 
 +$X'(0)=\xi$, then we consider the composition function $s\mapsto (g^t\circ X)(s)$, and finally differentiate  
 +this function at $s=0$. 
 +For each $s$, the curve $t\mapsto g^t\circ X(s)$ is a geodesic, and the derivative with respect to $s$ is exactly 
 +the measurement of variation of the geodesics emanating from $X$. Let us be more formal now. 
 +Let $c$ be a curve on $M$. 
 + 
 + 
 +//Jacobi field//: A vector field $J$ along $c$ is called a //Jacobi (vector) field// if there is 
 +a map $\alpha:[-1,1]^2\to M$ such that 
 +(1) For each $s\in[-1,1]$, the curve $\alpha(s,\cdot)$ is a geodesic. 
 +(2) $J(t)=\tfrac{\partial\alpha}{\partial s}(0,t)$. 
 + 
 + 
 +__Jacobi equation__ 
 + 
 +Let us denote by $J'(t)$ the covariant 
 +derivative $\nabla_{\dot{c}}J$. Then $J'$ is another vector field along $c$. Similarly, 
 +let $J''$ be the covariant derivative $\nabla_{\dot{c}}J'$, another vector field along $c$. 
 +Let us understand what defines a Jacobi field. 
 +If $R$ denotes the curvature tensor on $M$, then the property (1) above implies that $J$ satisfies the  
 +//Jacobi equation// 
 +\begin{equation}\label{equation-jacobi} 
 +J''+R(\gamma',J)\gamma'=0. 
 +\end{equation} 
 +The above equation is a second order ordinary differential equation (ODE), 
 +thus it is defined by the values of $J(0)$ and $J'(0)$. 
 +Therefore the space of Jacobi fields along a geodesic is a linear space of dimension $2n$. 
 +We write this result below. 
 + 
 +**Proposition 3.** Let $\gamma$ be a geodesic with $\gamma(0)=p$. For any $v,w\in (TM)_p$, 
 +there is a unique Jacobi field $J$ along $\gamma$ s.t. $J(0)=v$ and $J'(0)=w$. 
 + 
 + 
 + 
 +Let us understand this equation on local coordinartes. Fix an orthonormal basis of parallel vector  
 +fields $e_1=\gamma',e_2,\ldots,e_m$. Any Jacobi field can be written as $J=\sum_{k=1}^n y_ke_k$ (if $J$ is 
 +perpendicular then $y_1=0$). By the Jacobi equation, we find out that $y_1,\ldots,y_m$ satisfy 
 +$$ 
 +\sum y_k''e_k+\sum y_kR(e_1,e_k)e_1=0. 
 +$$ 
 +If we denote $\mathcal R_{kj}:=\langle R(e_1,e_k)e_1,e_j\rangle$, then the above equation implies that 
 +\begin{equation}\label{equation-jacobi-2} 
 +y_k''+\sum_j y_j\mathcal R_{kj}=0,\ \ k=1,\ldots,m. 
 +\end{equation} 
 +Letting $Y=[y_1,\ldots,y_m]^T$, the above equalities become the vectorial equation 
 +$Y''+\mathcal RY=0$ on $\mathbb R^m$. 
 +As one usually does when dealing with ODEs, we look at the matrix form of the system of equations above and 
 +solve it. Indeed, note that if 
 +$J^1,\ldots,J^n$ are linearly independent solutions for the system of equations, 
 +then the $n\times n$ invertible matrix $\mathcal J=[J^1,\ldots,J^n]$ satisfies 
 +$$ 
 +\mathcal J''+\mathcal R\mathcal J=0. 
 +$$ 
 + 
 + 
 +__Horizontal/vertical representation $\times$ Jacobi fields__ 
 + 
 + 
 +By Proposition 3, we can represent $(TTM)_v$ and $(TN)_v$ in terms of Jacobi fields: 
 +\begin{align*} 
 +(TTM)_v&=\{(J(0),J'(0)):J\text{ is Jacobi field along }\gamma_v\}.\\ 
 +(TN)_v&=\{(J(0),J'(0)):J\text{ is Jacobi field along }\gamma_v\text{ s.t. }J'(0)\perp v\}. 
 +\end{align*} 
 +With the representation, the action of $Dg^t$ is very simple. 
 + 
 +**Claim:** If $\xi=(J(0),J'(0))\in (TTM)_v$ then $D_vg^\tau(\xi)=(J(\tau),J'(\tau))$. 
 + 
 +The claim is almost a tautology, after a short thinking. Let $\alpha(s,t)$ be a variation by geodesics 
 +on $M$ s.t. $\xi=(J(0),J'(0))$. Then $\beta(s,t):=g^\tau\circ\alpha(s,t)=\alpha(s,t+\tau)$ is a 
 +variation by geodesics s.t. 
 +$\tfrac{\partial\beta}{\partial t}(0,0)=g^t(v)$ and 
 +$(\tfrac{\partial\beta}{\partial s}(0,0),\tfrac{\partial^2\beta}{\partial t\partial s}(0,0))=(J(\tau),J'(\tau))$. 
 + 
 + 
 +Using this representation, it is easy to prove the following invariance. 
 + 
 +**Lemma 4.** The symplectic form $\omega$ is invariant under $Dg$. 
 + 
 + 
 +**Proof.** Let $J_1,J_2$ be two Jacobi fields. Since $Dg^t(J_i(0),J_i'(0))=(J_i(t),J_i'(t))$, 
 +we have 
 +\begin{align*} 
 +&\omega(Dg^t(J_1(0),J_1'(0)),Dg^t(J_2(0),J_2'(0)))=\omega((J_1(t),J_1'(t)),(J_2(t),J_2'(t)))\\ 
 +&=\left(\langle J_1',J_2\rangle -\langle J_1,J_2'\rangle\right)(t) 
 +\end{align*} 
 +and so the lemma is equivalent to showing that 
 +$f(t)=\left(\langle J_1',J_2\rangle -\langle J_1,J_2'\rangle\right)(t)$ is constant. We have 
 +$$ 
 +f'=\langle J_1'', J_2\rangle -\langle J_1,J_2''\rangle=-\langle R(\gamma',J_1)\gamma',J_2\rangle 
 +-\langle J_1,R(\gamma',J_2)\gamma'\rangle=0, 
 +$$ 
 +by the symmetry of $R$. 
 + 
 + 
 +To understand the dynamical properties of $g$, we need to consider 
 +$Dg$ restricted to the orthogonal complement of the generator of the geodesic flow. Recalling that 
 +this later one is $(v,0)$, we have the following. 
 + 
 +//Orthogonal complement on $TN$//: Given $v\in N$, the //orthogonal complement// of 
 +$(v,0)$ in the Sasaki metric is 
 +$$ 
 +{\rm Perp}_v=\{(v_1,v_2)\in (TM)_p\times (TM)_p:v_1,v_2\perp v\}. 
 +$$ 
 + 
 +This is direct.  
 + 
 +**Lemma 5.** $\{{\rm Perp}_v\}_{v\in N}$ is invariant under the geodesic flow. 
 + 
 + 
 +**Proof.** Let $(J(0),J'(0))$ Jacobi field along $\gamma$ s.t. $J(0),J'(0)\perp \gamma'(0)$. 
 +Since  
 +$$ 
 +\langle J',\gamma'\rangle '=\langle J'',\gamma'\rangle+\langle J',\gamma''\rangle 
 +=\langle R(\gamma',J)\gamma',\gamma'\rangle=0, 
 +$$ 
 +it follows that $J'\perp\gamma'$. 
 +Hence $\langle J,\gamma'\rangle'=\langle J',\gamma'\rangle=0$, which  
 +also implies that $J\perp \gamma'$. 
 + 
 + 
 + 
 + 
 + 
 + 
 + 
 + 
 + 
 + 
 + 
  
 ~~DISCUSSIONS~~ ~~DISCUSSIONS~~
ebsd2021/tema1.1624907433.txt.gz · Last modified: 2021/06/28 16:10 by 127.0.0.1