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Abstract

By the peak of COVID-19 restrictions on April 8, 2020, up to 1.5 billion students across
188 countries were by the suspension of physical attendance in schools. Schools were
among the first services to reopen as vaccination campaigns advanced. With the
emergence of new variants and infection waves, the question now is to find safe
protocols for the continuation of school activities. We need to understand how reliable
these protocols are under different levels of vaccination coverage, as many countries
have a meager fraction of their population vaccinated, including Uganda where the
coverage is about 8%. We investigate the impact of face-to-face classes under different
protocols and quantify the surplus number of infected individuals in a city. Using the
infection transmission when schools were closed as a baseline, we assess the impact of
physical school attendance in classrooms with poor air circulation. We find that (i)
resuming school activities with people only wearing low-quality masks leads to a near
fivefold city-wide increase in the number of cases even if all staff is vaccinated, (ii)
resuming activities with students wearing good-quality masks and staff wearing N95s
leads to about a threefold increase, (iii) combining high-quality masks and active
monitoring, activities may be carried out safely even with low vaccination coverage.
These results highlight the effectiveness of good mask-wearing. Compared to ICU costs,
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high-quality masks are inexpensive and can help curb the spreading. Classes can be
carried out safely, provided the correct set of measures are implemented.

Author summary

The World Bank-UNESCO-UNICEF report [1] estimates that learning losses from the
COVID-19 pandemic could cost this generation $17 trillion dollars in lifetime earnings.
Despite the surging pressure to keep schools open, many countries lack guidelines for
safe school activities. Using the empirical transmission level for closed schools as a
baseline, we quantify the impact of distinct non-pharmaceutical interventions (NPIs) on
infection rates and different values of vaccine coverage. Strikingly, we show that classes
can be kept safe, provided the correct wearing of good quality masks together with to
the proper combination of other NPIs. In such scenarios, the increase in infections can
be kept below 20% compared to suspending classes.

Introduction 1

The educational system plays a fundamental role in the socio-intellectual development 2

and mental health of children and adolescents. During the COVID-19 pandemic, the 3

impact of school closures on society has been massive. UNESCO reported that, as of 4

April 8, 2020, up to 188 countries closed schools nationwide. In developing countries, 5

such as Brazil, nutritional wellbeing of children was put in jeopardy as families rely on 6

the provision of school meals. And yet, in Brazil alone, schools remained closed full-time 7

for 191 days in 2020 affecting 44.3 million children. However, given the frequent contact 8

during a school day, the prevalence of mild symptoms in children and the role of school 9

as a source of contacts bridging family nuclei, there is understandable concern that 10

face-to-face classes could be driving uncontrolled spreading of the virus. 11

In view of the negative physical and mental consequences for students, together with 12

the educational deficit imposed by school closings, the ECDC agency points out that 13

measures of transmission mitigation are necessary for students to have a safe 14

socialization and learning environment [2]. Thus a major concern is the assessment of 15

mitigation protocols [3] to understand the impact of each measure within the school 16

community. 17

Living in a household with a child who goes to school physically increases the risk of 18

becoming infected by up to 38%. Similarly, teachers working in school are 1.8 times 19

more likely to be infected than those working from home [4] and resuming face-to-face 20

classes has been directly related to outbreaks [2]. Mitigation measures such as 21

separating student groups, quarantining exposed students and professionals, wearing 22

masks, maintaining adequate air ventilation, vaccinating risk groups, and monitoring 23

case emergence, can all decrease the number of new cases [4–6]. 24

Often, mitigation measures are put in place simultaneously, which makes it difficult 25

to disentangle their individual impact on transmission from temporal case report 26

datasets. The lack of infrastructure, personnel and lab equipment may also limit the use 27

of these measures in developing countries, especially when they are based on resource 28

intensive practices such as testing and subsequent contact tracing of cases. Thus, it 29

becomes crucial to identify effective mitigation practices a priori. 30

Our aim is to assess quantitatively the effects of vaccination [7] and NPIs protocols 31

and find effective protocols for school activities. Our study shows that classes can be 32

kept open safely, provided that the correct combination of measures be adopted. 33

Relying on a single measure is mostly not effective nor stable, but simple measures can 34

go a long way when properly combined and implemented. 35
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Materials and methods 36

Data collection 37

The city of Maragogi in Northeastern Brazil has 33,000 inhabitants [8] and is a 38

representative of at least 40% of Brazilian cities in terms of income and demographics. 39

Moreover, its demography is also typical worldwide, being located above the 50% 40

quantile in a sample of 28,372 North American cities and 41,000 global cities, using the 41

simplemaps database [9, 10], see S1 File section 1 for further details. 42

Through a partnership with the city of Marogogi, established since March 2020, we 43

developed a Clinical Monitoring System to track and trial all severe acute respiratory 44

syndrome patients, see description in S1 File section 2. We also geo-localized 45

patients and integrated this information with public data to obtain the household 46

socio-economical data and family clusters S1 File section 3. The data integration is 47

illustrated in the upper left panel of Fig 1. For our study, we used the data from May 48

9th, 2020 to July 25th, 2020, consisting of 18 confirmed deaths and 119 hospitalizations. 49

In this period 1722 tests were performed, namely 52 RT-PRC tests and 1670 antibody 50

tests (in majority COVID-19 IgG/IgM, see S1 File section 4 for further details). 51

This study was approved by UFAL institutional Ethics Committee (CAAE: 52

43058821.9.0000.5013). 53

Services 54

We mapped the services that were allowed to be open during the period under 55

government regulations and interviewed a sample of businesses for an estimate of daily 56

occupation. The bulk of such services are food stores, building supply stores, 57

restaurants and other minor retailer services as described in S1 File section 5. 58

Street markets 59

We estimated the usage of important open air services such as street markets by images 60

collected via drones. We processed the images using the marking tool of the Drone 61

Deploy mapping software [11] in order to evaluate the mean size and duration of cluster 62

of people less than 2 meters apart during opening hours, as well as the average time 63

spent by individuals in the street market. In S1 File section 1, we also show that 64

cities with demographics similar to Marogogi have analogous street market behavior. 65

Health services 66

During the period considered, the triage of all COVID-19 related cases was performed in 67

a field hospital. We interviewed the staff of the health secretary to obtain data on the 68

appointment mean time, and the mean number of contacts a patient has with doctors 69

and other patients. This also provided data on the mean number of contacts among 70

staff, see S1 File section 5. 71

Inference of states from data 72

We estimate the epidemiological SEIR curve from the attendance data of our Clinical 73

Monitoring System. The SEIR curve corresponds to the trajectory of the population 74

over the period of observation in the states: susceptible, exposed, infectious and 75

recovered. The challenge is to transform the information of an individual reported in 76

the attendance data into these states of the entire city population over time, correcting 77

for sub-notification. 78
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SIMULATION AND EVALUATION OF NPIs MEASURES

Institutional data
From health and educational 
municipal secretaries, also 
from nationwide databases

Literature
Covid-19 related time 
distributions and probabilities

Aerosol model
Risk of infection in 
classrooms based on Wells-
Riley model

Healthcare data
Patient records related to 
Covid-19 (e.g. symptons onset 
data, test results...)

Mobility data
Used to define social
isolation
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Fig 1. Pipeline overview description. Data is collected as patients attend health
institutions. Health professionals register patients’ personal, epidemiological and
geo-location data to the Clinical Monitoring System (CMS) that is blended with
socio-economical and household data. Using these data we estimate the number of
Exposed (blue), Infectious (red) and Recovered (green) individuals. All the
pre-processed data is used to calibrate our Stochastic Agent Based model,
COMORBUSS. From bottom left to right: a schematic representation of the social
dynamics of COMORBUSS, producing contacts between individuals in different social
contexts. The colored circles represent the state of individuals, and lines represent
relevant physical contacts capable of producing contagions. Once calibrated the model
is used to estimate the effectiveness of NPIs.

Under the hypothesis that all severe cases (hospitalization and death) are reported in 79

our Clinical Monitoring System, for each reported individual we estimated the number 80

of unreported infected individuals using a negative binomial (NB) distribution, and 81

consequently, the total number of cases in the city over the period of observation. We 82

modelled the total number of cases by T = NB(ph, 119) + 119, where ph ≈ 3.304% is 83

the estimated hospitalization probability for the city. We assume that these unreported 84

individuals present their first symptoms at the same time as reported individuals. 85

Having all the individuals carrying the virus, we estimated how they progress across 86

the SEIR compartments based on the severity of the case and the distribution of 87

permanence of each state [12]. We rerun the statistical model 400 times to obtain SEIR 88

curve samples for the city, see S1 File section 4 for further details. We denote by ν̂ 89

the (empirical) distribution induced by these samples, e.g., the measure given by the 90

uniform distribution over the 400 obtained samples. 91
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Agent based modeling 92

Agent based models are a class of computational models which track individual units 93

(agents) of objects of interest. In the case of communal disease transmission, the natural 94

choice for agents are the people which form that community and on whose contact the 95

disease transmission is based. The two most important advantages of these models are: 96

i) we can directly incorporate the biological and social heterogeneity of that community 97

and investigate how it influences transmission patterns; ii) we are omniscient regarding 98

the simulated histories of the agents and can reliably evaluate the effects of specific 99

public health protocols via conterfactual analysis of these histories. 100

Our agent based model, called COMORBUSS (COmmunitary Malady Observer of 101

Reproduction and Behavior via Universal Stochastic Simulations), takes all these 102

advantages a few steps further: we built a full model for the social dynamics of general 103

communities in order to produce the contacts that drive disease propagation. We 104

achieve this via a general modeling procedure of a city’s infrastructure which can be 105

systematically applied to any city via data integration. Moreover, our model is aware of 106

the different roles the agents play in the various services that compose the 107

infrastructure and produces contacts accordingly. This allows us to pinpoint the impact 108

of a specific service and related mitigation protocols on disease spreading as well as 109

track the resultant infection tree. To avoid overspecialized simulations of a single city, 110

COMORBUSS stochastically produces for every simulation a realization of the 111

transmission trajectory for the city in the class defined by the desired demographic and 112

infrastructure data. For instance, each simulation has its own household network while 113

satisfying the same distributions which describe household structure in that community. 114

In the following, we describe the main pieces of the model and elaborate on its many 115

details in S1 File section 5. The most important parameters are classified and 116

explained in Figure 2. 117

Modeling disease 118

Each agent is characterized by its age, which determines the agent’s susceptibility, 119

probability of developing symptoms and probability of dying from the disease. When a 120

susceptible agent encounters an infectious one (pre-symptomatic, asymptomatic, mildly 121

or severely symptomatic), it has a probability of becoming exposed. After an incubation 122

period, this agent becomes pre-symptomatic, and after an activation period, its state is 123

converted to either asymptomatic, mildly or severely symptomatic. The distribution of 124

these states is estimated empirically from actual statistics [13,14]. After a random 125

period, agents are converted to recovered (or dead), see S1 File section 5. 126

Vaccine modeling and effect 127

As our aim is to evaluate transmission patterns under different mitigation strategies, we 128

are naturally interested in vaccines that can also affect disease dynamics either by 129

blocking virus infection or transmission. Unfortunately, studies of vaccine efficacy so far 130

did not address these outcomes directly and we lack data for modeling these 131

mechanisms. We argue, based on the results shown in Fig 3, that vaccines are important 132

mechanisms for individual protection, and, in turn, they might also have an impact at 133

the population level by decreasing transmission of the virus to susceptible individuals. 134

However, this is a secondary effect: what really defines the trend for relative reduction 135

of cases is the chosen combination of NPIs. This is seen by comparing the worst and 136

best-case scenarios regarding vaccination (left and right in Fig 3, respectively). We 137

simulate a best-case scenario by initializing all school workers as perfectly vaccinated, 138

such that their vaccination blocks all infection. We observe that the general picture 139

remains unchanged within error bars, preserving almost the same ordering among 140
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Services Parameters

     number: Number of instances of this service in the city;
     hours: Openning and closing hours;
     days: Days of the week service opens;
     visitation_period: Mean time between visitations 
for each particle in the population;
     isolation_visit_frac: Factor to reduce 
visitations if an particle is in isolation;
     net_par: Configurations for the dynamic encounters  
network inside service;
     workers: Parameters to select workers and it's 
schedules, location inside service, etc;
     inf_prob_weight: Factor to apply to the probability 
of infections in this service;

For each service modeled:

Population Parameters

     population_ages: Number of citzens by age goup;
     population_graph: Samples of households 
structures (number of persons and respective ages);
     persons_per_home: Mean number of persons per 
household;

Disease Parameters

     inf_probability: Probability of an infection given 
an encounter between an S and a I particle;
     inf_prob_sympt and inf_severe_sympt_prob: 
Probability by age goup of an infected particle to develop 
symptoms and severe symptoms;
     inf_severe_death_prob: Probability of an 
infection to end in death of the particle;
     inf_duration and inf_severe_duration: 
Mean time a particle stays infectious for normal and severe 
infections;
     inf_incubation: Mean time in the exposed state 
(incubation);
     susceptibility: Susceptibility to an infection by 
age group;

     isol_pct_time_series: A daily percentage of 
citzens that stayed at home;
     quarantines: Configurations relative to quarantines 
and hospitalizations of severe particles;
     diagnostics: Configurations relative to available 
diagnostics to the population;

Interventions Parameters

Fig 2. Most relevant parameters. A non exhaustive classification of parameters
used for a COMORBUSS simulation. Further description of parameters can be found
on S1 File section 5, while a complete list of parameters and their values can be
found in the Git repository.

scenarios. It is still unknown whether current vaccines can block infections. With all 141

these and other unknowns in mind, we find it very reassuring that the two limiting 142

cases we have studied are structurally similar and lead to sound conclusions regarding 143

the effectiveness of school activity protocols. 144

Secondly, we investigate the effects of NPI adoption under different scenarios of 145

partial vaccination for the general population (see Fig 4). Our main interest in this 146

analysis is to evaluate the viability of the proposed measures for countries with different 147

vaccination coverage, both in the well covered European continent and in the 148

under-vaccinated African continent. We observe that the correct choice in NPIs can 149

effectively protect the community even for low vaccination coverage, while poor 150

adoption of NPIs can lead to high infection rates even for high vaccination coverage. 151

Since we are dealing with larger segments of the population instead of just the school 152

sub population, these simulations were performed with a more realistic vaccination 153

model which only partially protects each agent with a biological efficacy of 98% for 154

infection, resulting in an effective vaccine efficacy of 90% for the scenario where no NPIs 155

are adopted. Although it tends to be more realistic, this model is highly complex to 156

adjust and interpret because the measured vaccine efficacy is closely related to the 157

running epidemiological scenario which responds to the adopted NPIs [15–17]. 158

Modeling Services 159

The city infrastructure is modeled by creating individual instances for each service 160

(schools, hospitals, markets, restaurants, shops etc.) and by assigning agents to 161
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Fig 3. Combination of NPIs measures in comparison to the baseline model
settings. Left panel: Case increase under different scenarios with unvaccinated
teachers and staff. Right panel: Case increase under different scenarios with vaccinated
teachers and staff. The effective teaching hours in hours/week h

w and case increase in
school population with respect to baseline are displayed for each NPIs combination. In
case the active monitoring is also applied, the mean and standard deviation over 60
realizations for the effective teaching hours are shown. The proportional increase in the
number of cases is displayed as violin plots (median, lower and upper quartiles), with
kernel density estimates for distributions.

work/visit that location if they belong to an appropriate age group (a child may not 162

work at a shop, and an adult may not attend class). Worker agents are relocated to that 163

service location during their shifts, while the visits of client agents are simulated 164

stochastically. An hourly visitation rate of a service by an agent is empirically 165

estimated, taking into account the service’s opening hours and average visitation 166

frequency of real clients; for details see S1 File section 5. Additionally, agents may 167

be allocated as guests to special services, which implies that their standard location is 168

changed from their homes to that service instance. In this way we distinguish between 169

hospitalizations, hotel quarantines and nursing home patients. 170

A novel point of our model is the creation of contact networks contextualized by 171

social activity. The ratio of encounters between workers and clients as well as the 172

clustering properties of a contact network is naturally dependent on the observed social 173

context. For example, in restaurants there is a clustering of clients belonging to the 174

same table, and contact between different tables is mediated by the contact of a shared 175

waiter. Contact networks in schools, hospitals, stores etc., are all considerably different 176

from each other. COMORBUSS updates random contact networks every hour for all 177

the agents in the service instances, while respecting the characteristic architecture of the 178

contact network of that type of service and distinguishing between the social roles of 179

agents. Details and examples may be found in S1 File section 5. 180
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Fig 4. Population fraction infected at the end of the simulation period (77
days) under varying vaccination coverage.

Model calibration and closed schools as baseline 181

We aggregate socio-geographical data, as well as epidemiological data to COMORBUSS 182

from May 9th 2020 to July 25th 2020, and leave the infection probability p and the 183

mean number of contacts c in the City Hall to be calibrated using the empirical measure 184

ν̂ obtained from the inference of states from data (see Section C). For a given 185

y = (q, d) ∈ [0, 1]× R+ we denote by µ̂y the empirical measure given by 400 186

independent realizations of COMORBUSS with p and c chosen as (p, c) = y. We 187

construct an estimate x̂ for x = (p, c) by minimizing over all y the L1-Wasserstein 188

distance between ν̂ and µ̂y, see S1 File section 6. 189

We initialize the community according to its demographics and household 190

distribution, see S1 File section 6. The disease state of agents is proportional to the 191

average inferred epidemiological data for day May 9th 2020. The calibrated model is in 192

excellent agreement with the estimated data and we use it as a baseline. This scenario 193

resulted in an average of 3007± 249 new infections in the population, in which 25% of 194

those infections occurred in the school population, a measure that will serve as a 195

baseline for keeping schools open in study cases. 196

Poorly ventilated classrooms 197

In poorly ventilated classrooms, the main transmission mechanism is by aerosols 198

emitted by an infected agent. The aerosols can remain suspended in the air, thereby 199

reaching agents far from the original emitters [18,19]. To model this exhaled air without 200

reference to the microscopic pathogen concentration, we follow the exposition in [20, 21], 201

describing the evolution of concentration of quanta in a closed space. Quanta, 202

introduced by Wells, measure the expected rate of disease transmission, interpreted as 203

infection quanta transference between pairs of infected and susceptible agent [22]. 204

In our model, we denote by C (quanta/m3) the total concentration of quanta inside 205

a classroom of volume V . Classrooms contain a total of N agents, with S susceptible 206
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individuals, Is infected students and It infected teachers. All breathe uniformly at a 207

rate B = 0.5 m3/h. Since mask wearing can decrease the amount of aerosols emitted to 208

the air, we denote for each agent the penetration mask factor pim ∈ (0, 1), with i = s, t: 209

see Fig 5. 210

quanta
concentration

breathing
rate

outdoor air
flow rate

CLASSROOM

Fig 5. Airborne transmission model inside school environment. The
classroom is an enclosed space in which airborne transmission has a high chance of
occurrence. Contaminated particles are spread over the classroom, allowing long range
infections. The fresh air rate flow Λ quantifies the classroom ventilation. The quanta
concentration C varies in the environment depending on the breathing activity.

Each person exchanges quanta with the air depending on breathing activity. We
introduce the concentration of quanta expelled by students Cs = 40 (quanta/m3) and
teachers Ct = 72 (quanta/m3) [21](corresponding to voiced counting [23]). Under a
well-mixed room assumption, the total concentration of quanta C (quanta/m3) inside
the classroom satisfies the mass equation:

V
dC

dt
= −(ΛV +NB)C +B(CsIsp

s
m + CtItp

t
m). (1)

Note that our setting relies on the fact that the airborne particles remain airborne 211

before being extracted by the outdoor air flow Λ (typically reported as air changes per 212

hour or ACH) or inhaled by an agent. We investigate the poor ventilation limit Λ = 0 213

and fresh air flow (Λ > 0), see S1 File section 7. 214

The amount of quanta inhaled by the ith agent inside the class over a time t is the
inhaled dose Di(t) = Bpim

∫ t

0
C(t)dt. We evaluate this integral over the solution to

Equation (1). Using the inhaled dose of each agent, we plug it into the Wells-Riley
model to calculate the probability of a susceptible individual being infected [19,20],
which consists in estimating the risk of infection in indoor environments via

piindoor(t) = 1− e−riDi(t),

where ri is the relative susceptibility (an age-based measure [24]) for the agent i. We set 215

the relative susceptibility of children (aged 0 years to 14 yr), adults (aged 15 yr to 64 yr) 216

and the elderly (over 65 yr) to ri = 0.23, 0.68, 1, respectively. To determine the source 217

of infection of a particular exposed individual, we pick a random individual uniformly 218

from all of the infectious individuals in the enclosed space, see S1 File section 7. 219

Results and Discussion 220

We present three classes of results, each with their own implications to health protocol 221

design: i) effectiveness analysis of a large set of protocols; ii) analysis of how the most 222
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relevant protocols depend on good mask practices and ventilation; iii) predictions on 223

protocol effectiveness when challenged by more infectious viral strains. 224

It must be noted that, while our model can be easily applied to other communities 225

via our systematic data integration procedure, acquiring good quality datasets and 226

ensuring their compatibility is the most limiting challenge in our methodology. For 227

example, we have found that in many cities the census data and the database describing 228

the available services are offset by a few years. We had the experience of modeling cities 229

which had explosive growth during those years and these two datasets became so 230

incompatible that there were not enough agents from the demographic data to work on 231

the most recent infrastructure. We naturally need to rely on interpolation and 232

extrapolation of historic datasets in such cases. Regardless, we find that a close 233

collaboration with city managers, as we had in Maragogi, is ideal for ensuring the 234

quality of the data and as well as in identifying trends and supporting modeling choices. 235

This is critical in order to evolve the model as we learn more about the disease and the 236

social behavior also changes in response to it. We document our experiences on this 237

process in the first four sections of the S1 File. 238

NPIs and vaccination 239

Across 27 schools, the total school population is 8,528, with 7,557 students. We 240

quantified the effects of five NPIs on the school population, which consists of teachers, 241

school staff and students. Each NPI is described in Fig 6. Although there is still 242

controversy in the literature about the efficiency of surgical masks for filtering 243

particles [25] and side-effects [26], we assign mask quality via their permeability factors 244

pm, as indicated in Fig 6. 245

We simulate school activities with different NPI and compute the percentage 246

increase of cases with respect to the baseline. The results are presented in Fig 3 along 247

with the effective teaching hours. Conducting classes in full shift and wearing only poor 248

quality masks leads to a 559% increase in infections. We note that the wearing of N95 249

masks by teachers and staff is particularly effective at reducing the number of cases 250

compared to other scenarios, and we highlight this NPI in Fig 3 (darker color). Active 251

monitoring curbs spreading, at the expense of the effective number of teaching hours. 252

We assume in the simulation that vaccinated teachers and staff are initialized with 253

protective neutralizing antibodies against COVID-19. This blocks any possible infection 254

chain starting from these individuals. The right panel in Fig 3 displays the effectiveness 255

of NPI combinations with vaccinated employees. If employees are not vaccinated, case 256

rates increase in all scenarios. The case increases in the highlighted (darker color) 257

scenarios are reduced for both unvaccinated and vaccinated employees, indicating that 258

they are a potential source of infection for the school population. 259

We also analyze the robustness of our results when considering a larger city, using as 260

example the regional capital of Curitiba with almost 2 million inhabitants. We observe 261

how bad protocols lead to sharp increase in infections while good ones successfully avoid 262

this phenomena. Most remarkably, the relative effectiveness rank between intervention 263

is preserved, even if the case increase relative to the baseline is less pronounced, see 264

further details in S1 File section 8. This not only shows the stability of the protocols 265

but also indicates that smaller cities are more vulnerable and in need of appropriate 266

protocols. 267

We also consider the effectiveness of NPI scenarios under different levels of 268

vaccination coverage, see Fig 4. Our motivation is to asses the viability and safety of 269

public health decisions even in countries with low coverage, such as African countries. 270

In fact, even with low vaccination coverage, we find that a good choice of NPIs in 271

schools also protects the wider community better. At the same time, poorly chosen or 272

non-existent NPIs may leave the communities highly exposed, regardless of vaccination 273
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NPI Description

Active 
Monitoring

Schools function under the following measures:

Symptomatic people are tested;

Teachers which had contact with a 
classroom in which there were confirmed 
cases are tested and suspended for 14 days 
in the case of positive result;

If a case is found in a classroom, their 
activies are suspended for 14 days;

School is closed for one week if there are 
two cases in distinct classes within a week.

Students are tested and isolated (14 days) 
when they are symptomatic or a family 
member is confirmed positive;

Reduced 
Workload

    Schools function with shifts of two hours 
instead of four hours.

Alternating 
Groups

Schools function with reduced class sizes, and
in particular classes are separated into 2 groups 
having in-person activities on alternate days.

Use of 
Mask Teachers and staff 

with N95.

Low quality:

Good quality:

N95 or PFF2: 

Fig 6. NPIs description. The icons distinguish the non-pharmaceutical interventions
evaluated in this study. In scenarios involving masks, the mask penetration factor pm is
uniform for all individuals, except for teachers wearing PFF2 masks.

coverage. We therefore stress the importance of appropriate NPIs and protocols, 274

whether or not the underlying country enjoys good vaccine coverage. We recall that the 275

cities are modelled with only essential services operating, including schools. Lessons 276

drawn here extend to other services and social contexts to avoid the worsening of 277

outbreaks. 278

Sensitivity analysis: mask penetration and ventilation 279

We quantify the relevance of the mask penetration factor pm and ventilation air flow 280

rate Λ for the increase of COVID-19 cases in the cities. Assuming that all pupils wear 281

masks with the same pm, Fig 7 shows the impact of the penetration factor on the 282

number of cases if schools are kept open. Results are sensitive to the penetration factor 283

of the masks, as seen by comparing the first (poor quality or practices, pm = 0.5) and 284

second (high quality masks, pm = 0.3) simulation scenarios, showing a decrease of 285

almost 200% in cases regardless of the vaccination status of employees. We also observe 286

that the use of N95 masks by employees increases the effective teaching hours in the 287

scenarios with active monitoring. 288

Fig 8 shows the sensitivity analysis when the ventilation rate is varied inside 289

classrooms. Based on recomendations by the American Society of Heating, Refrigerating 290
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Fig 7. Sensitivity analysis across mask penetration factor pm. Cases increase
in school population (solid lines) versus the mask penetration (mean values over 60
realizations for each pm value).

and Air Conditioning Engineers (ASHRAE)1, we calculated the minimal ventilation 291

rate of Λ1 = 0.8 h−1 for unoccupied classrooms using their average dimensions in 292

Maragogi. Ventilation rates for half full and full classrooms are Λ2 = 3.8 h−1 and 293

Λ3 = 6.6 h−1, respectively; for further details see S1 File section 7. 294

Scenarios with more infectious variants 295

In investigating the effectiveness of school safety protocols during infection waves caused 296

by new, more infectious variants, we are drawn to the limiting worst case scenarios. As 297

such, we assume that the new variant completely avoids the acquired immunity from 298

vaccination or previous infections. New variants are modeled by an increase in the 299

population susceptibility, therefore encompassing both our contact and aerosol 300

transmission models. Susceptibility is increased by the multiplying factor over all age 301

groups as a limiting case. 302

The results are depicted in Fig 9. As expected, the total population infected 303

increases monotonously with the increase in susceptibility, with poor protocols for 304

school activities leading to extreme infection rates across the community. Most 305

importantly, not only good protocols still lead to remarkable decrease in infection rates 306

but the relative rank of effectiveness between protocols is preserved regardless of how 307

much susceptibility is increased. This shows the stability of good protocols and makes 308

the point that their adoption should always be a top priority even when facing new 309

potentially variants. 310

1ASHRAE 62.1-2019 (ASHRAE 62.1) - Ventilation for Acceptable Indoor Air Quality.
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Fig 8. Sensitivity analysis across ventilation Λ. Cases increase in school
population (mean and standard deviation) as a function of classroom ventilation rate.
Dashed lines indicate the recommended ventilation rates: Λ1 = 0.8 h−1 (unoccupied
room), Λ2 = 3.8 h−1 (half occupied room) and Λ3 = 6.6 h−1 (fully occupied room),
following ASHRAE standard for an average classroom in Maragogi.
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Fig 9. Population infected in case of increase in susceptibility. For each
intervention scenario, we show the distribution in the percentile of the population
infected provided the susceptibility of the population is increased uniformly by a
multiplying factor.

Conclusion 311

The airborne transmission mechanism of COVID-19 is the main cause of infections in 312

school environments in classrooms with poor air circulation. Since many classrooms are 313
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equipped with air conditioning or heating, most have poor air circulation. Therefore, 314

reducing the class size does not necessarily curb spreading because an infected person 315

can emit aerosols that stay in the air and infect students far away in the same classroom. 316

Vaccination of employees is an essential measure. Still, in the absence of other 317

measures such as monitoring and quarantines, the number of cases in the cities is likely 318

to increase by 177% if only the use of low quality masks and alternated classes are 319

implemented. 320

The penetration factors provided by manufactures and used in our simulations are 321

idealized. In practice, the fit of a mask and the practices of users result in lower 322

filtration efficacy. Indeed, after testing a model of contagion based on a study of 323

Canadian classrooms [27], we compared the ensuing results with our own aerosol model 324

under the same class conditions but varying penetration factors, in order to estimate its 325

value in these classrooms. We were alarmed to find that the effective penetration factor 326

for the Canadian classrooms in that study was only 0.5, despite the assumption of high 327

quality masks. It would therefore be of great benefit to instruct the general population 328

in proper mask use. Otherwise, the potential effectiveness of sanitary protocols will be 329

compromised as the achieve penetration factor increases (Fig 7). 330

All these findings can be explained by three facts: teachers are more susceptible 331

than children, they expel more virulent particles since they are constantly speaking 332

loudly and they are the most effective bridges of transmission between isolated classes. 333

Therefore, high quality masks not only protect the individual teacher, but also suppress 334

community infection. 335

Our most striking result is that one must adopt the appropriate NPIs and behavioral 336

protocols in order to safely continue school activities during a pandemic, regardless of 337

vaccination coverage. Good protocols can protect countries even with poor vaccine 338

coverage. Conversely, bad protocols may seriously aggravate the underlying public 339

health crises even in countries with very high vaccination coverage. This is in great part 340

due to the long duration of social contacts in schools, easily leading to breakthrough 341

infections without proper protocols. This is particularly relevant given that in many 342

countries children are not routinely vaccinated for COVID-19, or when preparing for the 343

emergence of new variants with potentially low cross immunity. 344

There is no single solution to a pandemic, but we draw hope in showing that the 345

proper combination of NPIs, vaccination and behaviors permit the safe continuation of 346

activities as fundamental and important as teaching. 347

Supporting information 348

S1 File. Supplementary Information. Detailed description of data collection, 349

data analysis, COMORBUSS software, calibration, and sensibility analysis. 350
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Section 1

Maragogi-AL put into context

Maragogi is located in the northeast of Alagoas state approximately 137 km from the capital
Maceió, see Figure 1.1.

Figure 1.1: Maragogi location in Brazil. Left panel depicts 27 administrative divisions of
Brazil, where Alagoas state is highlighted in black. Right panel displays the city of Maragogi (in
black) inside Alagoas state.

Demographics. The national 2010 survey [26] estimated that Maragogi had 28749 inhabitants,
see Table 1.1. Note in 2010 the population was mostly composed by young people (0 - 40 yo) and
when compared to the current estimate, we observe a significant shift towards the mid age (29 -
69 yo).

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ Total
2010 6016 6694 5220 4160 2861 1850 1177 539 232 28749

(%) 20.93 23.28 18.16 14.47 9.95 6.44 4.09 1.87 0.81 100
2019 5542 6276 5967 4704 4102 2954 1933 1005 219 32702

(%) 16.95 19.20 18.25 14.39 12.54 9.04 5.91 3.07 0.67 100

Table 1.1: Age pyramid of Maragogi. The age pyramid shown in the first row corresponds
to the national 2010 survey [26] . In the second row, the age pyramid for 2019 is constructed
using two databases and corrected due to biases in the data (such as duplicate registers for same
individuals).

The national 2019 survey estimated the population size in 32702 and 33351 in 2021 [26]. To
construct the age pyramid of Maragogi in 2019 we merged two databases. For the interval 0-79 y
we used the Programa da Saúde da Família (PSF) — public health assistance program, see Section
3 — summing over a total of 34598 inhabitants. For the interval 80 y - 100+ we imported the
individuals of each 5 years interval from the age pyramid of Maragogi estimated in the national 2019
survey [24], and the total number . We constructed the age pyramid of Table 1.1 multiplying by

5



6 SECTION 1. MARAGOGI-AL PUT INTO CONTEXT

the factor 32702/34598 which corresponds to fraction between the total population size estimated
in 2019 and the population size from PSF data.

Comparing with other Brazilian cities, the left panel of Figure 1.2 displays the population size
range between 10000 and 50000 inhabitants, which is the range correspondingly to 44% of Brazilian
cities, and encompasses the city of Maragogi located inside it.
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Figure 1.2: Maragogi-AL in comparison with Brazilian cities. Cumulative histogram of the
total population of Brazilian cities (left panel), GDP per capita (right panel) as a function of the
proportion of municipalities [25]. The GDP per capita is conditioned on the group of Brazilian
cities between 10000 and 50000 inhabitants.

This range of cities between 10000 and 50000 inhabitants encompasses mostly cities sharing
common features in terms of social and epidemiological synergy: small population size, low occu-
pation density, and disease vectors such as public transport are not significant. Moreover, there is
a small portion of vertical urbanization.

Table 1.2 contains the probabilities of symptomatic cases, severe cases and deaths aggregated
by age group. Crossing those proportions with Maragogi’s age pyramid (Table 1.1) we obtain an
expected hospitalized/infected ratio of ph = 3.304% and a death/infected ratio of pd = 0.441%
overall. Figure 1.3 displays the age based probabilities of death and hospitalization for COVID-19
(computed using the statistics in Table 1.2) calculated for Brazilian cities.

Age 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+
psym 0.5 0.55 0.6 0.65 0.70 0.75 0.80 0.85 0.9
phosp 0.0001 0.0001 0.011 0.034 0.043 0.082 0.118 0.166 0.184
pdeath 0.00002 0.00006 0.0003 0.0008 0.0015 0.006 0.022 0.051 0.093

Table 1.2: Age based probabilities for COVID-19.

To put the city of Maragogi into context worldwide, Figure 1.4 shows the cumulative histogram
of the total population from the simplemaps database containing 28372 and 41000 cities corre-
sponding to US and World cities, respectively [42, 43]. We observe the city of Maragogi is above
the center in both cases, which suggests that is a small urban area with an average size population
worldwide [36].

Economic aspects. If we narrow our analysis to this 10000 and 50000 inhabitants range,
center panel in Figure 1.2 shows that Maragogi had GDP per capita close to the median in 2010.
To illustrate the distribution of socioeconomic activities in the city, see Figure 1.5, which shows
the Economic value added in the last years.

The service sector is represented by a network of hotels and establishments providing accom-
modations for travelers. We discarded this hospitality service sector from our analysis because
most accommodation establishments were closed during the period of our analysis (Strategic plan
May 2020 - from City Hall information).

The farming activity splits into crops (44.7%), pastures (33.6%), woods and forests (7.9%)
in 2017. The Instituto Nacional de Colonização e Reforma Agrária - INCRA has registered in
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Figure 1.3: Age based probabilities of death and hospitalization for COVID-19 cal-
culated for Brazilian cities. Expected death (left panel) and hospitalization (right panel)
probabilities for Brazilian cities in the range 10000 and 50000 inhabitants. For hospitalization is
assumed any individual developing COVID-19 severe symptoms, see Table 1.2.
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Figure 1.4: Maragogi-AL in comparison with cities in United States and World. Left
panel displays the cumulative histogram of the total population of US cities [42] and right panel dis-
plays in World cities [43] as a function of the proportion of cities. Dashed lines in black correspond
to 10000 and 50000 inhabitants for reference while the orange shows the Maragogi population.

terms of the Cadastro Ambiente Rural (CAR) 363 farming organizations, which 89% correspond
to smallholder farming organizations. Inside this category of smallholder farming organizations,
approximately 6% consist of rural settlements1, where 1475 families practice agricultural activities
[28, 40]. This familiar agricultural activity results in commercialization of products weekly in street
market (under initiative of the City Hall), see Section 1.1.

Education. We filtered the data for schools belonging to the municipalities in the range of
interest. The data is composed by educational institution and school level (kindergarten, elemen-
tary and high school) of INEP 2020 [30], see Figure 1.6. Figure 1.6 shows the occupation density
of schools in Maragogi into context over Brazilian cities within the range of interest. The distribu-
tions are similar in all levels of education, in particular overall Early Childhood Education (ECE),
Elementary and High schools in the range of interest the average of students per class corresponds
to 15.25, 17.87 and 25.30, respectively, compared to 19.54, 19.49 and 23.37 of Maragogi schools.

1Rural settlement is defined as a portion of land that rural workers undertake to live on the plot and exploit it
for their livelihood, using exclusively family labor [4].
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Figure 1.5: Economic value added from 2002 to 2018. Each economic sector contribution
in Maragogi with respect to the total. Administration public includes Defense, Education, Public
health and Social security.
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Figure 1.6: Student per class distribution inside schools over cities within the range of
10000 and 50000. The solid black line corresponds to the occupation density distribution over
Brazilian cities within the range of 10000 and 50000 inhabitants and Maragogi’s is represented
in blue. Left, center and right panels display the distribution for Early Childhood Education,
Elementary school and High school, respectively.

1.1 Street market

Agricultural street markets exist throughout Brazil, ranging from small to large cities and the
commercialized products consists of vegetables and typical products from the market’s location
surroundings. This commerce event also allows producers commercializing their agricultural pro-
duction, and there is no intervention of third parties but a direct channel of trade between producer
and consumer [15].

These street markets dating back from 1548 [14] have significant economical importance for
small and medium cities [2]. For farmers, fairs represent gains ranging from 1 to 3 monthly
minimum wages [21, 39]. In fact, in Minas Novas, which is located in the state of Minas Gerais
and has the same indicators of Maragogi, the 40% of farmers had fairs as the only source of income
and for 64% fairs accounted for over half of farmers income [39]. Mobility constrains imposed by
COVID-19 prevention measures impacted farmers revenues [11, 9].

Street markets in Maragogi. The street market has commercialization of products derived
from farmers and families from the rural settlement (Strategic Plan). It opens weekly and according
to INCRA, fruit growing is responsible for 57% of the total production of the rural settlement.

Drone data and local video recording. Early in the outbreak in Maragogi, the City Hall
provided several measures to avoid that the street market could be a source of high number of
COVID-19 cases. This motivated our collaboration along with the municipal administration [19].
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Figure 1.7: Street market in Maragogi. Photo captured by drone (model Drone DJI Mavic
Mini) in August 8th, 2020.

Based on the drone video recording we analyzed the street market.
We estimate that the passable area corresponds to 1600 m2 out of 2500 m2 total internal area,

and the average distance between 2 people were 48 cm (under high crowding) and 180 cm (low
crowding). In August 8, 2020 at 8:00 am, we video recorded the street market and performed
counting analysis using the Drone Deploy mapping software [18], see Figure 1.8 for an example. In
this analysis we aimed to identify clusters of people, and in the occasion, we estimate there were
1 cluster of 5 persons, 3 clusters of 4, 11 clusters of 3 and 23 clusters of 2 persons.

We estimate there were around 120 tents, under which on average half of them containing 2
persons and 3 persons on the other half, see Table 1.3 for the counting for August 22.

Hour People count
6:00 261
6:30 270
7:00 341
8:00 336
8:30 316
9:00 262
9:30 202

Table 1.3: Data counting from street market. The counting analysis were performed exclu-
sively from visible persons. The actual number is larger due to many visitors are under tents.
Video recording performed on August 22, 2020.
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Figure 1.8: Aerial recording of the street market in Maragogi. Left panel displays the aerial
photography of the full extension of the street market. The red circles highlights the sector which
one of the samples from the video recording were used to estimate the occupation density, shown
in the right panel. The marking tool of the Drone Deploy mapping software [18] identifies moving
targets using blue dots. Photo captured by drone (model Drone DJI Mavic Mini) in August 22th,
2020.



Section 2

The Clinical Monitoring System
(CMS)

2.1 Collecting real data from local health service
The Clinical Monitoring System (CMS) software is written in Python and Django framework using
MySQL database, and is available through the internet as a web application for each one of the
health units of the city. Health staff (nurses and medical doctors) were able to collect in real time
the following data:

• Personal information: Name of each person, name of their mother, date of birth, national
health id (CNS), National Personal Number (CPF) and borough information.

• Medical information: Medical information about the evolution of the patient status through
the year (date of each symptom, type of test for COVID-19 used, date and result of the test
etc). Date of admission and discharge to an intensive care unit (ICU) bed or a clinical bed.

• Family information: Relatives that had visited the health system and declared primary
contacts.

We emphasize that all officially confirmed cases, hospitalizations and deaths by covid-19 in the
city of Maragogi were registered in the CMS database. Therefore, this database was essential for
estimating the real incidence of cases in the city.

There were several other features available at CMS used by the health authority of the city
that were not used in this study, such as:

• Complementary Personal information: Geo-located address of the house that the person
lives, telephone number, gender, height, weight, ethnics info, occupation, tobacco use, number
of people living at the same house, recent visited places.

• Complementary Medical information: Previous vaccination against influenza, comorbidities,
recent use of oxygen assistance, current oxygen saturation, temperature, hearth rate, arterial
pressure, recent contact with confirmed cases, medical diagnosis, medical prescription.

• Data analysis and visualization Automatic reports of number of new confirmed and recovered
cases per week, patients per day, total admissions for ICU and Clinical Beds per day, forecast
of new bed demand for the next 4 days based on new patients records, risk classification
(suspected cases) of patient visits based on symptoms, geographic map visualization of the
spreading of the infection based on medical records, automatic epidemiological reports for
the city.

• Other features: User management, panel of the consumables needed on each health unit,
several types of reports based on patients, visits and addresses.

When a new suspected or confirmed case is detected, a team of trained staff proceed with
periodic followup calls to check the current patient’s health status and update the medical record
of the patient, filling missing information, if any.

11
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This software began its use in May, 5th and replaced excel spreadsheets used by the health
professionals. Along April/2020, first month of the pandemics in Maragogi, the first 33 confirmed
cases of COVID-19 were reported in this spreadsheet. These 33 cases constituted the initial data
loading of the database of CMS. By December, 21th of 2020, the database of CMS registered a
total of 1972 patients and 2607 medical appointments.

To inform new COVID-19 cases in Brasil, the Ministry of Health of Brazil developed a software,
ESUS-VE - Epidemiological Surveillance Unique Health System, which accounts for mandatory
registration of attendances and laboratory tests. The first version was released in March/2020,
specifically to cover the demand caused by COVID-19. The goal of this software was to provide
a unified database of COVID-19 cases within Brazil. Along the pandemics course, this software
changed several times, as well as the basic information required to inform a new COVID-19 case.

ESUS-VE is just one of the five mandatory softwares provided by the Ministry of Health of
Brazil that need to be used during the COVID-19 pandemics by the municipalities. The other
softwares are Gerenciador de Ambiente Laboratorial (laboratory testing), Cadastro Nacional de
Saúde (personal database), Sistema de Informação de Vigilância da Gripe (severe cases), Sistema
de informação de Mortalidade (deaths). These software do not have any integration whatsoever,
creating a great administrative challenge to keep all these databases coherent and updated. The
personal data of a given single case could be typed in 4 different systems before its resolution in
several different sectors of the administration. This lack of efficiency and integration was reflected
in the willingness of the health staff in adopt new software tools. In order to overcome this difficulty
and since ESUS-VE has no application programming interface (API), we use automated bots to
automatically insert the data from CMS into ESUS-VE.

Figure 2.1: Real data automatically plotted by the CMS dashboard. (a) Number of
patients with COVID-like symptoms as a function of the date of attendance in Maragogi. (b)
Number of confirmed COVID-19 cases in Maragogi as a function of the date of symptoms onset.
Both panels are promptly available to municipal health managers.



Section 3

Household network

We use three databases were to reconstruct a social network of household contacts: Programa
Saúde da Família (PSF), Programa Bolsa Família (BOLSA) and Sistema de Monitoramento
da COVID-19 (SMC). These city owned databases correspond respectively to a public health
assistance program, a social assistance program and a software for registering covid-19 health
attendance. The data from the first two databases were previously collected from non-structured
sources such as PDF files and processed. By combining data from the other two sources we managed
to capture the household family size distribution for at least 2/3 of the city’s population.

Each of the following tables were constructed containing one column that specifies for each
person (row in the table) which household group it belongs, hence by grouping rows in the table
by this group-column value we can obtain the network structure.

The Programa da Saúde da Família is the largest database containing 26721 rows but is the
poorest in detail with only 4 columns, namely:

• nome: Token representing the name of each person;

• cns: Token representing the health program id, (cadastro nacional de saúde - cns) of each
person (will be used later for merging the tables);

• idade: The age of each person;

• codigo_familiar_psf : A token representing the group (family code) of each person;

Since the data was available in PDF format, we made a JavaScript script to download files from
each family, extracting the text using the python library called pdfplumber. We noticed that the
fields were well defined between some specific sets of words, so we used string matching techniques
to filter the information from each field and structure the text.

The Programa Bolsa Família database is the second largest database, containing 18682 rows
and 11 columns concerning rich data about the beneficiary of the social program, with 99% of the
data collected in 2016 or later. For this reason we chose this table to be the fundamental source of
data for the construction of the network, as it will be detailed in section II. The columns contain
data relating to:

• Personal information: Tokens representing the name of each person, name of their parents,
cns id and cpf id which stands for cadastro de pessoa física, an individual id used in Brazil
that can uniquely represent each person throughout the databases. The age of each person.

• Work information: Various columns detailing work information.

• Family information: A token representing the group (family code) of each person in the
database as well a field (column) describing the family-role of the beneficiary. The address
of the house that the each person lives (is the same for each person in the same group).

The Sistema de Monitoramento COVID-19 database is the one containing detailed information
about the health status of people in the city, concerning the actual pandemic. It is by far the
smallest database with only 1602 rows and 14 columns with data relating to:

13
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• Personal information: Tokens representing the name of each person, name of their mother,
cns id and cpf. The age of each person.

• Medical information: Various columns detailing medical information about the evolution of
the patient status through the year (date of first symptoms, date that the patient tested
positive or recovered) etc.

• Family information: A token representing the group (family code) of each person in the
database. The address (neighborhood) of the house that the each person lives.

The idea of the integration of the three databases presumes the following propositions:

• BOLSA database offers us a reasonable idea of the distribution of families across the popu-
lation.

• Medical information from all patients, whenever possible, must be used.

An important fact to notice is that the three databases don’t share a common key e.g. cpf or
cns in order to merge the data without repetition. Hence, we propose the following approach to
merge the databases (let B, S, P denote BOLSA, CMS and PSF databases respectively):

1. Let I1 = B ∩ S. Intersection is found by using the key cpf.

2. If C = S − I1, let I2 = C ∩ P . Intersection is found by using the key cns.

3. The merged database M is obtained by the disjoint union of the following tables: I1 ∪ I2 ∪
(B − I1) ∪ (S − I2 ∪ I1).

We finish this process with a final table M with 19973 rows and several columns, containing
roughly 2/3 of the city’s population, regarding household contact, economic and health data of its
citizens. That table is used assign each person to a group, based on the grouping column (family
code) of each source database.

Figure 3.1: Group size distribution of the M database.

We further expand the database M by incorporating persons registered only in the P table
that have a relative (same group person) in the I2 table, as described above, resulting in a final
table with 20350 rows.
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Figure 3.2: Database diagram. PSF - Programa Saúde da Família, BOLSA-Programa Bolsa
Família and SMC-Sistema de Monitoramento Clínico.

The merged database M is used to construct the network of contacts G trough the following
steps:

1. Create, for each row in M a node in G with its respective attributes (columns of M).

2. Group each node in G by its grouping column (family code). If a node has more than 1
valid family code we choose to group it by the following priority: firstly family code from B,
secondly from P and thirdly from S.

3. If vertices u and v are in the same group as constructed in the previous step, create an
edge (u, v) in the network. That process ultimately yields a network composed of only fully
connected components (cliques) which represents the household contacts.

4. We try to further connect cliques in the network by checking parenthood relationships based
on the mother/father names in B section of database (those nodes who have a valid B family
code attribute). We first select nodes that have unique names and then map each name to
its node label. For each node u in the network we find nodes f and m that have the name
attribute equals to father name and mother name attribute of node u, respectively. If f
and m both have the same family code we create edges (u,m) and (u, f). Notice that it is
possible to find only node f or only node m (exclusively). In such case, we just create the
edge between child and parent node.

The caution taken in the last step of checking uniqueness of names and if nodesm and f belongs
to a same family is due to the fact that common names might pose a problem on creating edges in
such way, as they would form clusters that are little related to the real parenthood relationships.

Edges created by step 3 are labeled INTRAFAMILIAR edges (concerning contacts within fam-
ilies), whereas edges created by step 4 are labeled INTERFAMILIAR edges (concerning contacts
between distinct, but related, families).
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Figure 3.3: Local picture of the network. One can see the cliques (dense clusters) intercon-
nected by edges. Nodes are colored by age.

The resulting network has 27235 edges, 24596 being INTRAFAMILIAR. The average degree of
the network considering only such edges is about 2.4 as we can see in the histogram below:

Figure 3.4: Node degree distribution, considering only edges within cliques.



Section 4

SARS-Cov2 data processing

Our reconstruction is based on the SMC database, see 2. From the anonymous database, we
accessed attendances of each tested patient, in case of hospitalization, the hospitalization date, and
in case of death, the death date. Each attendance entry is composed of attendance date, symptom
onset date, test type (rapid or RT-PCR) and test result (positive or negative), see Listing 4.1.

"5": { //anonymized patient id
"attendances": {

"1174": { //attendance unique id
"result": "negative",
"test_type": "rapid",
"attendance_date": "2020-05-11",
"symptom_onset_date": "2020-05-07"

},
"1375": {

"result": "positive",
"test_type": "TR-PCR",
"attendance_date": "2020-06-17",
"symptom_onset_date": null //unfilled attendance date

}
},
"hospitalization_date": "2020-06-18",
"death_date": null,

}

Listing 4.1: Patient data example. This patient had two appointments, the first with a negative
result and the last, one month later, with a positive result. The patient was hospitalized one day
after the second appointment, but did not die.

Most quantities required for the reconstruction, such as number of hospitalizations, deaths and
attendances, evolve over time. We chose to reconstruct the curve until July 25.

To account for false negatives and false positives we also needed information about tests speci-
ficity and sensitivity. Overall, only 52 of the 1722 tests realized until July 25 were RT-PCR tests.

Since different rapid test brands were used during the year. The utilization dates in Table 4.1
were informed by Maragogi’s health professionals and the accuracies were taken from a [1]. The
RT-PCR test was assumed to have 100% specificity and sensitivity.

Using data from Table 4.1 and assuming when more than one rapid test is available they are
equally used, we obtain the overall daily specificity and sensitivity of rapid tests (see Figure 4.1).
From Table 1.2 in Section 1, we use the resulting expected probabilities of hospitalized/infected
ratio ph = 3.304% and death/infected ratio of pd = 0.441% overall.

Finally, the distributions of infection times were given by [31], namely:

• Incubation period (length of time between exposition and viral shedding): log-normal with
mean 4.6 days and deviation 4.8;

• Symptom onset period (length of time after viral shedding has begun and before an individual
has symptoms, when one has symptoms): log-normal with mean 1 day and deviation 1;

17
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Test brand Utilization Specificity Sensitivity
Wondfo Apr 11 - Jun 25 99, 57% 86, 43%
One Step COVID-2019 Test

MedTeste May 01 - Jun 22 99, 3% 97, 4%
MedTeste Coronavírus (COVID-19) IgG/IgM

Advagen Jun 23 - Aug 31 96% 85%
COVID-19 IgG/IgM LF

Lungene Sep 01 - Oct 28 96, 48% 91, 06%
COVID-19 IgG/IgM Rapid Test. Cassette

Table 4.1: Usage and accuracy of rapid tests.

• Recovery period (length of time after incubation while the individual is infectious): log-
normal with mean 8 days and deviation 2 for non hospitalized patients or with mean 14 days
and deviation 2.4 for hospitalized patients.

4.1 The reconstruction algorithm

The reconstruction of the susceptible, exposed, infectious and recovered curves was performed by
taking the mean over 400 curves generated stochastically. Each generated curve is also saved to
be used in the calibration.

To build these curves we need to know, for each infected person, when one enters and leaves
each compartment. For instance, we know the attendance date of the patient in Listing 4.1 for
both attendances. We also know the hospitalization date and the symptom onset date for the first
attendance. But the date when the patient was exposed to the virus, when it became infectious
or recovered is unknown. This missing information will be reconstructed using previously known
distributions, as listed in the last section, or re-sampling from the data.

The reconstruction has tree main steps: test data correction, individual timeline reconstruction
and cases estimate.

4.1.1 Test data correction

The test data correction step relies on two minor steps: sampling incomplete test type and inference
of true positives (TP ) and true negatives (TN).

Sampling incomplete test type

First of all, we treated incomplete data. For each incomplete test type field (104 out of 1722) with
date t, we sampled its type (either rapid or RT-PCR) using all tests with known test type from
the same date t.

Inference of true positives and true negatives

The next step is to arbitrate if the test results are correct or not (for rapid tests, since RT-PCR
tests are always assumed to be correct).

Let TP be the percentage of true positives, TN of true negatives, FP of false positives and
FN of false negatives. By definition, specificity (e) and sensitivity (s) are given by

e =
TN

TN + FP
and s =

TP

TP + FN
, (4.1)

but we want to evaluate the probability of true positives (pTP ) and true negatives (pTN ), i.e.,

pTP =
TP

TP + FP
and pTN =

TN

TN + FN
. (4.2)

We aim at writing both above equations in terms of known quantities: specificity and sensitivity
are known from the technical notes [1] and p = TP +FP comes from the total number of positive
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tests along the period. From Equation (4.1) we have

TN

(
1− 1

e

)
+ FP = 0 and TP

(
1− 1

s

)
+ FN = 0 (4.3)

and from TP + FP + TN + FN = 1,

TP + FP = p and TN + FN = 1− p. (4.4)

Thus,

TP − TN
(

1− 1

e

)
= p and TN − TP

(
1− 1

s

)
= 1− p. (4.5)

Solving (4.5), we have

TP =
p+ (1− p)

(
1− 1

e

)
1−

(
1− 1

s

) (
1− 1

e

) and TN =
(1− p) + p

(
1− 1

s

)
1−

(
1− 1

s

) (
1− 1

e

) . (4.6)

Therefore,

pTP =
1 + 1−p

p

(
1− 1

e

)
1−

(
1− 1

s

) (
1− 1

e

) and pTN =
1 + p

1−p
(
1− 1

s

)
1−

(
1− 1

s

) (
1− 1

e

) . (4.7)

These quantities evolve with time since the proportion of positive tests varies over time. So, for
a given day t we let p(t) be the ratio p computed using a window of 21 days centered on t (which
matches the disease cycle used on the calibration). Also, let e(t) and s(t) be the mean specificity
and sensitivity of the rapid tests available at day t.
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Figure 4.1: Daily specificity e(t), sensitivity s(t) and constructed probabilities pTP (t)
and pTN (t) in Equation (4.7). Note the dashed curves also rely on the sampling incomplete test
types, so it changes over each realization of the reconstructed curve. Since the standard deviation
are minimal, we chose to plot only the mean curve. Until April 28, only negative results were
reported by rapid tests and the moving average has a window of 21 days.

Using the curves pTP and pTN , one can determine if a given rapid test was positive or negative.
We run that decision stochastically for each attendance with a rapid test. From now on, when we
refer to positive tests, we are talking about the tests we judged as positive.

4.1.2 Individual timeline reconstruction
Each individual has one or more attendances. From the first attendance with a positive test result,
if exists, we took the symptom onset date and the attendance date.

Let i be an agent, τ iE its exposition date, τ iI the day it becomes infectious, τ isym the symp-
tom onset day and τ iR the recovery (or death) date, the individual disease timeline is the tuple
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(τ iE , τ
i
I , τ

i
sym, τ

i
R). The value τ isym is the only one we know and any other value can be stochastically

constructed using the distributions in [31], namely:

τ iI − τ iE ∼ lognormal(4.6, 4.8)

τ isym − τ iI ∼ lognormal(1, 1)

and for non hospitalized patients

τ iR − τ iI ∼ lognormal(8, 2)

or hospitalized patients

τ iR − τ iI ∼ lognormal(14, 2.4).

Some attendances have no information about the symptom onset date (around 23% of the positive
cases). Again, from the filled data we derived the distribution of the time between symptom onset
and medical attendance, only over positives cases, and then sampled the onset date of unfilled
entries.

4.1.3 Number of Cases estimation
The ratios

number of hospitalizations
number of cases

and
number of deaths
number of cases

(4.8)

should approximate the inferred ratios ph = 0.03304 and pd = 0.00441, respectively. Let NB(q, n)
be the negative binomial distribution with success probability q, which counts the number of
Bernoulli failures should occur until n successes. In the period till July 25th, a total of 18 individuals
ended dying and 119 were hospitalized. So, we can model the number of cases as

Th = NB(ph, 119) + 119 or as Td = NB(pd, 18) + 18. (4.9)

Using the number of hospitalizations we have E(Th) = 119
ph
≈ 3601 with a 90% confidence

interval of [2966, 4033]. Using the number of deaths we have E(Td) = 18
pd
≈ 4086 with a 90%

confidence interval of [2623, 5760]. Both confidence intervals agree, although the confidence interval
estimated using deaths is larger. Since it has a narrower confidence interval, we use T = Th to
estimate the total number of cases.

It is also interesting to notice that the data seems consistent, the ratio between recorded deaths
and recorded hospitalizations is 18

119 ≈ 15.1% and the ratio pd
ph

is approximately 13.3%, a small
difference.

4.2 The final curve
Let H be the set of all hospitalized individuals and N the set of all non-hospitalized infected
individuals, define

EH(t) =
∑
i∈H

1[τ i
E ,τ

i
I)(t) , IH(t) =

∑
i∈H

1[τ i
I ,τ

i
R)(t), RH(t) =

∑
i∈H

1[τ i
R,∞)(t). (4.10)

Let EN (t), IN (t) and RN (t) be defined analogously. Also, let

CH =
∑
i∈H

1[τ i
A,∞)(t) and CN =

∑
i∈N

1[τ i
A,∞)(t), (4.11)

where τ iA is the first attendance date with a positive result.
Assuming no sub-notification among hospitalizations and deaths. Also, using T cases on July

25th, we define

α =
T − CH(t∗)

CN (t∗)
, (4.12)



4.2. THE FINAL CURVE 21

where t∗ is July 25th, CH(t∗) = 119 and CN (t∗) varies depending on the missing data reconstruc-
tion, the inference of test results and the individual timeline reconstruction. Then, the quantity α
captures the ratio between overall mild cases and followed mild cases. On average, only 16.75% of
the patients with mild or no symptoms looked for medical help.

Finally, we reconstruct the curves:

E(t) = EH(t) + αEN (t) , I(t) = IH(t) + αIN (t) and R(t) = RH(t) + αRN (t). (4.13)

The procedure has four stochastic steps: test type re-sample, test result correction, symptom
onset date re-sample and individual timeline reconstruction. The final curve is given by the mean
over 400 trials, see Figure 4.2. Of course, the curve of susceptible individuals (S(t)) is given by
the total population minus the sum E(t) + I(t) +R(t).
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Figure 4.2: Final estimated curve for exposed, infectious and recovered compartments.
The solid lines are the mean over all 400 trials and the dashed ones represent one standard deviation
up and below.
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Section 5

COMORBUSS - Stochastic Agent
model

5.1 COMORBUSS

COMORBUSS is a bio-social agent model for the study of disease propagation in a community
and the evaluation of mitigation measures. Let us clarify each part of this statement.

An agent model is a one where we simulate individual agents which represent persons in the
modeled community. These agents interact with each other and the environment according to a
set of rules, and have their own characterization. This allows for the creation of models which
captures the heterogeneity of the real community we are studying. Moreover, mitigation measures
can be directly modeled by modifying the behaviour of the agents (e.g. quarantines, social iso-
lation, reduction of students in classrooms) or the transmission of the pathogen (e.g. masks and
vaccination). This way, the effectiveness of these mitigation policies can be directly measured and
compared, see Figure 5.1.

By bio-social, we mean to emphasize that COMORBUSS at its core is driven by two stochastic
models: one for disease progression and propagation based on the individual biology of the agents
and the other for the social dynamics of the agents based on their identities and roles in the com-
munity. Connecting these two models is the core modeling assumption that disease transmission
rides on social contacts produced by the community dynamics. As the social dynamics model
drives the individual agents as workers or clients of the services which define the infrastructure of
the community (such as hospitals, schools, markets, restaurants, stores etc.), the agents meet at
these locations and possibly infect others. As transmission is contextualized by location and by
the roles of the agents involved (e.g. client, worker), we can identify which are the services that
contribute the most in driving the infection; see Figure 5.2.

COMORBUSS as an agent-based model possesses the following remarkable advantages which
are derived from our approach to directly model social dynamics and the omniscience the
model guarantees to the analyst :

• individualized and heterogeneous description of the community;

• behaviour models for interventions and their quantitative assessment, even with partial com-
pliance;

• realist decision making models with dynamic criteria for adoption of interventions;

• ability to produce counterfactual scenarios regardless of the complexity of the scenario, en-
abling direct comparison in experimentation;

All these advantages make COMORBUSS a valuable tool both in the evaluation of policies and
in the development and testing of new ideas and methods in epidemiology.

23
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Figure 5.1: Protocol efficacy. Effectiveness of different mitigation policies measured by cases
increase for Maragogi-AL.
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5.2 Community Model

5.2.1 Creation: initializing a mimetic community model stochastically
We seek the average epidemiological behaviour and the associate variance for a city with a given
demography. This is done by simulating multiple realizations of a stochastic model for the disease
propagation in this community. In order to eliminate biases introduced by a single societal network,
we generate for each random seed a new community representation which captures the following
real demographic information of a given city:

• population size;

• age distribution (binned in groups of 5 years);

• household structure (size distribution and age distribution of members);

• service infrastructure;

• job allocation by age group.

Creating households while preserving age distribution and average household size

The agents are created in household groups which are defined sequentially and modified such
that real age distribution and average household size are respected. In order to avoid unrealistic
household structures (e.g. children living unsupervised) and to consider households with sizes
far from the average, we have created and carefully curated an artificial dataset of households
mimicking the households in the modelled city (see SI 3).

While the generated population is smaller than the desired population, a household is sampled
from the reference population dataset. We then evaluate the average size of the households created
so far: if it is smaller than the desired average household size, a new agent is added to this house;
if it is larger, an agent is randomly removed from this house.

The probabilities used in the selection of agents to be added or removed is computed from the
difference between the real age distribution and that of the current agent population. We then
look at the resulting values for the age groups of the agent candidates.

• If removing an agent: we consider as candidates for removal only the agents whose age groups
had negative values in the difference between distributions. We then assign the absolute value
of these differences to each agent and normalize them so that they sum to 1. Each value is
then used as the probability of removing the corresponding agent.

• If adding an agent: we consider candidates for creation only agents whose age groups had
positive values in the difference between distributions. We then filter these positive values
and normalize them so that they sum to 1. These are used as the probabilities for selecting
an agent of the corresponding age group for creation.

Household initialization of compartmental data

In contrast to ODE simulations using compartmental data, which only require the compartment
values for initialization, a bio-social agent-based simulation also requires relating compartments
with social characteristics in the community. For example, in a community with 250 individuals
initialized with 5 infectious ones, having the 5 agents living in the same house or having them living
in 5 different houses generates very different results. In the first case, the disease cannot spread
more in the same house, while in the second, it can use the time infected individuals stay at home
to spread to others. While a random initialization can still be used to generate a certain tendency
in simulations, the high variation in the outcomes demands several realizations in order to reduce
standard deviation. Since the preferred environment for spread is always individual’s homes, see
[13], the average results can also be misleading. The reason is that a random initialization of
few agents will most likely position only one infected agent per home. Another drawback of this
approach is that it ties simulation results, and therefore calibrated parameters, to the number of
agents in the community, therefore making it difficult to export results to other cities of similar
but still different attributes.
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Figure 5.3: Age distribution. Comparison of real age distribution of Maragogi-AL and for a few
randomly generated populations using to our algorithm.

Ideally, one should be able to relate compartment data to age, social role and household dis-
tribution in a time dependent manner. This level of information would allow for a complete
disassociation of the probability of infection p, the main parameter calibrated in this work, to
the community and its individuals. Unfortunately, it is clear that such data is not available in
practice, and that collecting it in a meaningful representative way would be nearly impossible. We
propose a synthetic half-way solution to this problem, which consists of using data gathered from
social behavior and household structure to determine the time independent probability of a given
compartment structure be present at a given home.

The technique we use to synthetically detach the calibrated infection probability p from most
population characteristics is to answer the following question: given a home with n individuals,
such that it has at least one of its members with an active compartment state, what is the chance
that a given compartment configuration is present during the disease life of that home? To answer
this question, let us first clear out the meaning of some of these terms:

• Active compartment state: exposed or infectious states.

• Disease life at a home: the period of time in which at least one individual from that home is
at an active compartment state.

• Compartment configuration: distributing codes for each compartment, such as S, E, I, R, a
configuration is any member of the combinations of n codes out of the 4 possible ones. For
example, with n = 3, the configuration SEE tells us that the home has one susceptible person
and two exposed ones. After some time, the same home can have the following configuration:
SEI, meaning that one of the exposed persons became infectious.

To determine the probability of a compartment configuration occur at a home during its disease
life, we divide the time a configuration is present at that home by the total time of its disease life.
We do that for as many houses as possible, averaging out the probabilities for houses with same
number of people. Figure 5.4 shows the values we used to initialize active houses with 3 people.
From the figure we deduce that, if a house with 3 people is active, and all states are possible, then
the most likely configuration to occur is SSI, with about 26.6% of chance. The second most likely
configuration is SSE, with about 23% of chance. The least likely configuration is the one with two
exposed individuals and one susceptible one, with about 0.05% of chance, and so on. Notice that
a random initialization would most likely have much higher probabilities towards SSE and SSI,
being the remaining ones not present in most realizations of the community. It is also important
to mention that, when the probability of infection changes, so does the compartment configuration
probabilities. In general, whenever we speak about the probability of infection in this work, we are
also including inherent compartment configuration probabilities that come along with it.

The compartment configuration probabilities should be approximately the same for any point
in time, and they also should not depend on the population number, only its household struc-
ture and overall social behaviour. As a result, we can safely use these probabilities to distribute
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Figure 5.4: Initial household state configurations. Compartment configuration probabilities
used for active homes occupied by tree people

compartment labels to individuals of a randomly selected active home, for as long as there are
active compartment labels to distribute. After all active compartment labels are distributed, we
randomly select houses to contain a given proportion of susceptible and recovered individuals. This
proportion is also estimated from homes which have ended its disease life, therefore not containing
active compartment individuals.

Although the procedure just described allows for a consistent initialization of compartment
states along homes in a community, collecting the data necessary to do so is still a hard task.
However, if we suppose that the overall social behavior of the community is well captured, and
also that the disease modelling inside homes is realistic, then we can conclude that the probability
of infection itself determines the probability of each compartment configuration occur at an active
home. This is the argument that allows us to use COMORBUSS to determine the compartment
configuration probabilities. The idea is that, in order to simulate a community for a given proba-
bility of infection p, we first use another simulation to determine the compartment configurations
for each possible size of a home. That is, we perform many realizations of a community disease
spread using random initialization of states first. Next, we use houses whose disease life is fully
captured by the simulations to determine the probabilities for each compartment configuration.
Once these probabilities are derived, they are used to initialize compartment states of a second
simulation, being that the one that approaches the real life’s initial spread the most.

Service infrastructure and job allocation

Each service category (e.g. hospitals, supermarket, schools etc.) is created as a computer object
sharing common defining and operating parameters. Inside each of these objects, we instantiate
the same number of these service locations as are known to be had by the modelled city. One of the
defining parameters is the average number of workers in the service category and the age groups
that are known to function as workers. From this, when the service is created, we randomly select
agents in the population of the appropriate age group and assign them as workers for that service.
More detailed assignment procedures are in principle possible but are unavailable due to lack of
required data.
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5.2.2 Dynamics: stochastic model for community behaviour

Services as community drivers

The core concept of COMORBUSS is the utilization of services to dynamically generate contacts
in our model community. As such, each relevant social context is modelled as a service, even "the
environment" as is dubbed random meetings on the streets and parks. The services which have
been modelled in this work are

• health facilities: hospitals, public health clinics;

• educational facilities: schools and day-cares;

• essential stores: street markets, markets, supermarkets, food stores, construction stores;

• city hall and environment.

A list of parameters which define a service is given and explained in the next section.
An agent can have one of three roles when inside a service: it can be a worker, a visitor or a guest

(someone whose standard address has been temporarily set to the service, due to hospitalization
or quarantine). Every agent is assigned as a visitor to an instance of the service categories that it
can visit. This agent will always visit the same instance, unless it is temporarily reassigned to a
new instance. This can happen when a service is closed due to lack of workers (all workers being
in quarantine or hospitalized). Visitors can in principle be assigned to multiple instances of that
service class (e.g. visit more than one supermarket), but there was no reliable data sources upon
which we could model more complex behaviour.

Each service has two defining restrictions: its working days and hours, as well as the age groups
allowed to use it. Another key parameter is the average period of visitation for that service (e.g.
one can say that any person visits the supermarket every week). From this we have the average
frequency in days that the service is visited and, using the number of working hours of that service,
we compute the hourly probability that an agent will visit that service.

During every hour a service is open, free visitors are randomly selected and sent to the instance
of that service they are assigned to. If the agent is unable to make a visit (e.g. agent is working or
visiting another service), the probability is accumulated to a later hour that the service is open and
the agent is available to visit. In this way we organically produce "rush hours", such as when many
workers visit the supermarket after their working hours. After concluding its visits, the agent is
then returned to its address until it is selected again for some other activity.

Similarly, workers are sent to the instance of the service where they work during their working
hours. One can also allocate the agents uniformly on different shifts. Guests are so far defined
only via hospitalization or quarantines, so their mobility is restricted until the associated measure
is completed. They are then returned to their household address, where normal social activities
are resumed.

In this way, agents are driven between different locations and contexts according to their in-
dividual needs. At the same time, the collective behavior of the agents produces a complex and
realistic model for the community dynamics. Any non pharmaceutical intervention can be modelled
as temporary changes in the individual or collective behavior of the agents and its consequences
can be measured directly.

Visitation period

Letting aside the interaction of agents inside the service for a moment, the visitation of agents is
what contributes the most for the relevance of services in the disease spreading at the community.
COMORBUSS models the visitation of agents to a service by randomly picking them according to
a probability pv. This happens at every time step that the service is opened and that agents are
free for visitation, meaning that they are not resting at home nor visiting any other service. The
probability pv is then given by the inverse of the visitation period vp: pv = 1/vp, where vp is a
measure of how many time steps an agent takes to return to a service, given that it is opened1. To
make the visitation period independent on the opening of the service and also on the magnitude

1A direct implication of this definition is that the visitation period cannot have time length lesser than that of
a time step
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of time steps, we assume that it is provided in consecutive days, and then we convert it to time
steps. The conversion formula is given by

vp =
do
7

ho
∆t

vpc, (5.1)

where do is the total number of days a service is opened on a week, ho is the total number of
hours a service opens for a day, ∆t is the time step in hours, and vpc is the visitation period in
consecutive days. To calculate vpc, it suffices to know the total number of visitors vw a service
receives during a week, and the total number of agents vt that can in fact visit the service. With
these two values the visitation period in consecutive days is given by

vpc = 7
vt
vw
. (5.2)

5.2.3 Location contextualized contact networks

By collecting the list of visitors, workers and guests at an instance of a service at any given time,
we naturally know the collective history of the community and the sets of agents that can interact.
However, how these agents interact is closely associated with the social context at that time. As
examples: one does not interact closely between tables in a restaurant while the waiter interact
with the set of tables it is responsible for as well as coworkers; in a classroom or factory, people
are rigidly placed in space for most of the time.

We therefore need to consider the social context of the agents in the process of taking the list
of agents in a location and producing a contact network. COMORBUSS identifies each particular
service having its own network structure, so distinct network models are built when representing
restaurants, markets, hospitals or schools.

All network models share as a common feature to contain in each service two types of individ-
uals: workers and guests. Workers of a particular service are individuals which stay in this service
over a daily time period during a realization of the stochastic community. On the opposite, guests
are individuals which visit a single time step that service respecting a frequency of visitation over
the simulation.

Both types of individuals are specialized for each service to mimic realistic features one may find
in real-world services. For instance, waiters in restaurants are modelled as workers having contacts
with visitors. The same idea is applicable to cashiers in markets. Hence, these observations also
must be taken into account in the modelling of contact networks. Below we detail the network
model for each service.

Standard networks: houses and generic services

In houses or generic services, no network configuration can be assumed. As a result, we utilize a
standard network model in order to generate contacts. The contacts in this model are randomly
distributed for each agent according to a given average number. This average value may change as
the number of agents increase or decrease inside services, as discussed in Section 5.2.3. Nevertheless,
the contact networks generated are still dynamic, varying as agents are added or removed.

The contact networks are, with few exceptions, generated using Erdos-Renyi model, where the
probability pER of an edge being added is given by pER = cavrg/(N −1). Here cavrg is the average
number of contacts and N is the total number of nodes in the graph. The parameter cavrg depends
on the definition of contacts, and in this work we assume it to be the following: “two people at two
meters or less away from each other for the duration of one hour”.

Contact varying with agglomeration

Any contact networks needs a fundamental parameter, the average number of contacts (vertices)
across the nodes. By default, this input parameter is fixed for each type of network. However, its
variation over time number may need to be considered in some social contexts due to high variation
of occupational density of people in that place. For example, in the case of markets, there are rush
hours in which agglomeration is higher. It is also common in this type of service that there are
considerable less clients in the beginning or end of the work day. To deal with the non-uniformity
of the number of agents inside each service, we propose a formula to adjust the average number of
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contacts. The idea comes from supposing that the opportunity for a contact is directly linked to
the available space to the agents.

Suppose that two of N agents get in contact with each other whenever they share some specified
area A around their position in space. The expression relating cavrg(N), A and N is given by

E(cavrg(N)) =
N(N−1)

2 A

N
=
N − 1

2
A, (5.3)

where E is the expectation operator. This formula comes from assuming random walking of N
agents inside a given service with transit area A. To avoid knowing the transit area, we suppose
that a sample N0, cavrg,0 := cavrg(N0) is collectable, and then we approximate A through the
formula

A ≈ 2cavrg,0
N0 − 1

. (5.4)

As a result, the expression for the mean number of contacts cavrg(N) varying with the number of
agents N is

cavrg(N) ≈ cavrg,0
N − 1

N0 − 1
. (5.5)

Equation (5.5) is used in some of the contact networks introduced below. For example, in the
case of markets, supermarkets or street markets, the formula can be used to adjust the average
number of contacts among visitors shopping in the services. In the case of hospitals, the formula
can be used in the average number of contacts among visitors. Another place where such expression
is useful is in the contact network for homes. Assuming equally sized homes, one can infer that
the more people at home, the more contacts. Since the number of people at home varies along the
day, such formula is well fitted to capture the dynamics of movement inside a home.

Networks for environment layer

The dynamic of contacts in environment layers is very individual-specific, and therefore we ap-
proximate it by random walking. The formula for the average number cavrg of contacts among N
agents in the environmental layer with transit area A is given by equation (5.3). The transit area
A is in this case given by:

A =
πr2

Au
, (5.6)

where r is an infection radius, and Au is the urban area available in the environment layer. The
infection radius is given by half of the largest distance between two agents such that they can be
considered to be in contact. We assume 2 meters as a default value.

Although at random, contacts may follow some tendency according to the age of agents. We
have used the probabilities exposed in Figure 5.5, which have been derived from Table 2 of [17].

Network for restaurants

Waiters are restaurant workers who have the greatest potential of becoming disease super spreaders
inside their work place. This happens because they get in contact, as a group, with every visitor
who enters the restaurant. As a result, waiters define a special group of workers which must have
special treatment regarding their contact network.

Taking into account the social roles of waiters in restaurants, we model contacts in three
categories:

• visitor-visitor contacts.

• waiter-visitor contacts.

• worker-worker contacts.

Having these categories in mind, the contact networks for restaurants are configured by setting
the following parameters: the portion of workers who are waiters, the average number of contacts
among workers, and the mean number of persons seating around the same table. Because this
last parameter is usually difficult to estimate, it can be discarded, in which case tables are evenly
distributed among waiters in the restaurant.
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Figure 5.5: Contact probability matrix. Color map representing probabilities that if a person
from an age group in the y-axis met someone, that person belongs to the age groups in the x-axis.

The contact network for workers is randomly created, always respecting the mean number of
contacts provided as input. Among these workers are those composed of waiters, who get in contact
with every visitor on the tables they serve. These visitors in turn get in contact with everyone else
in the same table.

Figure 5.6 shows an example of a network for a given restaurant with 5 visitors, 2 waiters and
3 other workers. Notice that only the waiters, identified by ids 1878 and 867, are those who get in
contact with the visitors. It is clear, however, that other workers get in contact among themselves.
The same thing happens to visitors in the same table.

Network for markets

The contact network for markets is similar to that of restaurants in the sense that there exists
a class of workers which needs different treatment: the cashiers. While other workers usually do
not get in contact very frequently with visitors, every visitor mandatorily gets in contact with a
cashier, either directly or indirectly through shared surfaces, such as shopping belts or credit card
machines. Second order contacts include those among visitors and among workers.

The contacts between workers and visitors is randomly created, respecting a given average of
contacts provided as input. The contacts between visitors and cashiers is also random, but in
this case each visitor is assigned to a cashier. Cashiers are fixed agents, which comprise a fixed
proportion of all workers in markets.

Figure 5.7 shows an example of a network for a market. Notice that every visitor (blue agent)
gets in contact with at least one worker. Cashiers are workers (red agents) who get in contact with
many visitors. Example of cashiers in the figure are those with ids 1479 and 9059. Example of
non-cashiers are those with ids 1922 and 2059

Network for schools

Schools have two different network models: one for class time, and one for break time. During
classes, the nature of contacts among students can be very geographic, since students tend to stay
seated during long periods of time. During breaks, students are free to walk around public spaces
inside the schools. As a result, the distinction between two types of networks is needed.
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Figure 5.6: Example of a dynamic network for restaurants. Agents (with their ids in
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identification number of that agent.
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5.2. COMMUNITY MODEL 33

87

91

5211772

221

530

283

595

449

604 700

751

774
882 944 970

1055
1175 1233 1421 1579

Dynamic network for classes

Figure 5.8: Example of a dynamic network for classes in schools. Students are geographi-
cally positioned in lines, with one teacher in charge.

During class time, we propose a network that connects agents according to the neighbors nearby,
where students are assumed to follow a geographical disposition of a rectangle. Teacher are treated
separately, since they usually move more frequently. The contact frequency between a student and
a teacher may vary according to the age of the student. For example, for students who are toddlers,
the contact is frequent, but for university students, direct contacts are unusual. The parameters
for this type of network are the number of students in a class, and the average number of contacts
between teachers and students.

During break time, we propose a simple network in which students get in contact at random.
The factor that influences the most this type of network is the number of classes allowed to have a
break together, as well as the different ages of the students. The parameters for this network are
the number of classes to have break together and the average number of contacts among students.

Figure 5.8 shows a network for classes inside a school. The teacher is identified by the id 1772.

Network for hospitals

Networks for hospitals have, in addition to workers and visitors, admitted persons (hereby labelled
guests), which stay in the facility for long periods of time. While these people are admitted, they
get in contact with only a few hospital workers. The workers, on the other hand, get in contact
with other workers, with some getting in contact with visitors as well. Visitors are yet another type
of individuals which comprise those who seek help in the occasional sickness, as well as those only
visiting admitted persons. The need to distinguish between three types of agent makes this type
of network more complex than those introduced before. Another source of complexity is the fact
that some workers are assigned to deal with a specific disease in a pandemic scenario, an attempt
to contain the spread of the disease among workers.

Contacts for visitors are adjusted by providing the average number of contacts among them-
selves, to the workers of the hospital, and to the admitted persons. Contacts among workers take
into account the two classes of workers: typical workers and disease workers. The average number
of contacts among typical workers, among disease workers, and between typical workers and disease
workers must be provided. This last number is typically very small. Finally, the average number
of contacts between admitted persons and disease workers is a key parameter, which can determine
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Figure 5.9: Example of a dynamic network for hospitals. Agents (circles) in red are workers,
agents in blue are visitors, agents in purple have been admitted to the hospital and are placed in
a COVID-19 dedicated ward. Numbers inside each circle represent the id of that agent.

the spread of the disease in the hospital.
Figure 5.9 exemplifies the network for hospitals. Agents with ids 567, 7372, and 4955, in

purple, have been admitted to the hospital. Agents 9943, 7828 9345 are disease workers, the only
workers to get in contact to the admitted people. However, they may as well get in contact with
other workers, in the figure, exemplified by the contact between agent 9345 and agent 435. This
last worker may get in contact with another worker, exemplified by its connection to agent 1132.
Workers also get in contact with visitors, which can be seen by the connection between agent
435 and agent 8391. Finally, several visitors (in blue), also get in contact among themselves, as
exemplified by the connection between agent 517 and agent 9300.

5.2.4 Service parameters

Every service is defined by the following parameters:

• name: Name of the service;

• number: Number of instances of this service;

• days: Days of the week the service is open to visitation;

• hours: Hours of the day the service is open to visitation;

• visitation_period: Mean period in days each agent visits this service;

• age_groups: List of age groups that visits this service;

• workers: Parameters to select workers of different types in this service. Each type can be
configured with:

– name: Name of the worker type;

– number: Number of this worker type by instance;
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– shifts: Shifts available for this type of worker, workers are uniformly distributed be-
tween shifts;

– age_goups: List of age groups that can be this worker type.

• rooms: Rooms to distribute workers, each room type is defined with a fixed number for each
worker type, rooms of each type are created until there is no more workers of the required
type available. At the end all remaining workers are placed in the "public" room that is the
same room used by visitors;

• net_type and net_par: Type of network and it’s parameters to be used to generate contacts
in this service;

• inf_prob_weight: Weight applied to the infection probability in this service (used to reduce
the infection probability in outdoor services);

5.2.5 Transportation layer
A layer for transportation can be optionally activated in COMORBUSS. This layer intercepts all
changes in placement during a simulation and places particles in a transport network for a set
window of time. In this network the population is divided in two groups which are randomly
assigned on initialization according to the percentage of the population which used the public
transportation services:

• private transport: this group is isolated during the time the particle is in the transport
layer;

• public transport: this group is described by smaller non connected graphs, the size of
which are defined by an input distribution with mean corresponding to the average number
of users in each vehicle of the public transportation system of the modeled city. The contact
networks in each vehicle employ an Erdös-Renyi generator with mean number of contacts
taken as input from the user.

After the desired time in the transportation layer, the particles are placed at their destination.
Without the transportation layer enabled, all particle movement is instantaneous.

5.3 Epidemiological Model

5.3.1 Progression: stochastic compartmental model for the disease
At any time, the state of an agent with respect to the modeled disease falls into one of the following
compartments:

• (S) Susceptible: the susceptible portion of individuals in the population. This portion of the
population comprehends persons that had never had contact with the disease, and therefore
they are susceptible to an infection.

• (E) Exposed: the exposed (or incubating) portion of individuals in the population. Individ-
uals in this scenario have already had contact with the disease, but are still in the incubation
stage of the disease. This means that they had been infected but are not infectious.

• (I) Infectious: the agent carries the virus and is infectious. The disease itself can manifest
in different ways, which are sub-categorized as:

– (Ps) Pre-symptomatic: particles have already become infectious, but they have not yet
developed a viral load large enough to show symptoms.

– (As) Asymptomatic: this type of particle has passed activation of the disease, but will
never show symptoms. However, they are still infectious.

– (Sy) Symptomatic with mild symptoms: the population in this portion are those infec-
tious that show mild symptoms.

– (Ss) Symptomatic with severe symptoms: the population in this portion are those
infectious that show severe symptoms.
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• (R) Recovered: the recovered particles have gone through all the stages of the disease, and
that had overcome the disease.

• (D) Deceased: the deceased particles have gone through all the stages of the disease, devel-
oped severe symptoms and that have died due to it.

Upon contracting the virus (becoming exposed), agents follow the transitions diagram depicted
in Figure 5.10. The transition between states is stochastic, with transition probabilities as the
inverse of the average period on which people remain in that compartment, according to [31]. The
values and references for these periods can be found in the maragogi_base_conf.py file2. After
becoming infectious, an agent remains pre-symptomatic for two days, after which there is the
activation event when it is decided if the disease will manifest as asymptomatic or symptomatic
with mild or severe symptoms. Infectious agents recover with a probability estimated from the
average duration of the infection; note that the duration of the disease in the case of severe
symptoms is longer and such agents can instead convert to the Deceased compartment with a
probability dependent of the age group of the agent, see details in Section 4.

S E Ps
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R

D

Susceptible Exposed Pre-symptomatic Mild Symptoms

Asymptomatic

Severe Symptoms

Infectious

Recovered

Deceased

Activation

Figure 5.10: Disease progression. Diagram illustrating how agents can transition between states
of the disease.

5.3.2 Transmission

Standard: contact through location-contextualized network

The standard transmission model for COMORBUSS is based on the contact networks in a location.
The first condition for transmission is that a susceptible agent be in contact with an infectious one.
Provided such a meeting happens, the susceptible agent converts to the exposed compartment
if a random number drawn from a uniform distribution (in unit interval) is less of equal than
then probability of an infection occurring. This probability is the product between the infection
probability which is produced by the calibration of the model, the susceptibility of the susceptible
agent (which depends on its age group and vaccination status) and a correction parameter which
accounts for contacts that do not last the entire time step of an hour.

If this random decision process results in a new infection, the compartment of the previously
susceptible agent is rewritten to exposed, and the location, time and source of the infection are
recorded in an infection tree.

Specialized: aerosol transmission model in indoor locations

In many closed locations where people are present for long periods of time, the main form of
infection is not via direct contact with an infections person, but by inhaling infectious particles
which are suspended in the air and accumulate over time. Naturally, the modeling of this process
requires more detailed information on that location, as it depends on its volume and its rate of air

2https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/
maragogi_base_conf.py

https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
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exchange with the outside. These details are not readily available for most services, but for the
purposes of this study we acquired the data of the two major schools in the modeled city.

We developed a modified Wells-Riley model which takes into account different parameters for
teachers and students. Not only do we consider that these two groups may have different masks,
but teachers also release more infectious particles since they speak loudly and continuously.

COMORBUSS naturally tracks all the agents in each classroom and identifies which are in-
fectious. By solving a differential equation for the concentration of infectious particles over time,
we compute the balance of absorbed and released particles by students and teachers. We then
compute the dose absorbed by each agent in the last time step, and from this dose we evaluate the
probability of that agent being infected. The modeling details are provided in Section 7. Once an
infection is produced, we randomly select a source among the infectious individuals in that room
and store all the details of this new infection and the usual infection tree.

5.3.3 Disease-defining Parameters
• inf_probability: Probability of an infectious particle to pass the infection in an encounter.

• susceptibility: Susceptibility of an particle (defined by age group), the final probability
of an infection to occur in an encounter will be given by the inf_probability of the source
particle multiplied by the susceptibility of the susceptible particle.

• inf_duration: Mean duration of a asymptomatic or mild symptomatic infection (infectious
state).

• inf_severe_duration: Mean duration of a severe symptomatic infection (infected state).

• inf_incubation: Mean duration of the incubation period (exposed state).

• inf_sympt_timeto: Time between the the transition to the infectious state and the activation
of symptoms.

• inf_prob_sympt: Probability of a infected particles to develop symptoms (defined by age
group).

• inf_severe_sympt_prob: Probability of a infected particles to develop severe symptoms
(defined by age group).

• inf_severe_death_prob: Probability of a infected particles to die (defined by age group).

• inf0_perc: Percentage of particles in each infection compartment at the start of the simu-
lation. This is obtained from sampling of the distribution of cases in the initial step inferred
in the calibration process.

• inf0_perc_symp: Percentage of infected particles in each symptoms compartment at the
start of the simulation.

To see the used values for these parameters see the maragogi_base_conf.py file3.

5.4 Interventions

5.4.1 Non Pharmacological Interventions
COMORBUSS encompasses various Non Pharmaceutical Intervention (NPI) models, such as

• individualized quarantine;

• generalized lockdown;

• social isolation (reduction in social activity);

• service based interventions;
3https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/

maragogi_base_conf.py

https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
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• contact tracing;

• testing campaigns.

The scenarios simulated in this study are based on the first wave of infection in Maragogi, hence
services related to tourism are closed. The other standard NPI adopted in the base scenario is social
isolation based on telephonic triangulation data processed by [27] to provide the daily percentage
of people which stayed home. This is modelled by randomly selecting at the beginning of each
simulation day the desired number of agents and confining them to their homes for that day.

Standard testing policy is the sorological testing of symptomatic agents. Diagnosed agents
are quarantined at home if presenting mild symptoms or are hospitalized if their symptoms are
severe. Quarantines and hospitalizations are lifted when agents leave the infectious compartment
by recovering or dying.

Intervention in School Dynamics

We implemented and combined the following NPIs in the context of schools:

• reduced workload: daily teaching hours are reduced from 4 to 2 hours;

• alternating groups: students are separated into two groups which attend the classroom in
alternating days;

• masks: students and professors are supplied masks with given penetration factors;

• active monitoring: suspicious cases are monitored and intermittent closing is declared upon
discovery of cases

– suspicious cases are students, professionals or their relatives which present symptoms;

– suspicious cases are tested and if the diagnose is positive the student is quarantined;

– the classroom associated to the quarantined person is closed for 14 days;

– if using alternating groups, only the group associated to the quarantined person is
suspended;

– if more than one classroom is closed in the span of a week, the whole school is closed
for a week.

The effects of these NPIs and their combinations are the main results of this work.

Aerosol transmission model: masks and air exchange

Interventions in the aerosol model are made via parametrization of the Equation (7.14) in Section
7. We introduce values for the penetration factor of masks pim used by students and professionals,
and test the efficacy of different scenarios under various values of volume flow rate Λ of air with
the exterior. For reference, we highlight documented or recommended values of these parameters.

5.4.2 Vaccination Model

The vaccination model used in this study is a simple binary model for infection. Vaccinated agents
can become immune (susceptibility 0) with a probability given by the vaccine effectiveness after a
given period. If the vaccination of an agent does not lead to immunity, its susceptibility remains
unchanged. In the present work we assumed a worst case scenario where vaccines were not widely
available and were prioritized to the teachers and staff. We assume that these professionals are
already immune upon the reopening of the schools.

5.5 Data and Code availability

5.5.1 Distribution and Documentation

COMORBUSS has a project webpage under the link https://comorbuss.org, where all develop-
ments, results and links are assembled.

https://comorbuss.org/
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The source code for COMORBUSS is available in the repository https://gitlab.com/ggoedert/comorbuss
under the licende AGPLv3. The version of the code together with all required input files and sim-
ulation scripts is available under the Tag Paper_Maragogi_Schools.

The full documentation of the COMORBUSS library is available via https://docs.comorbuss.org/
under the license CC BY-SA 4.0.

5.5.2 Computing language and Dependencies
Here we specify all the versions of the computer libraries used for the present work. COMORBUSS
is written in Python (version 3.7.7) and requires the following modules:

• numpy v.1.18

• matplotlib v.3.1.3

• pandas v.1.0.5

• seaborn v.0.10.1

• h5py v.3.10

• h5dict v.0.2.2

• scipy v.1.5.0

• portion v.2.0.2

• networkx v.2.5.1

• tqdm v.4.46.0

• numba v.0.53.1

https://gitlab.com/ggoedert/comorbuss
https://www.gnu.org/licenses/agpl-3.0.en.html
https://docs.comorbuss.org/
https://creativecommons.org/licenses/by-sa/4.0/
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Section 6

Parameter Estimation and
Calibration

In this section we describe how to use data gathered from Maragogi-AL city to estimate some
main parameters of the model, such as those in the definition of services. We also specify the
calibration procedure used to approximate the poorly estimated or unknown parameters whose
variance influences SEIR curves the most.

In the sections to come, we first focus on the estimation of some key parameters in the definition
of services. Section 6.1 gives reasoning to the choice of average number of contacts inside homes,
and also to the relation between indoor and outdoor infection probability values. Sections 6.2 and
6.3 are intended to explain the estimation of the most relevant service parameters with respect to
disease transmission: the visitation period and the network parameters. Finally, the subsequent two
sections detail the calibration process and the sensitivity of results with respect to the population
size, respectively.

6.1 Estimation of parameters for household and indoor/out-
door environments

Regarding the specific epidemic history of Maragogi-AL city, one notices that a large portion of
the population stayed at home during the period we consider in this study. This fact is confirmed
from the Inloco geolocation data (currently under the name of Incognia [27])1. From the high
level of social isolation in this period, we assume that the transmission rate at homes was higher in
comparison to the one at other environments such as essential services. The household transmission
rate, denoted Rh, is introduced in Cumei and co-authors [13], and is defined by the average number
of new infections caused by an infected individual inside the its household. Given the intense social
isolation in Maragogi-AL, we have used the largest value of Rh estimated by [13] as our reference.
This leads to choosing the average number of 1-hour contacts chomes inside a home so that the
total number of new infections in houses during the period considered is about 70% of the total.
In our simulations, we have used chomes = 0.7.

Transmission rates also vary considerably for indoor and outdoor environments2. From the
meta-analysis of Nishiura and co-authors [35], it is inferred that indoor environments increase 18.7
times the probability of disease contagion with respect to outdoor ones. We consider this aspect
into our simulations, multiplying the infection probability inside outdoor environments by a weight
equals to 1/20.

1The company uses high resolution smartphone geolocation data to generate the social isolation index time series,
see [27]. We must point, however, that due to geographic limitations, the regional cellphone signal is not captured
with high quality, causing underestimation of the social isolation index.

2Outdoor environments in Maragogi-AL, for the sake of our study, include the environmental layer (see Section
5.2.3) and street markets

41
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6.2 Estimation of service’s visitation period
The visitation period of services is one of the parameters that influences the most the disease
spreading at a given city, since it controls the influx of agents inside services. In Section 5.2.2 we
define visitation period, and also how to estimate it. In this section we describe how we collected
the data for the actual values of this parameter for each service in the city of Maragogi-AL.

Street market: street market opens at Saturdays, from 6:00 to 12:00. During the pandemics,
an average of 3000 people visited the street fair every day it opens, see Section 1. Assuming that
all people from age groups 5 and above can visit the fair, the calculation for vpc is

vpc = 7
vt
vw

= 7
20884

3000
≈ 48.73 days.

Hospitals: the total number of hospital attendances in each unit of hospital (UPA and SAMU)
from April, 29th to June, 28th 2020 was 3579 and 304, respectively. To estimate the actual number
of people who visited the hospitals during this period of time, we must take into account other
people accompanying these attendees. In order to do that, let us suppose that at least children
from the first 3 age groups are accompanied by an adult, and that the same happens to elderly
from the 13th age group and above.

Assuming that everyone in Maragogi had the same number of contacts with the disease, we
estimate from the susceptibility psus and the probability of developing severe symptoms psev, what
is the portion po of attendees that brought another person with them to the hospital:

po =
〈psus ∗ psev, popce〉
〈psus ∗ psev, popt〉

≈ 0.2496,

where ∗ is the point-wise multiplication of vectors, 〈·, ·〉 is the inner product, popt is the vector
of all people from all age groups, and popce agrees with popt for children or elderly, but has null
entries otherwise.

The attendees of UPA do not all come from Maragogi, but the hospital estimates that at least
half of them do. Taking all this information into account, we estimate the visitation to the hospitals
to be

vpc = (180− 120)
32702

(0.5 ∗ 3579 + 304) ∗ 1.2496
≈ 750 days.

USFs: the USFs open during the week only, but they receive much more people than hospitals.
From the day 130 to 210 of 2020, they have attended a total of 7334 people. Taking into account
people that come accompanied, the visitation period for the USFs is

vpc = (210− 130)
32702

7334 ∗ 1.2496
≈ 285.5

Supermarkets: to account for visitation routines in supermarkets, 5 of the largest of its kind
have been interviewed. The supermarkets “Preço bom” have reported 3000 attendances every week,
while supermarkets “Supermar”, “Mercado Nacional” and “Mercadinho Durare” have reported an
average of 550 attendances weekly. As a result, the visitation period for this category of services
in days is

vpc = 7
20884

3550
≈ 41.18,

as long as all age groups from the fifth and above are considered consumers.
Markets: given the big difference in the contact network for supermarkets and other kind of

markets, we decided to separate them into two distinct types of service. For markets, which are
more local and smaller in size, we gathered information from two representatives, namely markets
“Mini Carrefour” and “Mercadinho do Beto”. These two markets reported an average of 50 visitors
per week. We then assumed similar visitation for all other 37 instances, which then allowed us to
estimate the following visitation period, in days:

vpc = 7
20884

50 ∗ 39
≈ 74.97.

Food Stores and Construction stores: the other types of services that received people and
that remained opened during the period considered were grouped into two categories:
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• Food stores: all other types of services that sell specialized food, such as fruits and vegetables
and beverages. This category also includes pharmacies.

• Construction stores: all types of stores that sell maintenance equipment, such as those for
civil engineering, household equipment, vehicle parts, etc.

These two types of stores are small and we assumed their visitation periods were twice and four
times longer than the visitation period of markets, respectively.

6.3 Estimation of service’s contact network parameters
In this section we describe the data used in the contact network parameters for services of
Maragoggi-AL, according to their definition given in Section 5.2.3.

Contacts are a way to quantify the opportunity for disease spreading, if agents getting in contact
have the proper compartmental state. In this work we have assumed a contact to have the following
definition: “two people at two meters or less away from each other for the duration of one hour”.

A general procedure to quantify the network parameters, as described in the following sections,
is

1. estimate the average amount of time tcont people at two meters or less away from each other;

2. quantify the number of contacts by taking into account tcont instead of one hour;

3. derive a weight wcont to be multiplied by the parameter values, scaling contacts to the
duration of one hour.

As an example, wcont would be given by wcont = 1/12 if tcont is 5 minutes. That would mean that
a person having 12 contacts of five minutes would equal having one of one hour.

Street Markets: for street markets, we have used the model described in section 5.2.3 with
some few modifications:

• All workers are cashiers, hereby denominated sellers;

• Visitors can get in contact with more than one cashier/seller.

Since there only two categories of agents inside street markets, the cashiers and the visitors, we
need to approximate three parameters: the average number of contacts among sellers, the average
number of contacts among visitors, and the average number of contacts between the two of them.

Before obtaining values for the average number of contacts, we need to estimate its average
length of time tcont. We have done so using recordings of individuals collected by drones at one of
the days that the street market opened. By following the routine of anonymous people inside the
street market, we have calculated tcont to be 5 minutes. We are now in position to estimate the
average number of contacts:
Contacts among sellers: there were 185 sellers in street markets during the time considered,
being distributed along 120 stands. 55 of these stands were owned by one seller, and 65 of them
had two sellers as owners. We assume that the stands with two sellers were constantly in contact,
and that an average of 3 contacts of 5 minutes happened among sellers of different stands each
hour. As a result, the average number of contacts csellers between sellers per hour is

csellers ≈
65 ∗ 12 + 3 ∗ 120

120
≈ 6. (6.1)

Contacts between sellers and visitors: from frames collected by drones during the opening
hours of the street market, we have estimated that about 300 people stayed around stands every
hour. We have also estimated that visits took 50 to 60 minutes in average. As a result, an average
of 2 visitors were found around 60 stands, while 3 visitors stayed constantly close to 60 stands.
In the worst case scenario, we have all groups of three people getting in contact with 2 sellers, 5
groups of two people getting in contact with 2 sellers, and the remaining 55 groups of two people
getting in contact with 1 seller. As a result, the maximum number of contacts of 5 minutes that
visitors have with sellers cmaxvis→sell is

cmaxvis→sell ≈ 12
60 ∗ 3 ∗ 2 + 5 ∗ 2 ∗ 2 + 55 ∗ 2 ∗ 1

458
≈ 12.8, (6.2)
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where 458 and is the average number of visitors present in the street market per hour, considering
visits of 55 minutes. Analogously, in the best case scenario, 55 groups of three visitors are found
around stands of one seller, 5 groups of three visitors stay close to stands with two sellers, and the
remaining 60 groups of two visitors get in contact with two sellers per hour. In this case we have
that the minimum number of contacts of 5 minutes that visitors have with sellers cminvis→sell is

cminvis→sell ≈ 12
55 ∗ 3 ∗ 1 + 5 ∗ 3 ∗ 2 + 60 ∗ 2 ∗ 1

458
≈ 8.3. (6.3)

Taking the average between the worst and best case scenarios, we have that the average number
of contacts cvis→sell that visitors have with sellers is

cvis→sell ≈
cmaxvis→sell + cminvis→sell

2
≈ 10.6. (6.4)

Contacts among visitors: from the data acquired through drone observations, we know that
about 3000 people attend the street market when it opens. In addition, since visitors take about
55 minutes doing shopping, we also know that about 458 people visit the street market per hour.
Out of those people, some are doing shopping and some are assumed to be randomly walking in
the transit area of the fair. The remaining few formed clusters of people socializing. From our
observations, the average number and amount of people in each cluster is

• 1 cluster of 5 people: 5× 4/2 = 10 1-hour contacts;

• 3 clusters of 4 people: 3(4× 3)/2 = 18 1-hour contacts;

• 11 clusters of 3 people: 11(3× 2)/2 = 33 1-hour contacts;

• 23 clusters of 2 people: 23(2× 1)/2 = 23 1-hour contacts.

The number of 1-hour contacts happening in stands where 2 visitors could be found is 60(2×1/2) =
60, and the total number of contacts happening in stands where 3 visitors could be found is
60(3 × 2/2) = 180. Finally, for the random walking of the remaining 62 people, we assume an
infectious radius of 2 meters. Whenever agents are found at less than this distance away from each
other, we count a contact. However, since the transit area of the fair is approximately 1607m3,
it makes sense to actually consider this type of contact only for a number of people larger than
1607/4π ≈ 128. As a result, only the above two types of contacts are considered, and therefore

cvisitors ≈ 12
324

458
≈ 8.5, (6.5)

where cvisitors is the average number of 5-minute contacts happening among visitors per hour.
Hospitals and other health facilities: for the networks of hospitals and other health facil-

ities (that do not treat diagnosed individuals), data has been acquired from the city hall. For this
type of services, the contact network employed is that introduced in Section 5.2.3, for which we
have the following parameters:

• pdis.w.: percentage of hospital workers that deal specifically with the pandemics disease in
question;

• cworkers: average number of 1-hour contacts among non-disease workers;

• cdis.w.: average number of 1-hour contacts among disease workers;

• cdis.w.→w.: average number of 1-hour contacts from disease workers to non-disease workers;

• cvisitors: average number of 1-hour contacts among visitors;

• cvis.→w.: average number of 1-hour contacts from visitors to non-disease workers.

• cguests→dis.w.: average number of 1-hour contacts from guests (admitted persons) to visitors.
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According to data from city Hall, the values of the parameters above for campaign hospitals are:
pdis.w. = 0.19, cworkers = 2, cdis.w. = 2.9, cdis.w.→w. = 0.2, cvisitors = 2, cvis.→w. = 1, and
cguests→dis.w. = 0.15. For other types of health facilities, the difference is that there are no disease
workers dealing specifically with admitted persons. Therefore, the non-zero values for the above
parameters are: cworkers = 2, cvisitors = 2, and cvis.→w. = 1.

Markets, supermarkets, food stores and construction stores: the data used in the
network parameters of these services has also been collected from city hall estimates. The type of
network used here is that presented in Section 5.2.3, whose main parameters are

• cworkers: average number of 5-minute contacts among workers;

• cvisitors: average number of 5-minute contacts among visitors;

• cvis.→w.: average number of 5-minute contacts from visitors to workers;

• pcashier: percentage of workers that are cashiers.

For supermarkets, the parameters above have been estimated to be equal to: cworkers = 3,
cvisitors = 3, cvis.→w. = 0.25, and cvis.→w. = 0.22. For the remaining services, those parame-
ters are: cworkers = 3, cvisitors = 3, cvis.→w. = 0.25, and cvis.→w. = 0.29.

City hall: for the city hall we have used the standard Erdos-Renyi model, where the probability
pER of an edge being added is given by pER = cavrg/(N − 1). Here cavrg is the average number of
contacts and N is the total number of nodes in the graph. However, the value of cavrg has been
calibrated along with the probability of infection due to lack of information, and also due to the
number of workers being high in comparison with the remaining services (355 against 916). The
calibrated value ended up being cavrg = 0.61 1-hour contacts per hour. See section 6.4.

Environmental layer: for the environmental layer, which comprises agents out of home who
are not in either of the other services, we have used the network model explained in Section 5.2.3.
The only customizable parameter in this network is the urban area, which in the case of the
Maragogi-AL city is: 7.654 km2.

Schools: for schools we have used an entirely different transmission model which is not based
on physical contacts, but rather aerosol transmission of infectious particles. See Section 7 for
details.

6.4 The optimization program

After calculating or estimating directly all parameters we consider relevant for simulating a com-
munity, we are left with the task of approximating the infection probability p ∈ [0, 1] and the
mean number of 1-hour contacts c ∈ R+ between workers in the City Hall. Since the infection
probability is a very behavior-dependent parameter, it is difficult to approximate it directly. Sim-
ilarly, the contact network inside the City Hall could not be assumed from a-priori information.
To find parameter values that best fit disease data, we use an optimization program to estimate
these parameters for the period considered. In this section we describe the methodology used in
this optimization step, and we also provide numerical evidence that it is in fact well suited for the
task.

Let x̂ be a candidate for approximating x = (p, c). We evaluate how close x̂ is of x by using
the Wasserstein distance as a goodness-of-fitness as following:

• Let D be a set of time markers (in our case, days), and let E be defined by

E = {(s, e, i, r) ∈ [0, 1]4 : s+ e+ i+ r = 1}. (6.6)

Then X = D × E contains any SEIR curve evaluated at times in D. We define {Xi}ni=1 as
the possible SEIR trajectories generated by our SEIR curve reconstruction (see SI section 4)
and {Xy

j }mj=1 be m i.i.d. trajectories generated by our model when we use the parameters in
(y1, y2) = y ∈ [0, 1]×R+ as the infection probability p = y1 and the mean number of 1-hour
contacts c = y2. We also set ν̂ as the empirical measure given by {Xi}ni=1 and µ̂y to be the
empirical measure obtained from {Xy

j }mj=1.
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Figure 6.1: Reference susceptible and infectious compartmental distribution curves for
the city of Maragogi-AL in comparison to their calibrated versions calculated from
COMORBUSS. The recovered curves also include the deceased compartment. The solid curves
represent the mean over 384 samples, the dotted curves limit a 95% percentile of the distribution,
and the colored clear region is bounded by two shifted mean curves. These shifted curves are
obtained by summing and subtracting the point-wise standard deviation over the 384 samples.

• The L1-Wasserstein distance between ν̂ and µ̂y is given by

W1(ν̂, µ̂y) = inf
γ∈Γ(ν̂,µ̂y)

∫
X×X

||X − Y ||1dγ(X,Y ), (6.7)

where Γ(ν̂, µ̂y) is the set of all couplings of ν̂ and µ̂y. In our case, with empirical measures
having finite support, one can evaluate Equation 6.7 using linear programming, so we employ
the solution implemented on the Python Optimal Transport package [20].

• We evaluate
x̂ = argminyW1(ν̂, µ̂y) (6.8)

in three steps: 1) using a population size of N = 10000, we perform a grid search to narrow
down the search space; 2) still using N = 10000, the search for an optima in the narrowed
space is performed by applying Nelder-Mead algorithm; 3) we apply Nelder-Mead with N =
32702 (the real population size). The first two steps using a small population size reduces
the computational cost of the process, and the last one corrects any artefact produced by the
rescaling to N = 10000.

In practice, we use n = m = 384 and D as the days between May 9th and July 25th 2020. The
calibration procedure just described generates the following approximations for (p, c): p ≈ 0.1356
and c ≈ 0.6116. The L1-Wasserstein distance between the approximated optima and the reference
curves is then given byW1(ν̂, µ̂(0.1356,0.6116)) = 9.3×10−3. The resulting SEIR curves are compared
to the reference curves in Figures 6.1,6.2. We notice a very good fit, specially for the susceptible
and recovered compartments. These compartments are, in fact, usually the ones obtained with the
highest accuracy for the reference curves.

The quality of x̂. The Wasserstein distance is a widely used goodness-of-fit measure [41, 3]
for determining how close are two distributions. It has well-known concentration bounds when the
measures are empirically approximated, which is exactly our case (see [16, 3]). A good indicator
of quality for the estimate x̂ is how closely can one recover a calibration parameter when the input
SEIR data is generated by COMORBUSS by using a given value for this parameter. We check
this property experimentally by using the infection probability as the aforementioned calibration
parameter. The experimental protocol is as follows:

• Let p ∈ [0, 1] be fixed and S1, · · · , S50 be 50 disjoint sets of 384 seeds each (we took S1 =
{1001, · · · , 1384}, S2 = {1384 + 1, · · · , 1000 + 2 · 384}, etc.);
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Figure 6.2: Reference exposed and infectious compartmental distribution curves for
the city of Maragogi-AL in comparison to their calibrated versions calculated from
COMORBUSS. The solid curves represent the mean over 384 samples, the dotted curves limit
a 95% percentile of the distribution, and the colored clear region is bounded by two shifted mean
curves. These shifted curves are obtained by summing and subtracting the point-wise standard
deviation over the 384 samples.

• We set in COMORBUSS the infection probability as p = 0.15, the mean number of 1-hour
contacts in the City Hall as c = 0.3, and the population size as the full value N = 32702,
and we run simulations using the seeds from Si, i = 1, · · · , 50. This procedure generates 50

empirical measures ν̂(0.15,0.3)
i , i = 1, · · · , 50;

• For each ν̂(0.15,0.3)
i , i = 1, · · · , 50, we solve

x̂i = argminy∈[0,1]W1(ν̂
(0.15,0.3)
i , µ̂y). (6.9)

To simplify the procedure and to reduce computational cost, we fix y2, the second coordinate
of y as y2 = 0.3. That is, we effectively only calibrate for the infection probability in this
test. Nevertheless, this showcase the effectiveness of the calibration procedure proposed.

After trying to recover p = 0.15 as the infection probability using the procedure just described,
we obtain the following approximation p̂ for p: p̂ = 0.147 ± 0.0008. We notice that the approxi-
mation for p is very close to the original value we attempted to recover. This simulation asserts
not only that the optimization program is good for approaching the real observed value for (p, c),
according to the input data, but also that the scaling made in COMORBUSS for the population
size is effective (see section below).

6.5 Remarks about the population size
As mentioned before, the most critical parameter to controlling computational time is the popula-
tion size N (see section 5). As a result, understanding the impact of this parameter with respect
to changes in the results is essential.

The sensitivity analysis on the population size N usually focus on how the distribution of the
final epidemic size (i.e., the distribution of the total number of cases after the epidemic ends) evolves
with N . The dependence of a classical stochastic compartmental SEIR model with respect to N
has been analysed in [22, 7]. In [22], the authors provide experimental evidence that although the
aforementioned distributions converge as N grows, their convergence is slow. This fact is verified
by noticing that even with N in the order of 104, one can still spot significant differences as N
grows.

We designed a similar experiment for our model. Unlike the compartmental model, our stochas-
tic agent-based model constructs an entire city and assigns individuals to networks (e.g. family
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structures, schools networks, services networks). So, as discussed in section 5, approximating real
populations using values of N distinct from the real population size may incur in rescaling errors.
By looking at the total individuals assigned to each relevant social activity modeled in the city of
Maragogi-AL, we determined that the minimum population size necessary for keeping at least one
individual at each social role is N = 1000.

To test how the final epidemic size changes with respect to N , we evaluate the results obtained
from COMORBUSS by setting N ∈ {1000, 2000, 3000, 4000, 5000, 10000, 15000, 20000, 30000}. We
make 384 simulations for each value of N , and each simulation is kept running until the sum of
exposed and infectious individuals become zero. After that, we evaluate the percentage of the
population that was infected, calling it the final epidemic size. Results are shown in Figure 6.3.
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Figure 6.3: Histograms of the final epidemic size for different values of N . The y-values are
normalized so that the histograms represent a distribution. For low values of N the histograms are
shifted towards the left side of the vertical dotted line, while for high values of N the tendency flips
to the right hand side of the line. The variance decays as N grows, but the shape of the distribution
still changes even for high values of N . Low values of N also show evidence of bi-modal behavior.

The outcome of our tests, displayed in Figure 6.3, agrees with the results exposed in [22]. We
understand these results from a probabilistic perception. For small population sizes, statistical
fluctuations are more significant, since probabilistic events such as spreading the disease or recov-
ering from it occur less frequently. This can lead to rapid decay on epidemic measures in more
realizations of the community, causing even bi-modal distributions for the final epidemic size (see
Figure 6.3). On the other hand, for large population sizes, the number of agents is prone to sustain
the epidemic for a longer period of time. This is due to having a larger number of probabilistic
events, which smooth out probabilistic fluctuations. This behavior helps shifting the distribution
of the final epidemic size towards its right-sided mode (the process is clearly seen in Figure 6.3,
where the histograms tend to the right hand side of the vertical dotted line as N increases).

In [22] the authors point out that the final epidemic size distributions display a bi-modal
behavior with two peaks. Our simulations also give evidence of the bi-modal structure, especially
for small populations (see Figure 6.3). This shows that COMORBUSS is capable of incorporating
classical properties of stochastic compartmental models.

Figure 6.4 helps to summarize how N affects the model’s behavior, which we can outline as
two regimes:
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Figure 6.4: Final epidemic size (y-axis in %) vs number of days until the epidemic
ends (x-axis in days) for different values of N .The initial condition is (S,E, I,R) =
(.971, .007, .01, .012) for all realizations of the community. The X marker inside the clouds is the
average over all points. The dotted line is a linear regression on the data, and ρ is the correlation
between both variables (epidemic size and its total duration).

• Low values (N of order 103). Here, the epidemic has a more unpredictable behavior (the
clouds are less concentrated) and it finishes sooner without infecting a large number of people
(the clouds in the figure are shifted southwest). In fact, the average final epidemic size and
average final day for N = 1000 were 7.5% and 80.3 days, respectively. For N = 30000 they
were 12.9% and 199.0 days, respectively;

• High values (N of order 104). Here, the epidemic has a more predictable behavior (the clouds
in the figure are concentrated) and also a longer duration. While for low values of N a longer
duration is associated with higher epidemic sizes, this behavior is softened by high values of
N : the correlation ρ between both variables decreases as N grows.

These results point out that one must avoid to approximate population size of order 104 using
population sizes of order 103 whenever possible. Approximations between same magnitudes are
possible, as population sizes of 10000, 20000 and 30000 display average final epidemic sizes of
12.85%, 12.87% and 12.94%, respectively. Other variables are not so robust with respect to changes
in the population size. For instance, the average total duration of the pandemic for a population
size equal to 10000, 20000 and 30000 were 168.2, 190.1 and 199.0 days, respectively.

As a rule of thumb we choose to approximate the population of Maragogi-AL (32702 individuals)
using N = 10000 on the most computationally expensive and repetitive routines, such as the
calibration process described above. For less expensive routines, such as those comparing different
opening scenarios for schools, we make no approximation (N = 32702).
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Section 7

Airborne Transmission model

7.0.1 Aerosol-based model for infections in a closed environment
Relevant length and time scales for aerosol particles

Aerosol particles carrying pathogens are expelled by infected individuals in a range of radii varying
from 0.1 µm to 1 mm. The majority of these particles lie in the submicron scale and the droplets
size distribution depends on the breathing activity, varying from 0.1 µm to 5.0 µm with a peak
around 0.5 µm [34].

The pathogens being carried by airborne droplets have a typical lifetime inside the enclosed
space, so we consider the pathogen concentration damping rate λc. This rate depends on the radius
r of airborne droplets [5, 6], and it encompasses four distinct mechanisms

λc(r) = λa + λf (r) + λs(r) + λv(r), (7.1)

where λa accounts for outdoor air exchange rate, λf is the room filtration rate (filtration due to
mechanical ventilation or people breathing in the room and absorbing infectious airborne particles),
λs is the net sedimentation rate, and λv stands for the deactivation rate of the aerosolized pathogen
(which depends on humidity and droplet size).

Although the definition of air quality inside enclosed space varies over international standards
[32], ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) de-
scribed in the technical notes1 that the minimum recommended outdoor air exchange rate depends
on the environment. Namely, for American homes λa = 0.35 h−1 while for classrooms of 5 - 9 age
children λa = 0.8 h−1. Those are the minimal recommended values and as we will see correspond
to the largest order of magnitude among all other terms in Equation (7.1).

For most air-conditioning systems in Brazil, a filtration system is absent and not coupled to the
mechanical ventilation. However, in our model we assume aerosol consumption arises from people
breathing in the classroom and filtrating air in their respiratory system. Therefore, we consider
that the filtration rate can be estimated by λf = NB/V , where N is the number of people in
the room, B is the average breathing rate, and V is the classroom volume. We consider values of
B = 0.5 m3/h, V = 150 m3 (average volume of Maragogi classrooms) and N = 20, which yields
λf = 0.07 h−1.

The droplet size determines the sedimentation rate λs. For droplets larger than a critical radius
r > rc, the sedimentation rate due to gravity is high and contributes significantly to λc. Hereafter,
we consider airborne transmission as that associated with droplets with radius r < rc, since those
droplets remain suspended in the air for long periods of time (typically a few hours in a closed
classroom), and that contain viral loads capable of producing long-ranged airborne transmission.
Realistic values for rc range from 1.3 µm to 5.5 µm [5].

The sedimentation rate (drop settling rate) is given by λs = v̄s(r̄)/H, where H is the height
of the enclosed space. Fixing the velocity of sedimentation v̄s = 0.108 m/h [6] (the effective
respiratory drop radius is r = 0.5 µm), and the height H of the classrooms in Maragogi being in
the range of 2.57− 2.85 m, we estimate that λs lies in the interval 0.038− 0.042 h−1. Therefore,
for biologically relevant droplets of submicron radius settling can be safely neglected [5].

In the following section, we will follow closely [5, 6], and assume a size dependent sedimentation
rate λs(r) = vs(r)/H = λa(r/rc)

2 as the inverse of the time taken for a drop of radius r to sediment
1ASHRAE 62.1 — Ventilation for Acceptable Indoor Air Quality.
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from ceiling to floor in a quiescent room. Hence, Bazant and co-authors propose that for the
relevant droplet size range in consideration, one may write

λc(r) = λa

[
1 +

( r
rc

)2]
+ λv(r) + λf (r). (7.2)

The viral deactivation (noninfectious) rate λv(r) depends on the droplet radius and other
quantities, such as tempetarute and humidity. So, aggregating data from influenza viruzes we can
extrapolate a linear relationship between relative humidity in the environment RH for SARS-CoV-
2 [5]. He we adopted λv = 0.6RH h−1 (since Maragogi is a coastal tropical city, RH can be a
significantly high factor).

Time-evolution of radius-resolved particle concentration

We assume the air is well-mixed in the room to evaluate the time-dependent infectious airborne
pathogen concentration suspended in a classroom of volume V occupied byN individuals, I infected
and N − I susceptible individuals. Following Bazant and Bush (2021), we assume that the radius-
resolved concentration of infectious aerosol-borne pathogen in a classroom with well-mixed air
conditions evolves according to

V
∂c(r, t)

∂t
=

I∑
j=1

Pj(r, t)− V λc(r, t)c(r, t), (7.3)

where c(r, t) is the number-density of virion particles in the room carried by aerosol droplets with
radius r (given in virions per volume per radius), Pj(r, t) is the pathogen production rate due
to respiratory activity of a given infectious individual j in the room, and λc(r, t) is the pathogen
concentration relaxation rate.

The production term of a single infectious individual is given by

Pj(r, t) = Bj(t)p
j
m(r)qj(r, t), (7.4)

where Bj(t) is the individual breathing rate, pjm(r) is the mask penetration factor of droplets of
radius r, and qj(r, t) is an activity dependent concentration of exhaled virions in droplets of radius
r (number of virions per volume of air per radius of droplet). Moreover, we may specify that
for each infectious individual qj(r, t) = njd(r, t)Vd(r)cv(r), where n

j
d(r, t) is the size distribution of

emitted droplets (number density of expelled droplets of radius r), Vd(r) = 4πr3/3 is the droplet
volume, and cv(r) is a microscopic viral concentration (concentration of virions per volume of the
droplet).

We point out that infected individuals emit virions in droplets with a given size distribution
that quickly evolves (in a time scale shorter than one second) to a stationary profile q(r) that can
be suspended in the air for longer time (for minutes or hours). Therefore, for the relevant contagion
time scale in a closed room (from minutes to hours), the production term P in Equation (7.4) is
time-independent under a constant breathing rate B. Moreover, we also assume λc(r, t) = λc(r)
for steady ventilation conditions.

For simplicity, we assume that the average breathing rate for students and teachers is a constant
value B regardless their activity. The mask penetration factor pm(r) lies in the unit interval [0, 1]
- so it might be associated to a probability of a particle to penetrate the mask tissue - and depends
on the droplet size distribution. Based on experimental observations [10], from here on we assume
the mask penetration factor is approximately constant over this submicrometer-size range, and
evaluate pm = pm(r) at an effective aerosol radius r to be defined below in Equation (7.11).

Consider that at t = 0, N individuals enter a room of volume V and zero initial concentration
of airborne viral particles, c0(r) = c(r, t = 0) = 0. These individuals wear masks with equal
penetration factor pm and only one individual is infectious among them. They remain in the room
for a given time period τ , keeping constant respiratory activity (breathing and talking). The time
evolution of the radius-resolved concentration is given by

1

λc(r)

∂c(r, t)

∂t
=

P (r)

V λc(r)
− c(r, t), (7.5)

which can be integrated to

c(r, t) = c0(r)e−λc(r)t +
P (r)

V λc(r)
[1− e−λc(r)t], (7.6)
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where P (r) = B pm q(r) and λc(r) > 0 for the relevant range of droplet size.
The probability of a susceptible person to be infected in the room depends not only on the total

number of virions inhaled, but also on the power of a virion to cause an infection when it is carried
a droplet of a given radius r. Therefore, we define the infectious dose inhaled by an individual
exposed to the room from t = 0 to t = τ as

D(τ) =

∫ τ

0

dt

∫ ∞
0

dr B pm(r)c(r, t) i(r), (7.7)

where i(r) is the infectivity of the aerosolized pathogen in a droplet of radius r. i(r) can be
interpreted as being proportional to the probability of a single virion to cause an infection in a
susceptible person when it is inhaled in a droplet of radius r (in Refs. [5, 6], i(r) is equivalent to
ci(r)).

The transient term in Equation (7.6) vanishes for long exposition times τ � λ−1
c . In this

condition we have the following linear dependence of the inhaled dose with τ ,

D(τ) ≈ B2

V
pm

2τ

∫ ∞
0

dr
q(r)i(r)

λc(r)
=
B2

V
pm

2τ
Cq

λc
, (7.8)

where as in [5] we have defined

Cq ≡
∫ ∞

0

dr q(r)i(r), (7.9)

λc
−1 ≡

∫∞
0
dr q(r)i(r)λc(r)

−1∫∞
0
dr q(r)i(r)

. (7.10)

Moreover, the effective infectious drop radius r can now be chosen such that

λc(r = r) = λc. (7.11)

Realistic physical parameters give us a range of r = 0.3−5 µm. Bazant and co-authors [5] have used
r = 2 µm for fitting data from super-spreading events and the Wuhan outbreak; for monitoring
air quality indoors Ref. [6] uses r = 0.5 µm for a closed space.

We consider that the probability p(τ) of a susceptible individual to be infected when inhaling a
given aerosolized pathogen dose D(τ) is given by the exponential distribution (Wells-Riley model)

p(τ) = 1− e−srD(τ), (7.12)

where sr is the age-dependent relative susceptibility of infection (an age-based measure [44]) for a
person. This expression follows from the simplest assumption that any infectious viral particle may
trigger an infection by independent action of all inhaled viral particles, leading to a Poisson process
[38]. For low dose inhalation, D � 1, the probability can be approximated by p(τ) ≈ srD(τ).
This result is equivalent to the probability calculated for school safety guidelines in [5].

Effective airborne transmission

For our epidemiological model it is enough to estimate the mean infectious viral load concentration
of exhaled air Cq defined in Eq. (7.9). We will consider q(r, t) = q(r) for any infectious individual
in a room, thus Cq is a time-independent constant that represents its average exhaled “quanta”
concentration, depending on its respiratory activity. Cq is typically expressed in units of quanta
per volume of air and represents the important epidemiological parameter that can be numerically
estimated based on real outbreak data.

The infectivity i(r) (quanta RNA copies −1) represents the probability of a pathogen surviving
inside the host to initiate the infection, or we can interpret taking the inverse of the infectivity i−1,
which corresponds to the “infectious dose” of pathogens from inhaled aerosol droplets that cause
infection with probability 1− (1/e) = 63%.

To convert the infectious dose quantified in terms of RNA copies to infectious quanta (which
is the measure we use in our model) two parameters must be known a priori: i) the number of
infectious particles (RNA copies) needed to initiate the infection (cRNA, RNA copies PFU−1),



54 SECTION 7. AIRBORNE TRANSMISSION MODEL

and (ii) the quanta-to-plaque forming unit (PFU) conversion parameter (cPFU , PFU quanta−1).
Hence, the expression for determining i(r) is

i(r) =
1

cRNA(r) cPFU (r)
.

Currently there are no cPFU values available for SARS-CoV-2 in the scientific literature for this
value [8], or the characterization of the size-dependent distributions q(r), nd(r) and cv(r). So we
estimate adopting values for SARS-CoV-1. On the other hand, the cRNA parameter has been
estimated to be 1.3× 102 RNA copies PFU−1.

Equation (7.9) implies we should be able to characterize the concentration of virions suspended
in the air on droplets of all sizes that are capable of causing an infection. Hence we define the total
concentration of infectious aerosolized virions per volume of air as

C(t) =

∫ ∞
0

c(r, t)i(r)dr, (7.13)

where C is given in units of quanta per volume of air. By multiplying Equation (7.3) by i(r) and
integrating for all r one derives

V
dC

dt
= −(ΛV +NB)C +B(CsNsp

s
m + CtNtp

t
m), (7.14)

where C is the quanta per unit of volume of air in the room, Λ +NB/V = λc is the effective rate
of relaxation of quanta concentration, pm = pm = pm(r) is the effective mask penetration factor.
We consider that teachers’ masks have ptm, and students’ masks present psm. The effective radius
r for relevant infectious aerosol droplets are given by Eq. (7.11), where we make the following
approximation ∫ ∞

0

λc(r)c(r, t)i(r)dr ≈ λcC(t).

We consider in Equation (7.14) that the classroom of volume V is occupied by N individuals,
in which S are susceptible, Ns are infected students and Nt are infected teachers. Each person
exchanges air masses with the environment at average breathing rate B, inhales a C(t) quanta
concentration and exhales a different concentration. We introduce heterogeneity in the concen-
tration of quanta expelled by students and teachers, assuming they perform different breathing
activities [5]: Cs = 40 (quanta/m3) is the concentration of quanta expelled from students such
that Cstudentsq = Cs, and Ct = 72 (quanta/m3) denotes the concentration expelled by teachers
(corresponding to voiced counting [34]), such that Cteachersq = Ct.

The amount of quanta inhaled by a person inside the class over an exposition time τ is the
inhaled dose in Eq. (7.7), which can be writen as

D(τ) = B pm

∫ τ

0

C(t)dt,

where t = 0 stands for the time the person enters the room and the total concentration of quanta
C (quanta/m3) inside the classroom evolves according to Eq. (7.14). Finally, the probability p(τ)
of a susceptible individual to be infected when inhaling a given aerosolized pathogen dose D(τ) is
given by Eq. (7.12).

The infectivity is known to differ across distinct age groups and pathogen strains, a variability
that is captured by the relative susceptibility sr in Eq. (7.12). For instance, based on the study
of transmission in quarantined households in China [44], Bazant and Bush [5] suggest assigning
sr = 1 for the elderly (over 65 years old), sr = 0.68 for adults (aged 15-64) and sr = 0.23 for
children (aged 0-14) for the original Wuhan strain of SARS-CoV-2, which we adopt here as well.

Characteristic parameter values

Outdoor air exchange rate

Although the definition of air quality inside enclosed space varies over international standards
[32], we selected ASHRAE. As described by the technical notes of ASHRAE 62.1 (Ventilation
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for Acceptable Indoor Air Quality), additional requirements for taking airborne transmission into
account are not covered by the minimum ventilation rates used here. For ASHRAE 62.1 the
minimum ventilation rate is calculated as

λa = ΛpN + ΛaA (7.15)

where Λp is the outdoor airflow rate required per person, N is the number of people in the ven-
tilation zone during use, Λa is the outdoor air flow rate required per unit area and A is the net
occupiable floor area of the ventilation zone. Both Λp and Λa are reference ventilation rates de-
termined by ASHRAE standard and depends on the type of enclosed space (we adopted values
of Educational Facilities - Classrooms of ages 5 to 8 and age 9 plus). As aforementioned in the
main text we adopted three reference values regarding distinct situations rather than any arbitrary
values:

• Unoccupied : it consists of the minimum ventilation rate letting N = 0. Take the mean area
of the group of Maragogi classrooms in our database, we obtained the ventilation rate as
Λ1 = 0.8 h−1.

• Half occupied density : it assumes half occupation density for the classrooms. So, the ven-
tilation rate accounts for both factors, N and A. Using the same mean area value than
previously, we obtain Λ2 = 3.8 h−1.

• Full occupied density : it consists of full occupation density, and repeating similar calculation
we obtain Λ3 = 6.6 h−1.

Note all reference outdoor exchange air flow above are larger than sedimentation and inactivation
rate in the model.
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Section 8

Generalization

8.1 Robustness of results for the capital Curitiba

We show some results of our investigation on the effects of mitigation protocols in schools for the
city Curitiba, the largest state capital in the south of Brazil with nearly 2 million inhabitants.
This is a very well developed city, among the highest ranked in the country regarding HDI which
is in the very high range.

The results presented consider potential interventions during the infection wave which occurred
between June 14th 2020 and October 12th 2020.

We look at main scenarios from Figure 4, namely scenarios I, III, V, VIII as well as the scenarios
where schools remain open with no NPIs and the baseline where schools are closed. We observe
that, while the city of Curitiba is less susceptible to the measures, with increase of cases showing
smaller magnitude, the results are structurally robust and present the same relative
hierarchy of effectiveness as the one shown in our main study.

8.1.1 Inference of states from data of Curitiba

The inference of states in the case of Curitiba is similar to the inference of states made for Maragogi
in Section 4. The data used for this inference is available at OPENDATASUS [37]. The structure
of this data differs from the structure of the data collected for Maragogi mainly because we have
no information about the brands of the tests used, meaning that we can not take in consideration
false positives or false negatives.

The population of Curitiba is approximately 60 times bigger then the population of Maragogi.
This enables us to avoid dealing with the attendance or hospitalization data, which is prone to
bigger bias, and use the more robust death data to infer the states in a daily basis (as done in
[33]).

To infer the states we use a negative binomial with the daily number of deaths and the overall
probability of death (computed using the Table 1.2), then we infer, using the distributions in [31],
the time each reconstructed individual spent in each state. As in the main study, this process is
repeated 400 times to generate a distribution.

8.1.2 Baseline scenario

The baseline scenario we consider in this section is the one obtained from modelling the COVID-19
disease in the city during the period of June 14th 2020 to October 12th 2020. During the period
considered, the city of CURITIBA-PR was also in lockdown, though interventions were softer when
compared to those applied to the city of MARAGOGI-AL during the first wave of the disease. From
the city’s official instructions regarding the opening/closure of services during the first wave, we
grouped the services allowed to open during the period in the following categories:

• Hospitals: it comprises all type of health facilities in which possible COVID-19 infected
patients were received, including campaign hospitals or not;

• Health Facilities: it includes all other type of health facilities not contained in the category
above;
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• Supermarkets: the set of all market facilities commercializing mainly food, of medium to
large size according to [23] (code 47.11− 3);

• Markets: the set of all market facilities commercializing mainly food, of small size according
to [23] (code 47.12− 1);

• Food stores: the set of small food stores commercializing essential products (meat, dairy,
etc., codes 47.21− 1, 47.22− 9, 47.23− 7, 47.24− 5);

• Construction stores: the set of store facilities which sell construction equipment, sell vehicle
fuel and provide maintenance to vehicle engines (codes 47.3, 47.4 and 45);

• Drug stores: the set of pharmacies and similar stores (code 47.7);

• Industry: the set of industries which depend on production lines to deliver its products (codes
10 to 17, and 19 to 33);

• Construction: the set of companies specialized in construction, which demand physical pres-
ence of many workers on site (codes 41 to 43);

• Non-essential: all type of services not included above, except schools.

Data for the total number of facilities and total number of employees, for most services, has been
gathered from [23]. Data for the total number of facilities and total number of employees of
hospitals and health facilities was taken from [12]. Schools were not opened during the period
considered, but we have taken them into account in comparison scenarios (see Section 8.1.4). The
data regarding students and teachers, as well as classes and schools, all have been taken from
[29, 30].

During the period considered, according to the city’s official instructions, almost all of the
services mentioned above were opened, most with restrictions on the opening time and total number
of people per square meter. In our simulations, we have considered that from July 1st 2020 to
July 21st 2020, construction stores and non-essential services remained closed. These services were
opened during the rest of the period considered in normal opening time. Other services were also
opened in normal time during the period considered. The impact of restrictions to opening time
and people capacity for services has been taken into account in the calibration of the average
number of contacts in these services. See Section 8.1.3 for details.

The visitation period and contact network parameters for hospitals, health facilities, markets,
supermarkets, food stores and construction stores have been assumed equal to those collected for
Maragogi-AL (see Section 6). The visitation period for drug stores was used as 4 times that of
markets, and the network parameters for this service were chosen equal to that of markets as
well. Services named construction, construction stores, industry and non-essential services did not
receive clients, therefore their visitation period was, conceptually, infinite. However, the contact
network parameters assumed for these services has been calibrated from the SEIR data (see Section
8.1.3 below).

We have also considered that modelling the public transportation system was relevant for the
spread of COVID-19 in Curitiba-PR (as opposed to what was assumed for Maragogi-AL). The
contact network and general behavior of the transportation system has been described in Section
5.2.5.

8.1.3 Calibration of the model

The calibration process used in the city of Curitiba-AL is identical to that exposed in Section 6.4,
except that more parameters were optimized for in this case. We have calibrated 4 parameters in
total, which as listed in the following:

• p: the infection probability parameter, the same type calibrated for the city of Maragogi-AL;

• fviol: the fraction of non-essential services that violated city hall instructions regarding their
opening during the period considered. This parameter was not assumed necessary at first,
but it proved needed eventually during the calibration process;
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Figure 8.1: Effectiveness comparison for different demographics. Relative increase in cases
for different scenarios for Curitiba-PR compared to Maragogi-AL.

• cne: the average number of 1-hour contacts between workers of industry, construction and
non essential services. Notice that we have assumed the same parameter for the three types
of service;

• ctransp: the average number of 1-hour contacts between users of the public transportation
system.

We have observed from a simple sensibility analysis that the first two of these parameters caused
a much higher impact in the SEIR curves generated from COMORBUSS as an output. Since
calibrating the four parameters simultaneously has been proved to be an intense and nearly im-
practical computational task, we have chosen to calibrate them in two steps. First, we optimize cne
and ctransp, keeping p as in Section 6.4 and fviol = 0. This first calibration procedure gave us the
following approximated values for these parameters: cne = 0.2 and ctransp = 0.1. By fixing cne and
ctransp by these calibrated values, we optimized for p and fviol in a second step. The final values
for these last parameters were found to be p = 0.0434 and fviol = 0.879, with an L1-Wasserstein
distance of 1.35× 10−2 between the target and reference SEIR curve distributions.

8.1.4 Robustness of results
After the modeling and calibration for the city of Curitiba, we carry out simulations with 60 seeds
using 5 different policies scenarios which are compared again to the baseline where schools are kept
closed. The case increase relative to this baseline is depicted for each scenario in Figure 8.1.

Most remarkably, the relative rank of protocol effectiveness is the same as observed for a city
of small demography such as Maragogi. This showcases the robustness of the protocols across
different demographics. Secondly, we note that cities of smaller demographics are susceptible to
greater case increase due to bad choices of protocols. This highlights their greater vulnerability
and, coupled to their larger representation in national and international demographic distributions,
justifies our choice of focus for this study.
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