User Tools

Site Tools


ebsd2021:gibbsstates

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

ebsd2021:gibbsstates [2021/10/17 10:36] – created escolaebsd2021:gibbsstates [2021/10/17 10:36] (current) escola
Line 1: Line 1:
-We first recall the //Hopf parametrization// of $T^1X$ in terms of $X(\infty)$. Given $v\in T^1M$, consider its unique geodesic $\gamma=\gamma_v$ and let $v_-\eqdef \gamma(-\infty)$ and $v_+\eqdef\gamma(\infty)$.+We first recall the //Hopf parametrization// of $T^1X$ in terms of $X(\infty)$. Given $v\in T^1M$, consider its unique geodesic $\gamma=\gamma_v$ and let $v_-:= \gamma(-\infty)$ and $v_+:=\gamma(\infty)$.
  
 Fix some $x_0\in X$. We can identify $T^1X$ by Fix some $x_0\in X$. We can identify $T^1X$ by
 \[ \[
- \big(X(\infty)\times X(\infty)\setminus\Delta\big)\times\bR,+ \big(X(\infty)\times X(\infty)\setminus\Delta\big)\times\mathbb R,
  \quad  \quad
  (v_-,v_+,t),  (v_-,v_+,t),
 \]  \]
-where $t\in\bR$ is the algebraic distance between $\gamma(0)$ and the closed point of $\gamma(\bR)$ to $x_0$.+where $t\in\mathbb R$ is the algebraic distance between $\gamma(0)$ and the closed point of $\gamma(\mathbb R)$ to $x_0$.
  
 Define the //$F$-gap seen from $x$ between $\xi$ and $\eta$// by Define the //$F$-gap seen from $x$ between $\xi$ and $\eta$// by
 \[ \[
  D^F_x(\xi,\eta)  D^F_x(\xi,\eta)
- \eqdef e^{ \lim_{t\to\infty} \frac12\big(\int_x^{\eta_t}\tilde F-\int_{\xi_t}^{\eta_t}\tilde F+ := e^{ \lim_{t\to\infty} \frac12\big(\int_x^{\eta_t}\tilde F-\int_{\xi_t}^{\eta_t}\tilde F
  +\int_{\xi_t}^x\tilde F\big)},  +\int_{\xi_t}^x\tilde F\big)},
 \] \]
 where $t\mapsto\eta_t,t\mapsto\xi_t$ are geodesic rays with ends $\eta,\xi$, respectively. This defines the //gap map// where $t\mapsto\eta_t,t\mapsto\xi_t$ are geodesic rays with ends $\eta,\xi$, respectively. This defines the //gap map//
 \[ \[
- X\times X(\infty)\times X(\infty)\setminus\Delta\to\bR,\quad+ X\times X(\infty)\times X(\infty)\setminus\Delta\to\mathbb R,\quad
  (x,\xi,\eta)\mapsto D^F_x(\xi,\eta).  (x,\xi,\eta)\mapsto D^F_x(\xi,\eta).
 \] \]
  
-**Remark.** If $F\equiv -1$ then $D^F_x=d_x$ is the visual distance ou Bourdon metric. For every $s\in\bR$ it holds+**Remark.** If $F\equiv -1$ then $D^F_x=d_x$ is the visual distance ou Bourdon metric. For every $s\in\mathbb R$ it holds
 \[ \[
  D^{F-s}_x  D^{F-s}_x
ebsd2021/gibbsstates.1634477761.txt.gz · Last modified: 2021/10/17 10:36 by escola