| Both sides previous revisionPrevious revisionNext revision | Previous revision |
| ebsd2021:potrie4 [2021/07/11 17:57] – tahzibi | ebsd2021:potrie4 [2021/09/13 09:29] (current) – tahzibi |
|---|
| Outra forma de falar é considerar um cubo e identificar os lados opostos por <color #ed1c24>translação</color>. Importante ressaltar que a translação é uma isometria na geometria euclideana. Precisamos observar que estamos quocientando por ação de isometrias de uma geometria. Essa ideia vai nos acompanhar no conhecimento de zoologico de $3-$variedades. | Outra forma de falar é considerar um cubo e identificar os lados opostos por <color #ed1c24>translação</color>. Importante ressaltar que a translação é uma isometria na geometria euclideana. Precisamos observar que estamos quocientando por ação de isometrias de uma geometria. Essa ideia vai nos acompanhar no conhecimento de zoologico de $3-$variedades. |
| |
| O toro $\mathbb{T}^3$ é um grupo de Lie abeliano e portanto essa variedade também naturezza algébrica e difeomorfismos parcialmente hiperbólicos conhecidos são "algebricos". | O toro $\mathbb{T}^3$ é um grupo de Lie abeliano e portanto essa variedade também natureza algébrica e difeomorfismos parcialmente hiperbólicos conhecidos são "algebricos". |
| |
| |
| |
| Existe uma outra forma de indentificar os lados opostos de cubo e obter uma variedade diferente. Em vez de usar translação, vamos considerar uma translação e depois rotação de $\frac{\pi}{2}$ para identificar a face de cima e baixo e identificamos outras faces com translação usaual para obter toro. Assim obteremos uma variedade de Seifert com uma folha singular que corresponde o centro do quadrado que é fixo pela rotação. Mais esfecificamente considere $\{(x, y, z) \in \mathbb{R}^3 : 0 \leq |x|, |y|, |z| \leq 1\}$ e vamos identificar $(x, y, 0) \sim (-y, x, 1)$ e duas identificações $(0, y, z) \sim (1, y, z)$ e $(x, 0, z) \sim (x, 1, z).$ | Existe uma outra forma de indentificar os lados opostos de cubo e obter uma variedade diferente. Em vez de usar translação, vamos considerar uma translação e depois rotação de $\frac{\pi}{2}$ para identificar a face de cima e baixo e identificamos outras faces com translação usaual para obter toro. Assim obteremos uma variedade de Seifert com uma folha singular que corresponde o centro do quadrado que é fixo pela rotação. Mais esfecificamente considere $\{(x, y, z) \in \mathbb{R}^3 : 0 \leq |x|, |y|, |z| \leq 1\}$ e vamos identificar $(x, y, 0) \sim (-y, x, 1)$ e duas identificações $(0, y, z) \sim (1, y, z)$ e $(x, 0, z) \sim (x, 1, z).$ |
| | |
| | Fibraçõa de Seifert: No exemplo acima, temos uma folheação por círculos "verticais" que <color #ed1c24>não é uma fibração</color>, justamente por causa de uma fibra (Fibra singular de Seifert) que corresponde ao ponto fixo da rotação no plano $xy$: A fibra $\{(0, 0, t), t \in [0, 1]\}$ com a identificação $(0, 0, 0) \sim (0, 0, 1)$ representa um círculo que está encurralado por círculos topológicos que dão quatro voltas em torno dele: rotação de ângulo $\pi/2$ tem período $4.$ |
| |
| Uma coisa em comum entre as três variedades acima é que todas as tries tem uma folheação por círculos. | Uma coisa em comum entre as três variedades acima é que todas as tries tem uma folheação por círculos. |
| Soma conexa de variedades: Dadas duas variedades $n$-dimensional $M_1, M_2$, retirando uma bola $n-$dimensional de cada uma e "colando" ao longo da fronteiras (esfera $S^{n-1}$) obtemos $M_1 \# M_2$. | Soma conexa de variedades: Dadas duas variedades $n$-dimensional $M_1, M_2$, retirando uma bola $n-$dimensional de cada uma e "colando" ao longo da fronteiras (esfera $S^{n-1}$) obtemos $M_1 \# M_2$. |
| |
| | ~~DISCUSSION~~ |
| |