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a b s t r a c t

We consider the problem of recovering equations of motion from multivariate time series of oscillators
interacting on sparse networks. We reconstruct the network from an initial guess which can include
expert knowledge about the system such as main motifs and hubs. When sparsity is taken into account
the number of data points needed is drastically reduced when compared to the least squares technique.
We show that the sparse solution is stable under basis extensions, that is, once the correct network
topology is obtained, the result does not change if further motifs are considered.
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1. Introduction

Networks of interacting self-sustained oscillators have become
rich interdisciplinary topic with applications ranging from neu-
oscience to physics and sociology [1]. Across diverse applications
he properties of the network may vary significantly. For example,
he number of participants ranges from a few to hundreds of
housands, and the interaction structure can consist of everyone
nteracting with everyone, or exhibit small-world properties, or
e based on hierarchical structures among the participants [2].
Once the mathematical description of the system is given,

ecent work has combined the theory of dynamical systems with
raph theory to understand the impact of the network structure
n the overall behavior. This approach has been able to success-
ully demonstrate that the network structure can have systematic
nfluences on properties such as synchronization [3,4].

In experiments, it is often impossible to directly determine the
etwork structure, though. In fact, typically one has access to cer-
ain states of individual elements of the network, thus obtaining
ultivariate time series. A fundamental challenge is to recover

he network interaction structure from data. This question has
ttracted much attention [5–12].
Usually, the recovery uses prior expert knowledge of possible

etwork structures. From these guesses, one may extend the
ecovery reconstructing further interactions. This set of examples
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contains many important applications such that in neuroscience
and engineering.

In this work, we study the reconstruction of sparse networks.
We start from a network seed that gives an approximation of
the network to be recovered and extend the search for further
connections. We show that (i) by adapting the recovery to the
dynamics, (ii), the basis extension does not lead to prediction
instability. We discuss the least squares techniques are unstable
under basis extension. A heuristic upshot of our study is that if the
network is sparse and has k ≪ N links, where N is the number of
odes in the network, then using sparse recovery we need only
(Nk) data points as opposed to least squares where we need
(N2).
We will focus on the case when isolated dynamics of the nodes

ave a stable periodic motion and the interaction is weak. This is
n interesting case, as the phase itself is not observed and thus
e need to preprocess the data.

. Dynamics near a Hopf bifurcation

We consider the isolated dynamics of each node in the net-
ork to be near a Hopf–Andronov bifurcation, modelled by the
tuart–Landau equation

i̇ = F (zi) = (1 + jωi)zi − |zi|2zi, (1)

where zi is a complex number and j is the imaginary number.
Each isolated oscillator has an exponentially attractive periodic

orbit with amplitude 1 and frequency ωi for i = 1, . . . ,N . The
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ffect of a linear pairwise interactions is modelled as

i̇ = F (zi) + α

N∑
k=1

Cik(zk − zi) (2)

or i = 1, . . . ,N . Here, α denotes the coupling strength, as-
umed small. The connectivity matrix C describes the interaction
tructure: Cik is 1 if node i is influenced by node k and is 0
therwise. Notice that in the absence of linear terms, if nonlinear
erms are included in the coupling this could lead to higher order
esonances. However, we will consider only linear coupling which
s enough to show how the recovery method works.

.1. Phase dynamics

By introducing polar coordinates zi = riejθi we can obtain
he dynamics of amplitudes ri and phases θi. As α is small, the
etwork effect on the amplitudes is small, in fact, ri(t) = 1+O(α).
he relevant dynamics generated by the network is encoded in
he phases. The coupled phase equations to leading order in α
ead as

i̇ = ωi + α

n∑
k=1

Cik sin(θk − θi). (3)

Extracting phase from data. In applications we do not have
irect access to θi(t), and may need to infer another phase vari-
ble from a time series. Let xi and yi denote, respectively, the
eal and imaginary parts of zi and that we assume that we only
easure xi(t) for each oscillator. Thus, we have a multivariate

ime series for the network. To extract the phase from each time
eries we use the standard Hilbert transform

(xi(t)) =
1
π
p.v.

∫
+∞

−∞

xi(τ )
t − τ

dτ . (4)

Thus using the analytic signal

si(t) = xi(t) + jH(xi(t)) = Ri(t)ejϑi(t) (5)

we can extract a phase ϑi(t) corresponding to the signal xi(t).
Although this phase is a surrogate and not necessarily equal to
θi(t), meaningful dynamical information can be obtained from it.
Once we have the phases ϑi, their time derivatives are obtained
numerically and a smoothing filter is applied to remove noise
introduced in this process.

3. The recovery method

3.1. The basis functions

The idea is to express the time derivatives of the phases,
obtained from data, as linear combinations of certain functions.
Here as we deal with phases we use Fourier modes depending
on all variables and on the differences of all variables,

ϑ̇i = ωi +
∑
ℓ

g (i)(ϑℓ) +

∑
k,m

h(i)(ϑk, ϑm), (6)

where

g (i)(ϑℓ) = a(i)ℓ cos(ϑℓ) + b(i)ℓ sin(ϑℓ) (7)

is the isolated component and the coupling function is

h(i)(ϑk, ϑm) = c(i)k,m cos(ϑk − ϑm)+ d(i)k,m sin(ϑk − ϑm), k < m. (8)

The choice of coupling function h, depending only on phase
differences, is motivated by the theory of phase reduction.

The aim is to find the coefficients {a, b, c, d} that provide a
˙
good approximation to the data ϑi. We have N time series for

2

our ϑi variables, with n points each, obtained with a fixed known
sampling rate. With this data we form time-series for the m =

1+2N+N(N−1)/2 Fourier modes and arrange them as columns
of a n × m matrix, we denote it as Θ , so Θ is given in Box I.

The problem of recovering the equations of motion can be
formulated as the search for a m × n matrix of coefficients W
such that the equation

ΘW = V (9)

is satisfied, where

V =

⎛⎜⎝ϑ̇1(t1) · · · ϑ̇N (t1)
...

. . .
...

ϑ̇1(tn) · · · ϑ̇N (tn)

⎞⎟⎠ (10)

is a n×N matrix of time series of derivatives, we apply smoothen-
ing to the derivatives.

The matrix Θ has all possible connections and because the
network is sparse only a subset will contribute. We will denote
by

– A a subset of columns of Θ that contain the expert guess.
– B further columns we wish to probe.

Without loss of generality (up to relabelling nodes) we assume
that A corresponds to the first p columns of Θ . Next we consider
the concatenation of [A, B] of the matrices A and B and consider
the problem

[A, B]w = v

where v is one of the columns of the matrix V . The vector of
coefficients w can be decomposed in terms of the action of A and
B such as

w =

(
x
y

)
.

The remaining exposition will address two problems: How to find
the vector coefficients x, and the effect of the basis extension B
on the solution x.

3.2. The minimization

Consider the problem of finding the vector of coefficients
starting from the expert guess

Ax = v.

The least squares approximation provides the vector x that min-
imizes the L2 error

min
x∈Rp

∥Ax − v∥2.

A major advantage of this L2 minimization is that the unique
solution has a closed form,

x0 = A+v (11)

where A+
= (A†A)−1A† is the pseudoinverse of A and † denotes

the transpose.
Kraleman et al. [9,10] have used L2 minimization to recover

the topology of networks containing up to nine oscillators. For a
brief review, see [11]. Notice that, although this approach min-
imizes the euclidean error, it may not be an optimal solution
with respect to other criteria, specially when the smallest singular
value of A becomes small. To obtain a well conditioned matrix the
size of the time series needs to be significantly large.

Denote Im A the image of the matrix A. Let us consider the
case n > p, if v ∈ Im A the system of equations has a unique
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Θ =
1

√
n

⎛⎜⎜⎜⎜⎝
1 sin(ϑ1(t1)) · · · sin(ϑN (t1)) cos(ϑ1(t1)) · · · cos(ϑN−1(t1) − ϑN (t1))
1 sin(ϑ1(t2)) · · · sin(ϑN (t2)) cos(ϑ1(t2)) · · · cos(ϑN−1(t2) − ϑN (t2))
1 sin(ϑ1(t3)) · · · sin(ϑN (t3)) cos(ϑ1(t3)) · · · cos(ϑN−1(t3) − ϑN (t3))
...

...
...

...
...

. . .
...

1 sin(ϑ1(tn)) · · · sin(ϑN (tn)) cos(ϑ1(tn)) · · · cos(ϑN−1(tn) − ϑN (tn))

⎞⎟⎟⎟⎟⎠

Box I.
olution and it is independent of the minimization. As the data is
ubjected to fluctuations, in general

= b + z

here b ∈ Im A and z ∈ (Im A)⊥, the orthogonal complement,
ith ∥z∥2 ≤ ε, for some small ε > 0 capturing the fact that

luctuations are small.

.3. Finding sparse solutions

For example, we may want a sparse solution, i.e. a vector x
ith a few non-zero elements. This will indeed be the case when
he network has sparse connectivity (such as the star network
e shall consider, which has only N connections out of a total of
(N − 1) possibilities).
Sparsity can be measured in terms of the condition where

x∥0 = number of nonzero elements of x (12)

hould be as small as possible. Finding a sparse solution is a
ombinatorial NP-hard problem and not tractable. When the ma-
rix Θ has some additional structure, namely it satisfies the
restricted isometry property (RIP) [13], it is well known that a
valid heuristics to obtain sparse solutions is to include in the
minimization process a penalization on the L1 norm,

x∥1 =

m∑
i=1

|xi| (13)

nd consider

min
˜ ∈Rm

∥w̃∥1 subject to ∥Θw̃ − v∥2 < ε, (14)

or some small ε, where we are still considering Θ = [A, B]. This
s known as quadratically constrained basis pursuit [14]. The solu-
ion to this problem can be obtained by quadratic programming.
his is the idea behind the Matlab package ‘‘l1magic’’.2 However,
here is a small technical drawback here, which is that to start
he search for a minimal solution one needs a seed, and this is
sually the L2 solution similar to Eq. (11). In situations when this
2 solution is a poor choice (see at Section 5.1), the algorithm may
ot be successful (and finding other clever seeds is a challenging
roblem).
Another approach is the LASSO algorithm in Matlab (least

bsolute shrinkage and selection operator), which we shall adopt.
t works by computing solutions to

min
w∈Rm

∥Θw − v∥2
2 + λ∥w∥1 (15)

or a series of values of λ. When λ is large, the solution ap-
roaches the null vector. When λ is gradually decreased, each
revious solution is a good seed for a new minimization process
hat finds sparse solutions. If λ becomes too small, sparsity is no
onger promoted.

2 https://statweb.stanford.edu/~candes/l1magic/.
3

Intermediate values of λ therefore lead to solutions that come
close to minimizing ∥Θx − v∥2, while at the same time being
significantly sparse. The actual value of λ is selected by a process
of k-fold cross validation, in which: the data is split into k equal-
sized parts; a solution is found using all but the lth part; a
prediction error is computed when predicting the behavior on the
lth part; the errors are added for 1 ≤ l ≤ k to form the total
prediction error; the value of λ is chosen to minimize the total
prediction error. Later we will see that by our Theorem 3 once
we establish an adapted basis, LASSO is not affected by the poor
conditioning of Θ and performs significantly better when data
acquisition time is short.

4. Numerical experiments

4.1. Results for a directed star

We consider a directed star motif for a paradigm. It consists
of a central node driving N − 1 peripheral nodes, as shown in
Fig. 3. Since every node’s dynamics is only influenced by node 1,
the center, we have that c(i)km and d(i)km vanish unless k = 1. In our
simulations we choose a coupling strength α = 0.1, and take the
natural frequencies ωi to be random with uniform distribution
in the interval [0, 2π ] radians per second. Initial conditions are
evolved with a fourth order Runge–Kutta integrator with variable
step and time series of the phases φi are then collected with a rate
of 10 points per second.

To measure the success of the recovery of methods L2 and
LASSO, we use the measures

#FP (false positives) consisting of connections that are not
present in the true network;

#FN (false negatives) the connections that were missed by the
recovery.

We do not take into account the strength of the recovered con-
nection; instead we simply check whether a certain connection
is present or not. We discard connections that are too weak, less
than 10% of the largest entry of the coefficient vector.

4.1.1. Effects of the length of the time series
In Fig. 1, we show #FP (circles) and #FN (crosses), for the L2

minimization (left column) and for the solution obtained using
LASSO (right column), as the acquisition time tn is varied. These
values were averaged over 100 random initial conditions of our
network system with N = 10 nodes. The LASSO solution is excel-
lent for all values of tn. The L2 minimization performs relatively
well if tn is large, but for small values of tn it predicts many
wrong connections. Similar results were obtained by Napoletani
and Sauer [6].

As discussed in Section 5.1, the performance of L2 minimiza-
tion as a function of tn seems to be related to σ1(Θ), the smallest
singular value of the matrix Θ , which can be small for small tn,
as shown in the inset. Subsequently, in Section 5.4, we show the
reason the LASSO approximation is not affected as much by the
poor conditioning of Θ .

https://statweb.stanford.edu/~candes/l1magic/
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Fig. 1. Influence of acquisition time tn on the network recovery. We consider a directed star graph with N = 10 and connections diverging from the hub. Panels
(a) and (c) show the false positives #FP (circles) predicted by L2 and LASSO, respectively, as the acquisition time increases. Panels (b) and (d) show the false negatives
#FN (crosses). Each point is an average over 100 random initial conditions and the shaded region is the standard deviation. The inset of panel (a) shows the logarithm
of the minimum singular value of Θ , averaged over the 100 random initial conditions.
4.1.2. Effects of the size of the network with fixed length of time
series

For the directed star graph, in Fig. 2 we show #FP (circles)
and #FN (crosses) as functions of the total number of nodes,
for both solutions of L2 minimization and LASSO. The LASSO
solution is stable while L2 minimization is accurate for small
networks, with N ≤ 7, and is not able to handle the large-but-
sparse configuration. In the inset, we show the corresponding
average value of log(σ1(Θ)). It suggests a correlation between the
poor performance of the L2 minimization and ill condition of Θ
captured by a small singular value.

4.2. Results for other networks

In this section we briefly consider some other sparse net-
works: the twin stars, which consists of two stars joined by a
single link, and a ring, both are illustrated in Fig. 3. In the twin
stars configuration node 1 drives nodes 2 to 6, while node 2 drives
nodes 7 to 11. In the ring configuration node i drives its following
neighbour i + 1, and node N drives node 1.

We again use α = 0.1 and take the natural frequencies ωi to be
random with uniform distribution in the interval [0, 2π ]. Initial
conditions are evolved with a Runge–Kutta integrator and time
series of the phases φi are then collected with time steps of 0.1.

In Fig. 4 we show the connections that were recovered by the
two methods, L2 minimization and LASSO, from a single random
initial condition propagated for tn = 100. We performed a kind of
hard thresholding, by discarding connections that were too weak
(we considered coupling strengths smaller that 10% of the largest
one to be weak).

The results from LASSO are excellent in all cases, but the L2
minimization does not perform so well: it fails both to recover
existing connections (false negatives depicted with dotted lines
in Fig. 3) and recovers false positive (thin grey lines).
4

4.3. Effects of basis extension

We discuss how the inclusion of new functions in the basis can
affect the recovery. Our first example is shown in Fig. 2. Since
the network is a directed star with connections diverging from
the hub, the recovery of each node is independent as the hub
acts as a master to the leaves. Thus, increasing the network size
and recovering the connections of a given node has the same
effect as including new (a posteriori) unnecessary functions in
the basis. We could wrongly expect this basis extension would
not influence the recovery method. Fig. 2 shows that the L2
recovery is strongly affected by such extensions as the inclusions
of new functions, while keeping the length of the time-series
fixed, makes the operator Θ ill-conditioned.

Next, we notice that the function g in Eq. (6) plays no role
in the dynamics when phases are slow variables. We study the
effect of the inclusion of such functions in the recovery process.
Fig. 4 shows the results of such basis extension for a directed
ring. The basis extension is made using higher harmonics Ek =

{sin(mϑk), cos(mϑk)}10m=2 for each node k. Starting from k = 0 we
include the new functions of a node kwhile keeping all previously
included functions. Thus, in the first iterator k = 1 we include 16
new functions and at the end of the process k = 10 we include
160 functions. We observe that the number of false positives and
negatives remains unaltered as the basis is increased either for
L2 and LASSO. We notice that LASSO remains stable under basis
extension.

5. Stability of sparse networks under basis extension

5.1. L2 is unstable under basis extension

When we extend the basis, probing new possible connections,
we face a problem as [A, B] may have small singular values,
leading to instabilities. This means that even if

Ax = b



M. Novaes, E. Roque dos Santos and T. Pereira Physica D 424 (2021) 132895

t
t
o

Fig. 2. Influence of network size on the recovery. We consider a directed star graph of N nodes with connections diverging from the hub. We fix acquisition time
n = 100. Panels (a) and (c) show the false positives #FP (circles) recovered by L2 and LASSO, respectively, as number of nodes N increases. Panels (b) and (d) show
he false negatives #FN (crosses). Each point results from average over 100 random initial conditions and the shaded region is the standard deviation. In the inset
f panel (a) we show logarithm of the minimum singular value of Θ , averaged over the 100 random initial conditions.
o

T

Fig. 3. Comparison between LASSO and L2 minimization for three paradig-
matic networks. In the upper panel the directed star, in the mid panel one
connected directed star forcing another directed star, in the bottom panel a
directed ring. The network recovered by the LASSO is presented in the left and
shows perfect recovery and the L2 minimization recover is presented in the
right. Spurious connections are shown as thin red lines, missing connections
are shown as dotted lines. We used a single random initial condition in each
case and tn = 100.
5

has a sparse solution, it may happen that

[A, B]w = b + z

has a solution w that is far from being sparse in its restriction
to the components corresponding to x, here z captures small
measurement errors. This would mean that the basis extension
is unstable.

Our next proposition characterizes this situation. We prove
it using the concept of principal angle between subspaces, in
particular the largest principle angle between the orthogonal
complement of the image of matrix A, (Im A)⊥, and the image
of the matrix B, Im B.

Proposition 1. Let A ∈ Rn×p be a column full rank matrix, b ∈ Im A
and z ∈ (Im A)⊥\{0}. Let x∗ be the unique solution of the problem

min
x∈Rp

∥Ax − b − z∥2.

Let B ∈ Rn×q be such that the matrix concatenation C = [A, B] is
also column full rank with n > p + q. Let r = min{p, q} and the
principal angles between the subspaces (Im A)⊥ and Im B satisfy:
0 < β1 < · · · < βr <

π
2 . Let ŵ = (ŵ1, ŵ2) be the unique solution

f the problem

min
w∈Rp+q

∥Cw − b − z∥2. (16)

hen for a generic z > 0 given a natural number N0 > 0 there is a
ε > 0 such that if |βr − π/2| < ε we obtain ∥x∗

− ŵ1∥2 > N0.

We prove this proposition in Appendix B. The above proposi-
tion explains the instability we observed in the numerical results,
which are also in agreement with the observations made by
Napoletani and Sauer [6].

As a remark, when the dynamics is chaotic the columns of
the matrix Θ behave as pseudorandom vectors. Let us assume
that p = q for the matrices A and B. Thus we can think of the
column spaces of A and B as two p-dimensional vector spaces
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aken at random from a larger n-dimensional space, n > 2p.
he principal angles between them have a joint multivariate beta
istribution [15]; from well known random matrix theory results,
t then follows that, as n → ∞ with p = ξn, the average value
of the smallest principal angle satisfies cos(β1) = 4ξ (1 − ξ ). The
value ξ → 1/2 corresponds to the case [A, B] = Θ , when the
principal angles tend to 0. This indicates that, in the large basis
limit, instability is generic.

5.2. Sparse solutions

To fix the problem of basis instability, we take into account
the sparsity of the network, i.e. the fact that only a few of the
coefficients we are looking for will be nonzero. Empirically, when
we take this into account we can drastically reduce the number
of data points needed for the reconstruction as well as gain the
stability of the reconstruction starting from a seed. First, we have
some definitions.

Definition 1. A vector is said to be s-sparse if it has at most s
nonzero entries

∥x∥0 ≤ s. (17)

Notation. xs is the vector obtained from x when all but the s
largest entries are set to zero.

Definition 2. For each positive integer s, define the sth restricted
isometry constant δs = δs(A) of a matrix A as the smallest number
such that

(1 − δs)∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δs)∥x∥2
2 (18)

for all s−sparse vectors x. The matrix A which has δs ∈ (0, 1) is
said to satisfy the restricted isometry property (RIP).

Assume that we have measurements corrupted with noise so
that

Ax = b + z, (19)

where z is an unknown noise term. In this context, one may
reconstruct x as the solution to the convex optimization problem

min
x̃∈Rp

∥x̃∥1 subject to ∥Ax̃ − b∥2 ≤ ε (20)

where ε is an upper bound on the noise. The next statement
shows that one can stably reconstruct x as long as the matrix A
has a controlled restricted isometry constant δs.

Theorem 1 (Noisy Recovery - Theorem 1.3 [16]). Assume that δ2s <√
2 − 1 and ∥z∥2 ≤ ε. Then the solution x∗ to Eq. (20) satisfies

∥x∗
− x∥2 ≤ C0s−1/2

∥x − xs∥1 + C1ε (21)

for some constants C0 and C1.

The proof of this result can be found in [13,16]. Thus the major
issue is whether we can find a set of basis functions which yields
good properties such as RIP for the matrix Θ . We suggest that the
set of basis functions must be built over dynamical information
from the underlying dynamical system generating the time series.
A key property here is the coherence of a matrix

Definition 3 (Coherence). Let A ∈ Rn×m be a matrix with L2-
normalized columns v1, . . . , vm its coherence η(A) is defined as

η = max
i̸=j

|⟨vi, vj⟩|.

The coherence quantifies the linear independence of pairs of
matrix columns. Consequently, it is intrinsically linked to RIP
constant δs. This will play essential role in Section 5.4 to prove the
stability of the L minimization problem under basis extension.
1 p

6

5.3. Ergodic coherence

Let T = R/2πZ be the torus. From here on our theoretical
formulation and analysis is described in terms of a map denoting
the dynamics. This assumption is not harmful since the phase
dynamics recovery on TN is given by the time-one map f of
the flow. This map is induced by the Euler approximation of
the differential equations and the sampling procedure of the
trajectories.

In the following exposition we will denote by X the metric
space being either a compact subset of Rd or a parallelizable
manifold such as the torus Td. We assume the map denoting
the dynamical system is C r (X) with r ≥ 1. This will contain all
examples in the paper and avoid a technical detour. We denote
ψ as basis functions representing the map f and the functions ϕ
and φ are observables. We understand sparse representation of
the map as

Definition 4 (Sparse Representation). Let f : X → X and L =

{ψi}
m
i=1 be a set of basis functions with ψi : X → X for i =

1, . . . ,m} such that

f =

m∑
i=1

ciψi.

We say that f has an s-sparse representation in L if the vector
x = (c1, . . . , cm)† is s-sparse.

Dynamical information: Ergodicity. We focus our analysis
on ergodic dynamical systems. A well-known property is that
the time average of an observable evaluated at a typical orbit
converges to the space average. This is more generally stated in
the following Theorem 2

Theorem 2 (Birkhoff Ergodic Theorem). Let (f , µ) be a discrete
ergodic dynamical system on the compact metric space X. Given
any ϕ ∈ L1(µ), there exists a set of initial conditions E ⊂ X with
(E) = 1 such that for any ε > 0 and x0 ∈ E there exists
0(ε, x0) > 0 where the following holds

1
n

n−1∑
k=0

ϕ ◦ f k(x0) −

∫
ϕdµ

⏐⏐⏐ < ε ∀ n > n0. (22)

Birkhoff Ergodic theorem is the main ingredient to calculate
he coherence of Θ for ergodic dynamical systems in Theorem 3.
t introduces a change of inner product: instead of looking at the
uclidean inner product among vectors on Rn, we approximate
t by the inner product on the space of integrable functions with
espect to the ergodic measure.

Theorem 3 goes beyond. It states that for any discrete ergodic
ynamical system whose measure has density, we can construct
set of basis functions adapted to the ergodic measure via Gram–
chmidt procedure.3 These adapted basis functions do not harm
he sparsity representation of the map and has control over the
oherence of the matrix for large enough data.
Our result is related to what was obtained by Tran and Ward

17]. The authors use Central Limit Theorem applied for Lorenz
ystems perturbed over time to obtain the null-space property
which is a weaker property than RIP) for a similar version of the
atrix Θ .
To our best knowledge, our results are one of the few ex-

mples to advance the search for basis functions adapted to the

3 These adapted basis functions are related to the Bounded Orthonormal
ystem (BOS) in Foucart and Rauhut [14]. They differ in respect to the choice of
he reference measure. BOS carries the measure given by the uniform sampling
rocedure whereas here it comes along the observed trajectory.
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w
t

Fig. 4. Effects of basis extension in the recovery. We consider a fixed acquisition time tn = 100 and a directed ring with N = 10. First, we recover the network
ithout higher harmonics in the phases corresponding to k. Then, we extend the basis to include higher harmonics Ek = {sin(mϑk), cos(mϑk)}10m=2 of a node k

iteratively. Thus, for each k we include 16 new functions in the basis and apply the recovery methods while keeping the previously added functions. Panels (a) and
(c) show the false positives #FP (circles) recovered by L2 and LASSO, respectively, as a function of k. Panels (b) and (d) show the false negatives #FN (crosses). Each
point is an average over 100 initial conditions and the shaded region is the standard deviation.
b
n

⟨

dynamical system generating the time series. Recently, Hamzi
and Owhadi [18] proposed a kernal-based method in a similar
direction.

Drawback. It is worth noting that Theorem 3 is an existence
statement since it requires that the sparse representation of the
dynamical system is known a priori. Besides it is valid for large
enough data. To determine the minimum amount of data for
controlling the coherence ofΘ , it would be necessary to know the
speed of convergence of the Birkhoff sums for the basis functions.
This will be done in the near future.

Theorem 3 (Ergodic Coherence). Let (f , µ) be an ergodic dynami-
cal system with µ absolutely continuous with respect to Lebesgue
(Leb(X)). Let L0 be a set of basis functions such that f has an s-
sparse representation in L0. Given η0 > 0 and ε ∈ (0, 1) there is a
set of basis functions L, n0 > 0 and a set of initial conditions G ⊂ X
such that

(i) µ(G) > 1 − ε, and for any x0 ∈ G and n > n0 we have
η(Θ(L)) < η0.

(ii) the representation of f in L is also s-sparse.

Proof. We develop the argument assuming that X ⊂ R. To
generalize for large dimensions or for Td it is enough to break
down the problem in terms of coordinates. The main ingredient in
the proof is the Birkhoff’s Ergodic Theorem 2. Having the ergodic
theorem we split the proof in three steps.

Step 1: Ergodicity and basis adaptation. Let L0 = {ψ1, . . . , ψm}

be a set of basis functions, where each ψi : X → X . We perform
a Gram–Schmidt process in L2(µ) and obtain an orthogonal basis

L̂ = {ϕ1, . . . , ϕm}.

Notice that since µ = νLeb we define

i = aiϕi

here a2i = 1/
∫
ϕ2
i ν dLeb such that L = {φi}

m
i=1 is an or-

honormal system with respect to L (µ) in the span of L . For
2 0

7

an arbitrary initial condition x0, let

ui :=
1

√
n

⎛⎜⎝ φi(x0)
...

φi(f n−1(x0))

⎞⎟⎠ uj :=
1

√
n

⎛⎜⎝ φj(x0)
...

φj(f n−1(x0))

⎞⎟⎠ (23)

e the ith and jth columns of the matrix Θ(L) ∈ Rn×m. Then
otice that the inner product between columns i and j is

ui, uj⟩ =
1
n

n∑
k=1

φi(f k(x0))φj(f k(x0))

=
1
n

n∑
k=1

(φi · φj) ◦ (f k(x0))

=:
1
n
Sn(φi · φj)(x0).

From the smoothness of the map f , (φi · φj) is integrable L1(µ) so
by Birkhoff Ergodic theorem there is a set Gij such that µ(Gij) has
full measure and for each x0 ∈ Gij and ε1 > 0 there is n0 > 0
such that for any n > n0 we have⏐⏐⏐⏐⟨ui, uj⟩ −

∫
φi · φjdµ

⏐⏐⏐⏐ ≤ ε1⏐⏐⟨ui, uj⟩ − δij
⏐⏐ ≤ ε1

where δij is the Kronecker delta.
Step 2: Large measure of set of initial conditions for the basis.

Hence, we are interested in the subset with cardinality K =
m(m−1)

2

G = {(φi · φj) | i, j = 1, . . . ,m} ⊂ L1(µ) (24)

where each element corresponds to pairwise multiplication of
basis functions in L. We aim at finding a good set G of initial
conditions where the control of n0 is uniform.

Using Egoroff’s theorem [19] we can make the Birkhoff sum
1
nSnφ converge uniformly on a large measure set Gφ of X instead
of the ‘‘almost every point’’ convergence. Fix η0 > 0 and take
ε/(2K ). For each observable φ in the set of Eq. (24), the precision
ε/(2K ) determines a subset G of X which by Egoroff’s theorem
φ
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as measure µ(Gφ) > 1 −
ε
2K where the convergence of 1

nSnφ is
uniform. So, we take the set of initial conditions as

G =

⋂
φ∈G

Gφ . (25)

Using the complement of G we can calculate that

µ(G) > 1 − ε.

This determines the set of initial conditions for which we can
calculate the coherence of the matrix Θ(L). Due to uniformity
of initial conditions in G, for each observable (φi · φj) in the set
of Eq. (24) there exists ni,j > 0 such that the inner product
of any two distinct normalized column vectors |⟨vi, vj⟩| has the
following form for any n > ni,j

|⟨vi, vj⟩| =

⏐⏐⏐1
n
Sn(φi · φj)(x0)

⏐⏐⏐ ≤ η0.

Take n0 := maxi̸=j ni,j and this proves the statement.
Step 3: Sparsity. Thus we are only left to prove sparsity. We

now by assumption that there is a sparse solution to

(L0)xs = v.

Let us rearrange L0 such that xs has only its first s entries
onzero. Next, the Gram–Schmit process reduces to a QR decom-
osition that is

(L0) = Θ(L)R

hus,

(L0)xs = Θ(L)x̂s

here

ˆs = Rxs

ut R is upper triangular and thus by construction only the first
entries of x̂s will be nonzero. □

.4. Sparse solutions are stable under basis extension

Next, we wish to prove that once the basis is adapted and
he initial expert guess is meaningful, extending the basis is
ot harmful for the solution. First, we need the following re-
ult relating the coherence and restricted isometry constant of a
atrix

roposition 2. If the matrix A has L2-normalized columns, then its
IP constant satisfies

s ≤ η(s − 1), s ≥ 2.

roof. See Foucart and Rauhut [14, Prop. 6.2, p.134]. □

Next proposition proves that, given a set of basis functions
hich represents f sparsely, the minimization problem from
andès Theorem 1 has a solution that approximates the true
parse solution. Moreover, using Theorem 3, which introduces a
rthonormal set of basis functions L and a matrix Θ(L), we can
ind a sub-matrix of Θ(L), A(L), which approximates the same
olution in a smaller space.
It is worth noting that both LASSO and quadratically con-

trained basis pursuit are L1 minimization problems related to
ach other. More precisely, for each solution x⋆ of LASSO there
xists a ε := εx⋆ > 0 such that x⋆ is solution of Eq. (20), see
ourcart and Rauhut [14, Proposition 3.2]. So, our results using
he quadratically constrained basis pursuit are extended to LASSO
olutions as well.
8

roposition 3 (Sparsity Level is Attained). Let L0 be a set of basis
unctions with cardinality m such that f has a s-sparse representa-
ion in L0. Then, there is n0 > 0, a large set of initial conditions and
basis L such that we find a matrix A(L) ∈ Rn×p where s < p < m

and the solution x∗ of the reconstruction problem

min
x̃∈Rp

∥x̃∥1 subject to ∥A(L)x̃ − v∥2 < ε (26)

attains the sparse representation of f .

Proof. Using Proposition 2 together with Theorem 3 we conclude
the following: let 1 < s < m be the sparsity level of the
representation of the map f with respect to the proposed set L0.

By assumption we know there exists a sparse solution xs ∈ Rm

uch that Θ(L0)xs = v. We rearrange L0 such that xs has only
ts first s entries nonzero. Fix 0 < η0 < (

√
2 − 1)/(2s − 1). By

heorem 3 there exist an orthogonal basis L, n0 > 0 and a large
et of initial conditions that η(Θ(L)) ≤ η0 and x̂s ∈ Rm. Thus from
roposition 2

2s(Θ(L)) <
√
2 − 1. (27)

By Theorem 1, the sparse solution x̂s is approximated by the
solution of the quadractically constrained basis pursuit problem.

Let p, q ∈ N be chosen such that s < p, q < m and m = p + q.
Without loss of generality, we can rearrange the basis elements
in such way Θ(L) = [A(L), B(L)] where A(L) ∈ Rn×p and B(L) ∈

Rn×q. Moreover, using A(L) in the quadratically constrained basis
pursuit problem the solution approximates the sparse solution x̂s
through a vector lying in Rp. This is true because δ2s(Θ(L)) is an
upper bound for δ2s(A(L)) and δ2s(B(L)).

For the noiseless case we could say that A(L) is the minimum
matrix such that the minimization problem attains the sparse
solution. □

The existence of a sub-matrix of Θ(L) in the above proposi-
tion indicates that we can use Theorem 3 in a different way to
guarantee that sparse solutions are stable under basis extension.
The following corollary states this stability more precisely.

Corollary 1 (Stability Under Basis Extension). Suppose L0 is a subset
of basis functions with cardinality p < m such that f has a s-sparse
representation in L0. Denote xs ∈ Rp the unique sparse solution
of Eq. (26). Then there is n0 > 0, a large set of initial conditions
and a basis L such that w = (xs, 0) ∈ Rm is solution of

Θ(L)w = [A(L), B(L)]w = v

and the solution w∗
= (w∗

1, w
∗

2) of

min
w̃∈Rm

∥w̃∥1 subject to ∥[A(L), B(L)]w̃ − v∥2 < ε

satisfies

∥w∗

1 − xs∥2 ≤ Cε and ∥w∗

2∥2 ≤ Ĉε (28)

for constants C and Ĉ .

Proof. Thinking in the reverse direction as in the previous propo-
sition we could assume L0 is a subset of basis functions with
cardinality p < m such that f has a s-sparse representation in L0.
Then by Theorem 3, Proposition 2 and Candès Theorem 1 there
is n1 > 0, a large set of initial conditions and a basis L such that
A(L) ∈ Rn×p satisfies Eq. (26).

The key fact is the finiteness of the set of basis functions. Let
us denote by Lc

0 the complement of L0. If we take the union
L ∪ Lc

0 we can apply Theorem 3 for this set. Since L is already
orthonormal, the Gram–Schmidt procedure is necessary only for
the functions of Lc

0. Adjusting n0 > n1 > 0 and the initial con-
ditions, and using orthonormality we can guarantee the unique
sparse solution of Eq. (26) remains sparse in the larger space. The
estimate in Eq. (28) is given by applying Theorem 1. □



M. Novaes, E. Roque dos Santos and T. Pereira Physica D 424 (2021) 132895

6

i
W
F
t
c

c
⟨

φ

w

N

T
w
b
t
a

a
a

κ

I
o
e
n
(

v

i

f

P

t√
. Conclusions

We considered the problem of recovering from phase dynam-
cs the interaction structure of a sparse network of oscillators.
e compared two different recovery methods, both based on a

ourier expansion of the interaction functions. One of them is the
raditional least squares approximation, which finds the vector of
oefficients that minimize the L2 error of the approximation and
has been successful in previous approaches. The other is LASSO.
For small networks and when long data sets are available, both
approaches are equivalent. But we have found LASSO to be much
more apt to sparse network configurations and short times than
the L2 minimization. We showed that LASSO can perform remark-
ably well when dynamical information is taken into account and
the basis functions are adapted. This adaptation leads to unique
solutions to the minimization problem that are also stable under
basis extension. Once the basis is adapted to the dynamics LASSO
recovers sparse networks with excellent precision even when
only relatively little data is available.
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Appendix A. Stability of Lasso under noise

We analyse the effect of noise by adding to the original equa-
tions of motion, Eq. (1), a term

√
2DḂi(t) with a homogeneous

omplex Wiener process Bi(t) = ξi(t) + jζi(t) with ⟨ξk(t)ξi(s)⟩ =

ζk(t)ζi(s)⟩ = δikδ(t − s), and D =diag(η, η) and we obtain

˙i = ωi + α

N∑
k=1

Cik sin(φk − φi) + Ni(φi, t) (29)

here the noise term is given by

i(φ, t) =

√
2η(cos(φ)ξi(t) + sin(φ)ζi(t)). (30)

he noisy equations of motion are integrated by Euler’s method
ith a time step of 0.1, the time series for the phases are obtained
y Hilbert transform and a Savitzky–Golay filter is applied to
hem, before the time derivative is calculated. The filtered phases
re then used in the matrix Θ .
We use as a measure of performance the number of recovered

connections. Suppose we have found equations of motion for the
variables φi(t) in the form of a vector of coefficients w(i), 1 ≤

i ≤ N , where w(i) denotes the ith column of W . The norm of the
function h(i), we can recover the strength of the coupling between
node i and the central node 1 as

κ = ∥h(i)
∥ =

√
(c(i))2 + (d(i))2. (31)
i 2 1i 1i

9

Fig. 5. Effect of the noise in the recovery. Number of spurious connections
κs predicted by the LASSO in the presence of noise of intensity η, for a star
network with N = 10 and averaged over 20 random initial conditions (shaded
region represents the corresponding variance).

We define a quantity playing the role of effective total number of
connections as

κ =
1
α

N∑
i=2

κi, (32)

nd the effective number of spurious connections (in general not
n integer number),

s = κ − N. (33)

n Fig. 5 we show how the performance of the method deteri-
rates as the amplitude of the noise increases, by plotting the
ffective number of spurious connections as a function of the
oise intensity η, averaged over 50 random initial conditions
shaded region corresponds to standard deviation).

Eq. (29) can be recast in the linear form
(i)

+

√
2η z(i) = Θw(i), i = 1, . . . ,N, (34)

where v(i) ∈ Rn corresponds to the Euler approximation of the
time-derivative. Besides z(i) ∈ Rn is a random variable whose
each entry has the form of Eq. (30). Eq. (34) written in this
form is similar to the noisy recovery case estimated by Candès.
Again, we take advantage of the relation between LASSO and the
quadractically constrained basis pursuit problem.

Proposition 4. Assume that δ2s <
√
2−1. Given η > 0, n > 0 and

= 1, . . . ,N, for each ε > 0 the following holds

P
(

∥z(i)∥2 ≤
ε

√
2η

)
≥ 1 − e

−
1
4

(
ε√
2η

−

√
2
π

√
n
)2

. (35)

So with high probability there exists the solution w⋆ of Eq. (20)
satisfying

∥w∗
− w∥2 ≤ C0s−1/2

∥w − ws∥1 + C1ε (36)

or constants C0 and C1.

roof. Fix a η > 0. We need to estimate how probable
√
2ηz(i) is

L2 bounded by a constant ε. We drop the dependence of (i). Note
hat

2η∥z∥2 ≤

√
2η(∥ξ∥2 + ∥ζ∥2) (37)

where each ξ and ζ are Gaussian random vectors. So, we can
estimate the expected value of this L norm: E(∥ξ∥ ) ≥

√
2 n [14,
2 2 π
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roposition 8.1] and the same for ζ . We use the concentration of
easure for Gaussian random vector [14, Theorem 8.34]. Since

he norm L2 is a Lipschitz function with constant 1, the estimate
follows. Then ∥ξ∥2 ≤

ε

2
√
2η holds with probability

1 − exp

⎛⎝−
1
4

(
ε

√
2η

−

√
2
π

√
n

)2
⎞⎠ . (38)

Consequently, we can apply Candès’ estimate and the statement
is proved. □

Appendix B. Proof of Proposition 1

We first need two preliminary results

Remark 1. Given S ∈ Rs1×s2 with 1 ≤ rank(S) ≤ min{s1, s2},
then

∥Sx∥2 ≥ σmin(S)∥x∥2,∀ x ∈ Rs2\{ker S},

where σmin(S) is the minimum singular value of S [20, Fact 9.13.1].

Remark 2. Let A ∈ Rn×p and B ∈ Rn×q be column full rank
matrices with n > p + q and ε ∈ (0, 1). Let r = min{p, q}. We
have the following:

(i) For generic z ∈ Rn: z ̸∈ (Im B)⊥. The map H(z) = B†z is not
constant thus Leb(H−1(0)) = 0 and Rn

\H−1(0) is a generic
set.

(ii) For generic z ∈ (Im A)⊥ with ∥z∥2 = ε, there exists
K (B, ε) > 0 such that

∥B†z∥2 ≥ K cos(βr ), (39)

where βr is the largest principle angle between (Im A)⊥
and Im B. Indeed, let QBRB be the QR decomposition of the
matrix B and QA⊥ an orthonormal matrix whose columns
form an orthonormal basis to (Im A)⊥. Hence, there exists
a unique v ̸= 0 such that z = QA⊥v and ∥v∥2 = ε. Applying
Remark 1 and previous item (i), generically, we have

∥B†z∥2 ≥ σmin(RB)σmin(Q
†
B QA⊥ )∥v∥2. (40)

By [21, Theorem 2.1] the principal angles β ’s between
subspaces (Im A)⊥ and Im B are

(cos(β1), . . . , cos(βr )) = (σmax(Q
†
B QA⊥ ), . . . , σmin(Q

†
B QA⊥ )),

(41)

where βk ∈ [0, π2 ], k = 1, . . . , r and βk < βk+1, k =

1, . . . , r − 1. In particular, the cosine of the largest angle
between (Im A)⊥ and Im B is given as follows

cosβr = σmin(Q
†
B QA⊥ ). (42)

So, there exists K (B, ε) > 0 such that

∥B†z∥2 ≥ K cos(βr ). (43)

Lemma 1. Let A ∈ Rn×p and B ∈ Rn×q be column full rank matrices
with n > p + q. Let r = min{p, q} then βr ̸=

π
2 be the largest

rinciple angle between the subspaces (Im A)⊥ and Im B. Consider

M = B†B − B†A(A†A)−1A†B (44)

hen there exists a constant K > 0 such that

min
(
M−1)

≥
1

K cos2(βr )
. (45)
10
Proof. Let E and F be the orthogonal projection onto the Im A
and (Im A)⊥, respectively. So, using that A is column full rank we
can write M as follows:

M = B†B − B†A(A†A)−1A†B
= B†(I − AA+)B
= B†FB ∈ Rq×q.

The orthogonal projections have the following formulas: E =

QAQ
†
A and F = QA⊥Q †

A⊥
, where QA and QA⊥ are orthonormal

matrices whose columns form an orthonormal basis to Im A and
(Im A)⊥, respectively. Besides, let us denote B = QBRB the QR
decomposition of the matrix B. Using this notation and inequality
of the singular value [22, Theorem 3.3.14] we can split up the
maximum singular value as follows:

σmax(B†FB) ≤ σmax(R
†
B)σmax(Q

†
B QA⊥ )σmax(Q

†
A⊥

QB)σmax(RB). (46)

gain by [21, Theorem 2.1] the least angle between (Im A)⊥ and
m B is given as follows

cosβ1 = σmax(Q
†
B QA⊥ ) = σmax(Q

†
A⊥

QB), (47)

lso β1 < βr so β1 ̸=
π
2 and Eq. (47) is not zero. If we use that

σmax(B†FB) =
1

σmin((B†FB)−1)
and Eq. (47) into Eq. (46) we obtain

σmin((B†FB)−1) ≥
1

K cos2(β1)
, (48)

where we use that σmax(RB) can be bounded by a constant K > 0.
ince cos is decreasing in the interval [0, π2 ], we can replace β1

by the largest principle angle βr , and the claim follows. □

roof of Proposition 1. Note that since C is column full rank, we
can write the solution of Eq. (16) as(
ŵ1
ŵ2

)
= C+(b + z) =

(
A†A A†B
B†A B†B

)−1 (
A†b

B†b + B†z

)
, (49)

here we use that z ∈ (Im A)⊥ implies that A†z = 0. Using the
nalytic inversion formula [20], we obtain

C†C)−1
=

(
(A†A)−1

+ (A†A)−1(A†B)M−1(B†A)(A†A)−1
−(A†A)−1A†BM−1

−M−1(B†A)(A†A)−1 M−1

)
(50)

here M−1
= (B†B−B†A(A†A)−1A†B)−1. Since A and B are column

ull rank, we can use the formula of A+ and AA+ is a projector onto
he Im A. So, we obtain

ŵ1
ŵ2

)
= C+(b + z) =

(
A+b − A+BM−1B†z

M−1B†z

)
(51)

here we used that b ∈ Im A.
We aim at calculating how much the solution x∗ is perturbed,

o

x∗
− ŵ1∥2 = ∥A+BM−1B†z∥2. (52)

ince β1 > 0 we have BM−1B†z ̸∈ (Im A)⊥, so using Remark 1 for
+ we obtain

x∗
− ŵ1∥2 ≥ σmin(A+)∥BM−1B†z∥2. (53)

y item (i) of Remark 2 for generic z ̸= 0 we have B†z ̸= 0.
ecall that M−1B†z ∈ (ker B)⊥. Thus, Remark 1 is valid for B and
−1 and we obtain

x∗
− ŵ1∥2 ≥ σmin(A+)σmin(B)σmin(M−1)∥B†z∥2.

bserve that σmin(A+), σmin(B) > 0 from the full rank condition
n the matrices A and B, so there exists K1 > 0 given by

= min{σ (A+), σ (B)}. (54)
1 min min
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M

a

R

oreover, by item (ii) of Remark 2 we have: ∥B†z∥2 ≥ K2 cos(βr ).
Hence, by [21, Property 2.1] if |βr − π/2| < ε for sufficiently
small ε, using Lemma 1 there exists K > 0 we obtain

∥x∗
− ŵ1∥2 ≥

K1K2

K cosβr
> 0 (55)

nd the statement holds. □
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