Ferramentas do usuário

Ferramentas do site


limites:limitadas

$\def\sen{\text{sen}}$

Funções limitadas

Dizemos que uma função real $f$ é uma função limitada se existe $L > 0$ tal que, para todo $x \in \mathbb R$, $|f(x)| \leq L$. Neste caso dizemos que $L$ é um limitante para $f$.

Em todos os limites aqui considerados, quando indicamos $x \to a$, $a$ pode ser tanto um número real, como $+\infty$ ou $-\infty$.

Exemplo As funções $\sen: \mathbb R \to \mathbb R$ e $\cos: \mathbb R \to \mathbb R$ são limitadas por $1$.

8 Seja $f$ função real tal que existem $A, B \in \mathbb R$ tais que, para todo $x$, $A < f(x) < B$. Mostre que $f$ é limitada.

O próximo lema ajuda nos resultados posteriores:

Lema Seja $f$ função real. Então $\lim\limits_{x \to a} f(x) = 0$ se, e somente se, $\lim\limits_{x \to a} |f(x)| = 0$.

Dem.: Suponha que $\lim\limits_{x \to a} |f(x)| = 0$. Então, como \[-|f(x)| \leq f(x) \leq |f(x)|\] obtemos, usando o Teorema do Sanduíche, que $\lim\limits_{x \to a} f(x) = 0$.

O outro lado fazemos pela definição: dado $\varepsilon > 0$, sabemos que existe $\delta > 0$ tal que \[0 < |x - a| < \delta \Rightarrow |f(x) - 0| < \varepsilon.\]

Logo, dado $x$ com $0 < |x - a| < \delta$, temos que $||f(x)| - 0| = |f(x)| < \varepsilon$ e terminamos.

$\square$

Proposicao Sejam $f$ e $g$ funções reais tais que $\lim\limits_{x \to a} f(x) = 0$ e $g$ é limitada. Então $\lim\limits_{x \to a} f(x)g(x) = 0$.

Dem.: Pelo lema anterior, temos que basta provar que $\lim\limits_{x \to a}|f(x)g(x)| = 0$. Seja $L$ um limitante para $g$. Temos \[0 \leq |f(x)g(x)| \leq L|f(x)|\] Pelo lema anterior, $\lim\limits_{x \to a} |f(x)| = 0$ (e, portanto, $\lim\limits_{x \to a} L|f(x)| = 0$). Como o limite da função constante igual a $0$ é $0$, temos, pelo Teorema do Sanduíche o resultado desejado.

$\square$

Exemplo $\lim\limits_{x \to 0} x \sen(\frac{1}{x}) = 0$.

No último exemplo, foi importante o seguinte fato: se $f$ e $g$ são funções reais e $f$ é limitada, então $f \circ g$ é limitada.

9 Cuidado com a observação acima. Dê um exemplo de uma $f$ limitada e de uma $g$ de forma que $g \circ f$ não seja limitada.

Proposição Soma de limitadas é limitada. Produto de limitadas é limitada.

Dem.: Sejam $f$ e $g$ limitadas. Sem perda de generalidade, podemos supor ambas limitadas por $L$ (tomando um limitante para cada função, é só escolher o maior dos limitantes). Temos \[|f(x) + g(x)| \leq |f(x)| + |g(x)| \leq 2L\] \[|f(x)g(x)| = |f(x)||g(x)| \leq L^2\]

$\square$

Proposição Se $f$ e $g$ são funções reais tais que $\lim\limits_{x \to a} f(x) = +\infty$ e $g$ é limitada, então $\lim\limits_{x \to a} f(x) + g(x) = +\infty$.

Dem.: Caso $a = +\infty$. Seja $L > 0$. Seja $K$ limitante para $g$. Seja $M$ tal que $x > M$ implica $f(x) > L + K$. Temos, para $x > M$, \[f(x) + g(x) \geq f(x) - K > L + K - K = L\]

$\square$

Obviamente, os resultados análogos ao anterior onde $\lim\limits_{x \to a} f(x) = -\infty$ ou onde fazemos a expressão $f(x) - g(x)$ também são válidos.

Exemplo $\lim\limits_{x \to +\infty} x + \sen(x^2) = +\infty$.

10 Enuncie e demonstre os resultados análogos aos apresentados aqui envolvendo limites laterais.

limites/limitadas.txt · Última modificação: 2020/06/22 15:55 por aurichi