User Tools

Site Tools


ebsd2021:bourdon

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
ebsd2021:bourdon [2021/10/17 10:21] – created escolaebsd2021:bourdon [2021/10/18 10:53] (current) tahzibi
Line 2: Line 2:
  
  
-We consider the \emph{Gromov productof $a,b\in X$ relative to $x\in X$,+We consider the //Gromov product// of $a,b\in X$ relative to $x\in X$,
 \[ \[
  (a,b)_x  (a,b)_x
- \eqdef\frac12\big(d(x,a)+d(x,b)-d(a,b)\big).+ :=\frac12\big(d(x,a)+d(x,b)-d(a,b)\big).
 \] \]
-Based on the Busemann function, consider the \emph{horospherical distance(relative to $\xi\in X(\infty)$), given a geodesic ray $\gamma$ with $\gamma(0)=y$ and $\gamma(\infty)=\xi$,+Based on the Busemann function, consider the //horospherical distance// (relative to $\xi\in X(\infty)$), given a geodesic ray $\gamma$ with $\gamma(0)=y$ and $\gamma(\infty)=\xi$,
 \[ \[
  \beta_\xi(x,y)  \beta_\xi(x,y)
- \eqdef b_y(x,\xi)+ := b_y(x,\xi)
  = \lim_{t\to\infty}d(x,\gamma(t))-d(y,\gamma(t)).  = \lim_{t\to\infty}d(x,\gamma(t))-d(y,\gamma(t)).
 \] \]
Line 17: Line 17:
 \[ \[
  (\xi,\eta)_x  (\xi,\eta)_x
- \eqdef \lim_{n\to\infty}(a_n,b_n)_x+ := \lim_{n\to\infty}(a_n,b_n)_x
 \] \]
 (this limit exists and is independent on the chosen sequences, see above). (this limit exists and is independent on the chosen sequences, see above).
Line 31: Line 31:
 \end{split}\] \end{split}\]
    
-\begin{lemma}[{Bourdon metric \cite[Chapter III.H Propositions 3.7 and 3.21]{BriHae:99}, \cite[Théorème 2.5.1]{Bou:95}}+For the following see [Bridson, Haefliger, Chapter III.H Propositions 3.7 and 3.21] or [Bourdon 1995]. 
- For any $x\in X$, the function+ 
 +**Lemma.** For any $x\in X$, the function
 \[ \[
  d_x(\xi,\eta)  d_x(\xi,\eta)
- \eqdef\begin{cases}+ :=\begin{cases}
  e^{-(\xi,\eta)_x}&\text{ if }\xi\ne\eta,\\  e^{-(\xi,\eta)_x}&\text{ if }\xi\ne\eta,\\
  0&\text{ otherwise},  0&\text{ otherwise},
Line 45: Line 46:
  = e^{\frac12(b_\xi(x,y)+b_\eta(x,y))}d_x(\xi,\eta).  = e^{\frac12(b_\xi(x,y)+b_\eta(x,y))}d_x(\xi,\eta).
 \] \]
-\end{lemma} 
  
-This will be used some regularity properties of Gibbs cocycles.+ 
 +The above result will be used to state some regularity properties of Gibbs cocycles.
  
ebsd2021/bourdon.1634476864.txt.gz · Last modified: 2021/10/17 10:21 by escola