ebsd2021:patterson
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| ebsd2021:patterson [2021/10/17 10:32] – escola | ebsd2021:patterson [2021/10/17 10:33] (current) – escola | ||
|---|---|---|---|
| Line 12: | Line 12: | ||
| Generalizing the before defined Busemann densities, a family of positive finite measures $\{\mu_p^F\colon p\in X\}$ on $X\cup X(\infty)$ is a //Patterson density of dimension $\delta$// (relative to $\Gamma$ and $F$) if it satisfies: | Generalizing the before defined Busemann densities, a family of positive finite measures $\{\mu_p^F\colon p\in X\}$ on $X\cup X(\infty)$ is a //Patterson density of dimension $\delta$// (relative to $\Gamma$ and $F$) if it satisfies: | ||
| - | * $\displaystyle\frac{d\mu_x^F}{d\mu_y^F}(\xi)=e^{\displaystyle -C_\xi^{F-\delta}(x, | + | * $\displaystyle\frac{d\mu_x^F}{d\mu_y^F}(\xi)=e^{\displaystyle -C_\xi^{F-\delta}(x, |
| * $\displaystyle\{\mu_p^F\colon p\in X\}$ is $\Gamma$-invariant, | * $\displaystyle\{\mu_p^F\colon p\in X\}$ is $\Gamma$-invariant, | ||
| \[ | \[ | ||
| Line 39: | Line 39: | ||
| \[ | \[ | ||
| \frac{1}{b}\, | \frac{1}{b}\, | ||
| - | \le \mu_x^F\big(\pr_y(B_\rho(x))\big) | + | \le \mu_x^F\big({\rm pr}_y(B_\rho(x))\big) |
| \le b\, | \le b\, | ||
| \] | \] | ||
| Line 53: | Line 53: | ||
| \[ | \[ | ||
| B_{e^{-d(x, | B_{e^{-d(x, | ||
| - | \subset \pr_x(B_\rho(y)) | + | \subset |
| \subset B_{Cd^{-d(x, | \subset B_{Cd^{-d(x, | ||
| \] | \] | ||
ebsd2021/patterson.1634477551.txt.gz · Last modified: 2021/10/17 10:32 by escola