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Abstract. This paper presents a modeling technique of texts as complex
networks and the investigation of the correlation between the properties
of such networks and author characteristics. In an experiment with sev-
eral books from 8 authors, we show that the networks produced for each
author tend to have specific features, which indicates that complex net-
works can capture author characteristics and, therefore, could be used
for the traditional task of authorship identification.

1 Introduction

Recent trends in Natural Language Processing (NLP) have indicated that graphs
are a powerful modeling and problem-solving technique. As evidence, graphs
have been used in various applications, including text summarization [1, 2], in-
formation retrieval and related tasks [3–5], and sentiment analysis in texts [6].
Graph theory, a branch of mathematics, has been studied for a long time, pro-
viding elegant and simple solutions to several problems. Recently, the field of
complex networks, an intersection between graph theory and statistical mechan-
ics, has motivated renewed interest in modeling systems as graphs.

We focus in this work on graphs that represent connections between words of
texts, using measures usually employed in the studies of complex networks. Dif-
ferently from regular networks, the dynamics and topology of a complex network
follow non-trivial organization principles [7, 8]. Complex networks concepts have
been applied to a number of world phenomena, e.g., internet, social networks
and flights routes, which includes NLP and linguistics problems - as we briefly
introduce in the next section.

We tackled the problem of authorship attribution using a network of words
and a set of network measures. As known, authors present different styles of writ-
ing, resulting in diverse information flow and text structure. We therefore look
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for correlations between the texts of a same author and the measures extracted
from the respective networks. In this paper we show an experiment made with
several book texts of 8 authors from diverse text genres, including fiction, science
and poetry. We show that different measures vary considerably between some
authors, which encourages the use of complex networks in the task of authorship
identification.

In the next section we introduce complex networks, its main concepts and the
measures used in this work. The methodology we follow and the obtained results
are presented in Section 3 and 4, respectively. Some conclusions are presented
in Section 5.

2 Complex Networks and Language

Complex networks have received enormous attention recently, but their origins
can be traced back to the first study on graph theory, i.e., the Leonhard Euler
solution to the Königsberg bridges problem in 1736 [9]. The concept of nodes
linked by edges (used by Euler) provides a general mathematical way to describe
discrete elements and their inter-relationships. Erdös and Rényi, two centuries
later, created a way to explain the formation of real networks, which is called
random graph theory. They published a series of eight papers, started in 1959
[10], that established for decades a random view of our world, an egalitarian
world in which almost all nodes have a similar number of connections.

Alternatives to the random graph theory were later developed, which moti-
vated a whole new interest in the study of networks, showing that many real
networks are not random. Small-world networks were introduced more recently
(e.g., Milgram [11] and Watts and Strogatz [12]), which differs from random
networks in the sense that in such networks it is possible to reach every node
through a relatively small number of other nodes. In other words, a small-world
network has a small mean shortest path length (it also increases slowly - logarith-
mically - as the network grows). Moreover, these networks have a high clustering
coefficient (defined later in this section), which is a tendency to form local groups
of interconnected nodes. Barabási and Albert [13], introduced another special
class of networks, named scale-free. These networks are also markedly different
from the random networks, because their distributions of connections are not
uniform; instead, a scale-free network has few nodes with a high number of con-
nections (called hubs), which coexist with a much higher number of nodes that
have a small number of connections. Scale-free networks are explained by two
related concepts, (i) growth, which determines that a network is continually in-
corporating new nodes, and (ii) preferential attachment, which defines that new
nodes prefer making connections with already well connected nodes.

Erdös and Rényi’s random graph theory is a good example of an early study
on complex networks, but such networks only started to receive an enormous at-
tention from the scientific community in the recent years, after the publication
of the Watts-Strogatz and Barabási-Albert papers. The modern reserch on com-
plex networks typically incorporates concepts from mechanical statistics, and



aims to characterize networks in terms of their structure and dynamics. A series
of network models and measurements have been applied or created in recent
network research [14], forming a profusion of tools available to almost every net-
work study. In our present paper, we use a set of complex network measures
(introduced in the next paragraphs) in order to face the problem of authorship
attribution.

The tendency of the network nodes to form local interconnected groups is
quantified by a measure referred to as clustering coefficient. For computing this
coefficient for a node i in a directed network, consider S as the set of nodes that
have an input edge from i, |S| as the number of nodes in S, and B the number of
edges among the nodes in S. The Equation (1) computes the clustering coefficient
of a node i:

Clustering Coefficient (i) =
B

|S|(|S| − 1)
. (1)

If |S| = 0 or |S| = 1, the coefficient is set to 0. The clustering coefficient of a
network is the average coefficient of its complete set of nodes.

We have created another measure, based on the dynamical connectivity of
the network growth. This type of measure is typical in complex networks stud-
ies, since it considers the evolution of a network. It is given by the number of
connected components4 as edges are progressively incorporated or have their
associated weights increased5 in the network. The obtained dynamics is then
compared to a hypothetical uniform variation of the number of components
(Figure 1), and the extent to which the real dynamics departs from the hypo-
thetical one is quantified by a measure called components dynamics deviation.
This deviation is obtained for a network as follows:

Deviation =
∑E

k=1 |f(k) − g(k)|
NE

, (2)

where f(k) is the function that determines the number of components for k
considered edges modifications (insertions or weight changes) and g(k) is the
function that determines the linear variation of components (see Figure 1). N
is the number of different words in the text and E is the total number of edges
modifications.

As for traditional graphs, the input degree of a node is the number of edges
that it receives from other nodes; similarly, the output degree is the number
of edges that leave from it to other nodes. The (in/out) degree of a network is
the average (in/out) degree of its set of nodes. Finally, the degree correlation,
another typical complex network measure, is the Pearson correlation coefficient6

4 A connected component is a subgraph that has no isolated nodes. Moreover, it is
not possible to reach one node from a node that belongs to a different component.

5 If an already existing edge is inserted in a network, it is possible to increase the
number of times the edge was inserted and associate this number (the weight) to
the edge.

6 The Pearson correlation coefficient r quantifies the strength of the linear relationship
between two variables (0 ≤ |r| ≤ 1). The sign of the coefficient gives the slope of the
relation.



Fig. 1. Components variation (vertical axis) in a network with weighted edges. The
hypothetical uniform variation of the number of components is indicated by a dotted
line (g(k)), which starts and ends, respectively, at the initial and final points of the real
curve (f(k)). The horizontal axis indicates the number of edges inserted or modified
(in respect of its weight).

[15] of a bidimensional data set that associates the degrees present at both ends
of each edge. In other words, since each edge associates two nodes n1 and n2, it
is possible to create a set of bidimensional points that represents the edges. Each
edge is then denoted by the coordinates (degree of n1, degree of n2)7. The degree
correlation is the Pearson correlation coefficient applied to this set of points.

Complex networks have been applied to several NLP and linguistics tasks.
Sigman and Cecchi [16] modeled WordNet semantic relations between words into
a network of word meanings, where the presence of highly polysemic words led
to a small-world network. Another semantic network, which was derived from
a thesaurus, was analysed by Motter et al. [17]. This network was found to be
scale-free. In fact, this model is very common in linguistic networks, since it
also conforms to (i) the word co-occurrence network, which models the sequence
of words in a text [18], (ii) the word association network, where related con-
cepts are linked [19], and (iii) the syntactic dependency network, which models
syntactic relationships between words [20]. Antiqueira et al. [21, 22] studied the
correlation among text quality and network properties, considering the words as
network nodes, with edges being established between adjacent words in the text
(word co-occurence model). Further details of how this modeling is processed
appear in the next section. In an experiment with essays written by high school
students, the authors demonstrated that text quality - as assessed by human
evaluators - correlated with the clustering coefficient, the network degree (i.e.,
the mean degree) and the dynamics of network growth. Finally, following the
same methodology, Pardo et al. [23, 24] showed the possibility of evaluating the
quality of human and automatic summaries by means of network properties.

7 For directed networks: (indegree of n1, indegree of n2), (indegree of n1, outdegree of
n2) and so on.



3 Representing Texts as Complex Networks

For representing texts as complex networks, we follow the proposal of Antiqueira
et al. [21, 22]. Before building a network for a text, the text must be pre-
processed. As traditionally done in NLP systems, the stopwords are removed,
since they are very common and typically irrelevant, and the remaining words
are lemmatized. Then, each word in the pre-processed text is represented as
a node in the network and directed edges are established between nodes that
represent adjacent words, with the node for the first word pointing to the node
associated to the following word. We do not take into account sentence and
paragraph boundaries for determining the adjacent words, i.e., the last word of
a sentence/paragraph is considered adjacent to the first word of the next sen-
tence/paragraph. Additionally, the edges are weighted by the number of times
that the corresponding adjacent words appear in the text.

It is worth noting that the degree correlation (defined in Section 2) should
take into account the edges directions, since the word co-occurrence network has
outdegrees and indegrees. Since for every node the outdegree is equal to the in-
degree, the edges direction becomes irrelevant for the computation of the degree
correlation. In fact, the only exceptions are the first and last words, which do not
have a predecessor word and a successor word, respectively. We then consider,
only for the computation of the degree correlation, a link between the last and
the first word of a given text. Moreover, in the case of the components dynamics
deviation, the dynamics is obtained as new word associations are inserted in the
network in the order they appear in the text.

Our study is related to complex networks in two main ways. First, similar
networks were proven to be scale-free and small-world by Ferrer i Cancho and
Solé [18]. Although their networks are not the same as ours (e.g., the authors used
the British National Corpus), we have a strong indication that the networks here
employed are complex networks. Second, and more important, we apply a set of
measurements frequently adopted by recent researches in complex networks (see
Section 2).

4 Experiment

In order to test the possibility of using complex network properties to charac-
terize authors, we selected books from 8 authors from varied genres, namely,
fiction, science and poetry. The books were collected from the Project Guten-
berg website8, which freely distribute e-books. Concerning the reproducibility of
our experiment, Table 1 shows the selected authors, the books collected for each
one and the genre they belong to. The different number of books per author
reflects their current availability. For the measures we report here, this is not an
important factor, since each book is processed separately.

We measured (i) the network outdegree (i.e., the average outdegree, which
is equal to the average indegree), (ii) the clustering coefficient, (iii) the degree
8 http://www.gutenberg.org



Table 1. Data for the experiment

Author Genre Books
Charles Science Coral Reefs
Darwin The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom

On the Origin of Species
The Descent of Man
The Different Forms of Flowers on Plants of the Same Species
The Voyage of the Beagle

Charles Fiction A Tale of Two Cities
Dickens American Notes

David Copperfield
Great Expectations
Hard Times
Master Humphrey’s Clock
Oliver Twist
The Old Curiosity Shop
The Seven Poor Travelers

Ernest Fiction The Garden of Eden
Hemingway Green Hills of Africa

Lewis Fiction Alice’s Adventures in Wonderland
Carroll Phantasmagoria and Other Poems

Sylvie and Bruno
The Hunting of the Snark
Through the Looking-Glass

Pelham G. Fiction My Man Jeeves
Wodehouse Tales of St. Austin’s

The Adventures of Sally
The Clicking of Cuthbert
The Gem Collector
The Man with Two Left Feet
The Pothunters
The Swoop
The White Feather

Thomas Fiction A Changed Man and Other Tales
Hardy A Group of Noble Dames

Desperate Remedies
Far from the Madding Crowd
The Dynasts
The Hand of Ethelberta

Virginia Fiction Jacob’s Room
Woolf Night and Day

The Voyage Out
William Poetry Lyrical Ballads, with a Few Other Poems

Wordsworth Lyrical Ballads, with Other Poems - Vol. 1&2
Poems, in Two Volumes - Vol. 1&2
The Poetical Works of William Wordsworth - Vol. 1,2&3



correlation, and (iv) the components dynamics deviation for each text consid-
ered. We show the average results and the standard deviation for each author in
Table 2. By these numbers, one can see that, in most cases, the authors present
very different average measures. For instance, while Charles Darwin has an av-
erage outdegree value of 13.091, Lewis Carroll has 4.871. Although we did not
evaluate the statistical significance of these differences between average mea-
sures, we have a clue that some of the network measures presented here can be
used to separate texts regarding their authorship.

Table 2. Average results and standard deviation for the network measures

Author Outdegree Clust. Coeff. Deg. Correl. Comp. Dynamics
Charles Darwin 13.091 ± 2.978 0.068 ± 0.018 0.070 ± 0.008 0.165 ± 0.023
Charles Dickens 7.946 ± 3.447 0.044 ± 0.025 0.052 ± 0.027 0.151 ± 0.028

Ernest Hemingway 8.342 ± 1.145 0.067 ± 0.016 0.062 ± 0.015 0.143 ± 0.011
Lewis Carroll 4.871 ± 2.348 0.041 ± 0.031 0.058 ± 0.032 0.107 ± 0.039

Pelham G. Wodehouse 5.193 ± 1.022 0.033 ± 0.011 0.050 ± 0.021 0.123 ± 0.016
Thomas Hardy 6.719 ± 0.988 0.035 ± 0.010 0.048 ± 0.010 0.144 ± 0.016
Virginia Woolf 7.923 ± 2.641 0.046 ± 0.017 0.056 ± 0.018 0.164 ± 0.042

William Wordsworth 4.824 ± 1.748 0.020 ± 0.008 0.053 ± 0.009 0.119 ± 0.017

While any of the measures could be used to characterize authors, it is unlikely
that a single measure would suffice in distinguishing all of them. Therefore, it
is also interesting to investigate correlations between each pair of measures, and
this is performed in the scatter plots shown in Figures 2 and 3 (it is possible to
build 6 scatter plots, but we show only the 2 most significant ones).

Fig. 2. Scatter plot for outdegree (horizontal axis) and clustering coefficient (vertical
axis)



Fig. 3. Scatter plot for clustering coefficient (horizontal axis) and degree correlation
(vertical axis)

To analyse these plots, we recall that authors whose data appear in a more
limited region of the scatter plot would tend to have a more consistent writing
style - obviously assuming that the complex networks features are representative
of such style. Taken all the plots together (not shown), Wordsworth, Darwin
and Hardy appear to be the authors with a larger overall consistency. In the
comparison with all other authors, Wordsworth is particularly consistent in style,
probably because it was the only one for poetry. In contrast, Dickens, Carroll
and Woolf appear as the least consistent.

The correlation between style and the network measures is also variable. For
instance, Darwin style is more consistent with regard to clustering coefficient vs.
degree correlation (Figure 3) than in component dynamics deviation vs. degree
correlation (not shown), especially because of the dynamics. In addition, some
of the measures are more correlated to each other, as in the case of outdegree
vs. clustering coefficient (Figure 2). In this case, it is possible to note that these
two measures are linearly correlated, as the Pearson coefficient shows (it is equal
to 0.88, in a range from 0 to 1). One notes that the clustering coefficient vs.
degree correlation (Figure 3) and dynamics vs. degree correlation (not shown)
are the best and worst, respectively, in terms of distinguishing the authors. It
should be stressed that superimposition of points in the scatter plot reflects
similarity in writing style. If we now concentrate on the clustering coefficient
vs. degree correlation scatter plot (Figure 3, the one with best distinguishing
ability), we note that the largest difference in style appears between Darwin and
Wordsworth. This is not surprising since the texts refer to scientific writing and
poetry, respectively. On the other hand, the authors with the most similar styles
are Wodehouse, Hardy and Woolf.



Such results suggest that complex networks are not only useful for captur-
ing author characteristics, but that they also could be applied in the task of
authorship identification. This is one of our future plans, as stated in the next
section.

5 Conclusions

We showed in this paper how to model texts as networks and also introduced
some network measures to be used in authorship characterization. The evalua-
tion shows that it is possible to cluster some authors (Wordsworth, Darwin and
Hardy) using combinations of three measures (ie. ploting clustering coefficient
vs. outdegree or clustering coefficient vs. degree correlation). However, it is also
necessary to carry out comprehensive and statistically significant tests in order
to conclude with higher accuracy the usefulness of the measures. We intend to
apply multivariate techniques such as Principal Components Analysis (PCA),
compare our results to other similar studies, and also apply more complex net-
works measures.

As in other NLP and linguistics tasks, concepts created in the field of com-
plex networks show to be a valuable tool. Given the results presented in this
paper, we believe it is possible to use complex networks for automatic author-
ship identification, as we plan to do in the future. Other possibilities include text
categorization in general, but more investigation must be carried out first.
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