ebsd2021:raissy
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| ebsd2021:raissy [2021/09/10 13:22] – escola | ebsd2021:raissy [2021/10/25 08:07] (current) – tahzibi | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | Title: Wandering domains for polynomials in higher dimension | ||
| - | Short abstract: We will present the proof of the existence of a wandering domain for a polynomial endomorphism $\mathbb{C}^2$. | + | <WRAP center round box 100%> |
| + | [[ebsd2021:participantsraissy|Comments and Questions | ||
| + | </ | ||
| + | The **tentative plan** of the minicourse | ||
| + | 1- Introduction | ||
| + | 2- Introduction | ||
| + | 3- Statement of the main result | ||
| + | 4 End of proof of main result and further developments\\ | ||
| - | Extended abstract: The filled-in Julia set $K_f$ of a polynomial map $f\colon\mathbb{C} \to \mathbb{C}$ is the set of points with bounded orbit under iteration of $f$. The Non Wandering Theorem proved by Sullivan in the 1980’s asserts that every connected component of the interior of $K_f$ is eventually periodic. | + | **References |
| - | The goal of the mini-course is to show that this result does not hold for polynomials maps $F\colon\mathbb{C}^2\to\mathbb{C}^2$. More precisely, we will show that if | + | |
| - | $$ | + | |
| - | F(z,w)= \left(z - z^2, w + w^2 + aw^3 + {\pi^2\over 4} z \right) | + | |
| - | $$ | + | |
| - | with $a < 1$ sufficiently close to $1$, then $F$ admits a wandering Fatou component. | + | |
| - | The proof uses techniques of parabolic implosion for skew-products. We will emphasize | + | |
| - | The tentative plan of the minicourse is as follows: | + | 1- M. Astorg, X. Buff, R. Dujardin, H. Peters and J. Raissy: //A two-dimensional polynomial mapping with a wandering Fatou component,// |
| - | 1- Introduction and basic properties of holomorphic dynamics | + | 2- E. Bedford, J. Smillie |
| - | 2- Introduction to parabolic implosion | + | |
| - | 3- Statement of the main result and proof. | + | |
| - | References | + | 3- X. Buff: //Wandering Fatou Component for Polynomials,// |
| - | \bib{1} {\sc M. Astorg, X. Buff, R. Dujardin, H. Peters and J. Raissy:} {\sl A two-dimensional polynomial mapping with a wandering Fatou component} Ann. of Math. (2) 184 (2016), no. 1, 263--313. | + | 4- A. Douady: //Does a Julia set depend continuously on the polynomial?// |
| - | \bib{2} {\sc E. Bedford, J. Smillie | + | 5- D. Sullivan // |
| - | \bib{3}{\sc X. Buff:} {\sl Wandering Fatou Component for Polynomials} | + | **Prerequisites: |
| - | + | 1- Basic complex analysis | |
| - | \bib{4} {\sc A. Douady:} {\sl Does a Julia set depend continuously | + | 2- The Riemann sphere: its complex structures and the description of its group of holomorphic automorphisms\\ |
| - | + | 3- Basic discrete holomorphic dynamics on the Riemann sphere: local theory\\ | |
| - | \bib{5} {\sc D. Sullivan} {\sl Quasiconformal Homeomorphisms and Dynamics I. Solution of the Fatou-Julia Problem on Wandering | + | 4- Basic discrete holomorphic dynamics |
| + | **Reference for the prerequisites (English)**\\ | ||
| + | 1-Carne, Geometry and Groups https:// | ||
| + | 2-Carleson and Gamelin, Complex Dynamics, https:// | ||
| + | 3-Milnor, Dynamics in one complex variable, https:// | ||
| + | **Referencias para pre-requisitos (Português)**\\ | ||
| + | Lomonaco, Notas de aulas, https:// | ||
| <WRAP center round box 60%> | <WRAP center round box 60%> | ||
| Line 36: | Line 40: | ||
| <WRAP center round box 60%> | <WRAP center round box 60%> | ||
| - | [[ebsd2021: | + | [[ebsd2021: |
| </ | </ | ||
| <WRAP center round box 60%> | <WRAP center round box 60%> | ||
| - | [[ebsd2021: | + | [[ebsd2021: |
| </ | </ | ||
| <WRAP center round box 60%> | <WRAP center round box 60%> | ||
| - | [[ebsd2021: | + | [[ebsd2021: |
| + | </ | ||
| + | <WRAP center round box 60%> | ||
| + | [[ebsd2021: | ||
| </ | </ | ||
ebsd2021/raissy.1631290928.txt.gz · Last modified: 2021/09/10 13:22 by escola