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Abstract. Automatic Summarization (AS) in Brazil has only recently become a 
significant research topic. When compared to other languages initiatives, such a 
delay can be explained by the lack of specific resources, such as expressive lexi-
cons and corpora that could provide adequate foundations for deep or shallow ap-
proaches on AS. Taking advantage of having commonalities with respect to re-
sources and a corpus of texts and summaries written in Brazilian Portuguese, two 
NLP research groups have decided to start a common task to assess and compare 
their AS systems. In the experiment five distinct extractive AS systems have been 
assessed. Some of them incorporate techniques that have been already used to 
summarize texts in English; others propose novel approaches to AS. Two baseline 
systems have also been considered. An overall performance comparison has been 
carried out, and its outcomes are discussed in this paper. 

1   Introduction  

We definitely live in the information explosion era. A recent study from Berkeley [12] 
indicates there were 5 million terabytes of new information created via print, film, mag-
netic, and optical storage media in 2002, and the www alone contains about 170 tera-
bytes of information on its surface. This is about twice the data generated in 1999, given 
an increasing rate at about 30% each year. Conversely, to use this information is very 
hard. Problems like information retrieval and extraction, and text summarization became 
important areas in Computer Science research. 

Especially concerning Automatic Summarization (AS), we focus on extractive 
methods in order to produce extracts of texts written in Brazilian Portuguese. Extracts, 
in this context, are summaries produced automatically on the basis of superficial, em-
pirical or statistical, techniques, broadly known as extractive methods [15]. These actu-
ally aim at producing summaries that consist entirely of material copied, usually sen-
tences, from the source texts. Typically, extracts or summaries automatically generated 



have 10 to 30% of the original text length – being faster to read – but must contain 
enough information to satisfy the user’s needs [13]. 

Five AS systems were assessed, all of them sharing the same linguistic resources, 
when applicable. Only precision (P) and recall (R) have been considered, for practical 
reasons: being extractive, all the summarizers under consideration could be automati-
cally assessed to calculate P and R. The performance of those AS systems could thus be 
compared, in order to identify the features that apply better to a genre-specific text cor-
pus in Brazilian Portuguese.  

To calculate P and R, ideal summaries – extractive versions of the manual summa-
ries – have been used, which have been automatically produced by a specific tool, a 
generator of ideal extracts (available in http://www.nilc.icmc.usp.br/~thiago). This tool 
is based upon the widely known vector space model and the cosine similarity measure 
[25], and works as follows: 1) for each sentence in the manual summary the most similar 
sentence in the text is obtained (through the cosine measure); 2) the most representative 
sentences are selected, yielding the corresponding ideal, extractive, summary. This pro-
cedure works as suggested by [14], i.e., it is based on the premise that ideal extracts 
should be composed of as many sentences (the most similar ones) as the ones in the 
corresponding manual summary.  

As we shall see, some of the systems being assessed had to be trained. In this case, 
the very same pre-processing tools and data have been used by all of them. We chose 
TeMário [19] (available in http://www.linguateca.pt/Repositorio/TeMario), a corpus 
of 100 newspaper texts (c.a. 613 words, or 1 to 2 ½ pages long) that has been built for 
AS purposes, as the only input for the assessment reported here. Those texts have been 
withdrawn from online regular Brazilian newspapers, the Folha de São Paulo (60 texts) 
and the Jornal do Brasil (40 texts) ones. They are equally distributed amongst distinct 
domains, namely, those respecting to free author views, critiques, world, politics, and 
foreign affairs. The summaries that come along with this corpus are those hand-
produced by the consultant on the Brazilian Portuguese language. 

Details of the considered systems and their assessment are given below. In Section 2, 
we outline the main features of each system under focus. In Section 3 we describe the 
experiment itself and a thorough discussion on their overall rating. Finally, in section 4 
we address the outcomes of the reported assessment, concerning the potentialities to 
apply AS for Brazilian Portuguese texts of a particular genre. 

2   Extractive AS systems under focus 

Each of the assessed AS systems tackles a particular AS strategy. Specially, three of 
them suggest novel approaches, as follows: (a) Gist Summarizer (GistSumm) [20], 
focuses upon the matching of lexical items of the source text against lexical items of a 
gist sentence, supposed to be the sentence of the source text that best expresses its main 
idea, which is previously determined by means of a word frequency distribution; (b) 
Term Frequency-Inverse Sentence Frequency-based Summarizer (TF-ISF-Summ) [9], 
adapts Salton’s TF-IDF information retrieval measure [25] in that, instead of signaling 
the documents to retrieve, it pinpoints those sentences of a source text that must be in-
cluded in a summary; (c) Neural Summarizer (NeuralSumm) [21] is based upon a neu-



ral network that, after training, is capable of identifying relevant sentences in a source 
text for producing the extract. Added to those, we employ a classification system 
(ClassSumm) that produces extracts based on a Machine Learning (ML) approach, in 
which summarization is considered as a classification task.  Finally, we use Text Sum-
marization in Portuguese (SuPor) [17], a system aiming at exploring alternative meth-
odologies that have been previously suggested to summarize texts in English. Based on 
a ML technique, it allows the user to customize surface and/or linguistic features to be 
handled during summarization, permitting one to generate diverse AS engines. In the 
assessment reported in this paper, SuPor has been customized to just one AS system. 

All the systems consistently incorporate language-specific resources, aiming at en-
suring the accuracy of the assessment. The most significant tools already available for 
Brazilian Portuguese are a part-of-speech tagger [1], a parser [16], and a stemmer based 
upon Porter’s algorithm [3]. Linguistic repositories include a lexicon [18], and a list of 
discourse markers, which is derived from the DiZer system [22]. Additionally, a stoplist 
(i.e., a list of stopwords, which are too common and, therefore, irrelevant to summariza-
tion) and a list of the commonest lexical items that signal anaphors are also used. Apart 
from the discourse markers and the lexical items lists, which are used only by Class-
Summ, and the tagger and parser, which are not used by GistSumm and NeuralSumm, 
the other resources are shared amongst all the systems. 

Text pre-processing is also common to all the systems. It involves text segmentation, 
through delimiting sentences by applying simple rules based on punctuation marks, case 
folding and stemming, and stopwords removal.  In the following we briefly describe 
each AS system.  

2.1   The GistSumm System 

GistSumm is an automatic summarizer based on a novel extractive method, called gist-
based method. For GistSumm to work, the following premises must hold: (a) every text 
is built around a main idea, namely, its gist; (b) it is possible to identify in a text just one 
sentence that best expresses its main idea, namely, the gist sentence. Based on them, the 
following hypotheses underlie GistSumm methodology: (I) through simple statistics the 
gist sentence or an approximation of it is determined; (II) by means of the gist sentence, 
it is possible to build coherent extracts conveying the gist sentence itself and extra sen-
tences from the source text that complement it. 

GistSumm comprises three main processes: text segmentation, sentence ranking, and 
extract production. Sentence ranking is based on the keywords method [11]: it scores 
each sentence of the source text by summing up the frequency of its words and the gist 
sentence is chosen as the most highly scored one. Extract production focuses on select-
ing other sentences from the source text to include in the extract, based on: (a) gist cor-
relation and (b) relevance to the overall content of the source text. Criterion (a) is ful-
filled by simply verifying co-occurring words in the candidate sentences and the gist 
sentence, ensuring lexical cohesion. Criterion (b) is fulfilled by sentences whose score is 
above a threshold, computed as the average of all the sentence scores, to guarantee that 
only relevant-to-content sentences are chosen. All the selected sentences above the 
cutoff are thus juxtaposed to compose the final extract. 



GistSumm has already undergone several evaluations, the main one being 
DUC’2003 (Document Understanding Conference). According to this, Hypothesis I 
above has been proved to hold. Other methods than the keywords one were also used for 
sentence ranking. The keywords one outperformed all of them. 

2.2   The TF-ISF-Summ System 

TF-ISF-Summ is an automatic summarizer that makes use of the TF-ISF (Term-
Frequency Inverse-Sentence-Frequency) metric to rank sentences in a given text and 
then extract the most relevant ones. Similarly to GistSumm, the approach used by this 
system has also three main steps: (1) text pre-processing (2) sentence ranking, and (3) 
extract generation. Differently from that, in order to rank the sentences, it calculates the 
mean TF-ISF of each sentence, as proposed in [9]: (1) each sentence is considered as a 
fragment of the text; (2) given a sentence, the TF-ISF metric for each term (similar to 
the TF-IDF metric [25]) is calculated: TF is the frequency of the term in the document 
and ISF is a function of the number of sentences in which the term appears; (3) finally, 
the TF-ISF for the whole sentence is computed as the arithmetic mean of all the TF-ISF 
values of its terms. Sentences with the highest mean-TF-ISF score and above the cutoff 
are selected to compose the output extract.  

The method showed to be only as good as the random sentences approach in the ex-
periments made by Larocca Neto [8] for documents in English. 

2.3   The NeuralSumm System 

NeuralSumm system makes use of a ML technique, and runs on four processes: (1) text 
segmentation, (2) features extraction, (3) classification, and (4) extract production. It is 
primarily unsupervised, since it is based on a self-organizing map (SOM) [6], which 
clusters information from the training texts. NeuralSumm produces two clusters: one 
that represents the important sentences of the training texts (and, thus, should be in-
cluded in the extract) and another that represents the non-important sentences (and, thus, 
should be discarded). To our knowledge, it is the first time a SOM has been used to help 
determining relevant sentences in AS. 

During AS, after analyzing the source text, features extraction focuses on each sen-
tence, in order to collect the following features: (i) sentence length, (ii) sentence position 
in the source text, (iii) sentence position in the paragraph it belongs to, (iv) presence of 
keywords in the sentence, (v) presence of gist words in the sentence, (vi) sentence score 
by means of its words frequency, (vii) sentence score by means of TF-ISF and (viii) 
presence of indicative words in the sentence. It is worth noticing that keywords are 
limited to the two most frequent words in the text, gist words are the composing words 
of the gist sentence, and indicative words are genre-dependent and could be correspond-
ing to, e.g., ‘problem’, ‘solution’, ‘conclusion’, or ‘purpose’, in scientific texts. Both 
feature (vi) and the gist sentence are calculated in the same way as they are in 
GistSumm. The rationale behind incorporating these features in NeuralSumm may be 
found in [21]. Sentence classification is carried out by considering every feature of each 
sentence, which is given as input to the SOM. This finally classifies the sentences as 



important or non-important, the important ones being selected and juxtaposed to com-
pose the final extract. 

NeuralSumm SOM was already compared to other ML techniques. It proved to be 
better than Naïve Bayes, decision trees and decision rules methods, with an error de-
creasing rate to the worst case of c.a. 10% [21]. 

2.4   The ClassSumm System 

The Classification System was proposed by Larocca Neto et al. [10] and uses a ML 
approach to determine relevant segments to extract from source texts. Actually, it is 
based on a Naïve Bayes classifier. 

To summarize a source text, the system performs the same four processes that Neu-
ralSumm, as previously explained. Text pre-processing is similar to the one performed 
by TF-ISF-Summ. Features extracted from each sentence are of two kinds: statistical, 
i.e., based on measures and counting taken directly from the text components, and lin-
guistic, in which case they are extracted from a simplified argumentative structure of the 
text, produced by a hierarchical text agglomerative clustering algorithm. A total of 16 
features are associated to each sentence, to know: (a) mean-TF-ISF, (b) sentence length, 
(c) sentence position in the source text, (d) similarity to title, (e) similarity to keywords, 
(f) sentence-to-sentence cohesion, (g) sentence-to-centroid cohesion, (h) main concepts 
– the most frequent nouns that appear in the text,  (i) occurrence of proper nouns, (j) 
occurrence of anaphors, (k) occurrence of non-essential information.  Features (d), (e), 
(f) and (g) use the cosine measure to calculate similarity; features (h) and (i) use the 
POS Tagger; finally, features (j) e (k) use fixed lists, as mentioned before. The remain-
ing are linguistic features, based on the binary tree that represents the argumentative 
structure of the text, where each leaf is associated to a sentence and the internal nodes 
are associated to partial clusters of sentences. These features are: (l) the depth of each 
sentence in the tree, and (m) four features that represent specific directions in a given 
level of the tree (height 1,2,3,4) that indicate, for each depth level, the direction taken by 
the path from the root to the leaf associated with the sentence. 

Extract generation is considered as a two-valued classification problem: sentences 
should be classified as relevant-to-extract or not. According to the values of the features 
for each sentence, the classification algorithm must “learn” which ones must belong to 
the summary. Finally, the sentences to include in the extract will be those above the 
cutoff and, thus, those with the highest probabilities of belonging to it. 

In the experiment reported in this article, the only unused feature was the keywords 
similarity, because the TeMário corpus does not convey a list of keywords. Compared to 
the other systems, ClassSumm uses two extra lists: one with indicators of main concepts 
and another with the commonest anaphors. Although there are no such fixed lists to 
Brazilian Portuguese, we followed Larocca Neto’s [8] suggestions, incorporating to the 
current version of the system the corresponding pronoun anaphors for English, such as 
‘this’, ‘that’, ‘those’, etc. 

ClassSumm was evaluated on a TIPSTER corpus of 100 news stories for training, 
and two test procedures, namely, one that has used 100 automatic summaries and an-



other that has used 30 manual extracts [10], in which it outperforms the “from-top” – 
those from the beginning of the source text, and random order baselines.  

2.5   The SuPor System 

Similarly to some of the above systems, SuPor also conveys two distinct processes: 
training and extracting based on a Bayesian method, following [7]. Unlike them, it em-
beds a flexible way to combine linguistic and non-linguistic constraints for extraction 
production. AS options include distinct suggestions originally aimed at texts in English, 
which have been adapted to Brazilian Portuguese. To configure an AS strategy, SuPor 
must thus be customized by an expert user [17]. 

In SuPor, relevant features for classification are (a) sentence length (minimum of 5 
words); (b) words frequency [11]; (c) signaling phrases; (d) sentence location in the 
texts; and (e) occurrence of proper nouns. As a result of training, a probabilistic distribu-
tion is produced, which entitles extraction in SuPor. For this, only features (a), (b), (d) 
and (e) are used, along with lexical chaining [2]. Adaptations from the originals have 
been made for Portuguese, to know: (i) for lexical chaining computation, a thesaurus [4] 
for Brazilian Portuguese is used; (ii) sentence location (10% of the first and 5% of the 
last sentences of a source text are considered); (iii) proper nouns are those that are not 
abbreviations, occur more than once in the source text and do not appear at the begin-
ning of a sentence; (iv) a minimum threshold has been set for the selection of the most 
frequent words: each term of the source text is frequency-weighed, and the total weight 
of the text is produced; then the average weight, along with its standard deviation is 
taken as the cutoff of frequent words. 

SuPor works in the following way: firstly, the set of features of each sentence are ex-
tracted. Secondly, for each of the sets, the Bayesian classifier provides its probability, 
which will enable top-sentences to be included in the output extract.  

SuPor performance has been previously assessed through two distinct experiments 
that also focused on newspaper articles and their ideal extracts, produced by the genera-
tor of ideal extracts already referred to. However, testing texts had nothing to do with 
TeMário. Both experiments addressed the representativeness of distinct groupings of 
features. Overall, the features grouping that have been most significant included lexical 
chaining, sentence length and proper nouns (avg.F-measure=40%). 

3   Experiments and Results 

We proceeded to a blackbox-type evaluation, i.e., only comparing the systems outputs. 
The main limitation imposed to the experiment was making it efficient: to compare the 
performance of the five systems, evaluation should be entirely automatic. As a result, 
only co-selection measures [23], more specifically P, R, and F-measure were used. We 
could not compare either automatic extracts with TeMário manual summaries because 
they are hand-built and do not allow for a viable automatic evaluation. For this reason, 
the corresponding ideal extracts were used, as described in Section 1. In relation to the 



systems that need training, to assure non-biasing, a 10-fold cross validation has been 
used (each fold comprising 10 texts). 

We also included in the evaluation two baseline methods: the one based just upon 
the selection of from-top sentences and the other that chooses them at random (hereafter, 
From-top and Random order methods, respectively). Following the same approach, the 
extracts contain as many sentences as the cutoff allows in this case. 

In the AS context, the metrics under focus here are defined as follows: (a) compres-
sion rate is 30%. It has been chosen to conform to the sizes of both, the manual summa-
ries (length ranging from 25 to 30%) and ideal extracts; (b) Let N be the total number of 
sentences in the output extract; M be the total number of sentences in the ideal extract; 
NR be the number of relevant sentences included in the output extract, i.e., the number 
of coinciding sentences between the output and its corresponding ideal extract; (c) pre-
cision and recall are defined by P=NR/N and R=NR/M, and F-measure is the balance 
metric between P and R, F=2*P*R/(P+R). 

All the systems were independently run. Table 1 shows the averaged precision, recall 
and F-measure metrics of each system obtained in the experiments, with last column 
indicating the relative performance of each system as the percentage over the random 
order baseline method, i.e. (F-measure/F-measure-random-baseline - 1). 
 

Table 1. Systems performance (in %) 
Systems Avg. P Avg. R Avg. F % over ran-

dom  
SuPor 44.9 40.8 42.8 38 

ClassSumm 45.6 39.7 42.4 37 
From-top 42.9 32.6 37.0 19 

TF-ISF-Summ 39.6 34.3 36.8 19 
GistSumm 49.9 25.6 33.8 9 

NeuralSumm 36.0 29.5 32.4 5 
Random order 34.0 28.5 31.0 0 

 
Overall, the combination of features that lead to SuPor performance is [location, 

words frequency, length, proper nouns, lexical chaining]. SuPor performance may well 
be due to the inclusion of lexical chaining, since this is its most distinctive feature. 
Meaningfully, training has also counted on signaling phrases, which has been consid-
ered only in SuPor. This, added to lexical chaining, may well be one of the reasons for 
SuPor outperformance. Lexical chaining also has a close relationship to the innovative 
features added to ClassSumm, the second topmost system. Especially, it focuses on the 
strongest lexical chains, whilst ClassSumm focuses on sentence-to-sentence and sen-
tence-to-centroid for cohesion. 

Close performance between SuPor and ClassSumm can also be explained through 
the relationship between the following features combinations, respectively: [words fre-
quency, signaling phrases] and [mean TF-ISF, indicator of main concepts, similarity to 
title]. This is justified by acknowledging that the mean TF-ISF is based on words fre-
quency and main concepts and titles may signal phrases that lead to decision patterns. 

Both topmost systems include features that have been formerly indicated for good 
performance, when individually taken (see the generalization of Edmundson’s [5] 
paradigm in [13]): sentences location and cue phrases (i.e., the referred signaling ones). 



Additionally, both have been trained through a Bayesian classifier, with a considerable 
overlap of features. Keywords, which have been considered the poorest in Edmundson’s 
model [5], have not been considered in any of them. In all, they substantially differ only 
through the anaphors and non-essential information features, although location, in 
ClassSumm, addresses the argumentative tree of a source text, instead of its surface 
structure, as it is in SuPor. 

TF-ISF-Summ, which has a worse performance than ClassSumm, coincides with 
that in the combination [words frequency, mean TF-ISF], for the same reasons given 
above. Although its performance is not substantially far from that of SuPor, its upper-
bound is a baseline. This may also suggest that what distinguishes SuPor is not the word 
frequency, neither is the mean TF-ISF measure in ClassSumm. 

Not surprisingly, GistSumm performance is farther than the other systems referred 
to, for it is based mainly upon words distribution, which has been repeatedly evidenced 
as a non-expressive feature. However, evidences provided by the DUC’2003 evaluation 
show that GistSumm is effective in determining the gist sentence. In that evaluation, 
GistSumm scored 3.12 in a 0-4 scale for usefulness. This metric was presented to 
DUC judges in the following way: their score of any given summary should indicate 
how useful the summary was in retrieving the corresponding source text (0 indicating 
no use at all and 4, totally useful, i.e., as good as having the full text instead.1 So, the 
problem must be in the extraction module instead. Although this system achieved the 
best P, its R is the worst, even worse than the baselines. Recall could be improved, for 
example, if gist words were spread over the whole source text, which does not seem to 
be the case in newspaper texts, where the gist is usually in the lead sentences. 

Although NeuralSumm is based on a combination of most of the features embedded 
in SuPor and ClassSumm, its performance is much worse. This may be due to its train-
ing on SOM, as well as on the means training has been carried out (e.g., a non-
significant corpus) or, ultimately, on the features themselves, which also include word 
frequency. 

The From-top method occupies, as expected, the 3rd position in the F-measure scale. 
Being composed of newspaper texts of varied domains, the test corpus has an expressive 
feature: lead sentences usually are the most relevant ones. Distinction between that and 
the other 2 topmost systems may be due to the sophistication of combining distinctive 
features. Since most of them coincide, but cohesive indicators, lexical chaining (SuPor) 
and sentence-to-sentence or sentence-to-centroid cohesion (ClassSumm) seem to be the 
key parameters for our outperforming systems. 

It is important to notice that the described evaluation is not noise free. The ways 
ideal extracts are generated bring about a problem to our evaluation: since the generator 
relies on the cosine similarity measure, and this does not take into account the sentence 
size, there is no way to guarantee that compression rate is uniformly observed. Actually, 
there are ideal extracts in our reference corpus that are considerably longer than the 
extracts automatically generated. This poses an evaluation problem in that the compari-
son between both penalizes recall, whilst increasing precision. 

These results are relatively similar to the ones obtained in the literature for texts in 
English, such as the ones of Teufel and Moens [26] (P=65% and R=44%), Kupiec et al. 

                                                           
1 For more details about this measure, see http://duc.nist.gov/. 



(P=R=42%) and Saggion and Lapalme [24] (P=20% and R=23%). Although the direct 
comparison between the results is not fair, due to different training, test corpora, and 
even language, it may indicate the general state of the art in extractive AS. 

4   Final Remarks 

Clearly, considering linguistic features and, thus, knowledge-based decisions, indicates 
a way of improving extractive AS. It is also worthy considering that the topmost evalu-
ated systems are based on training, which means that, with more substantial training 
data, performance may be improved. Limitations usually addressed in the literature refer 
to the impossibility of, e.g., aggregating or generalizing information. SuPor and Class-
Summ evaluations suggest that, although those procedures keep been inexistent in ex-
tractive approaches, a way of surpassing those difficulties is still to address the seman-
tic-level through surface manipulation of text components. Another significant way of 
improving SuPor and ClassSumm is to make the input reference lists (e.g., stoplists and 
discourse markers) more expressive, by adding more terms to them. Also, substituting 
the language-dependent repositories that have been currently adapted (e.g., the thesaurus 
in SuPor) or building an argumentative tree in ClassSumm by other means may improve 
performance, since that will be likely to tune better the systems to Brazilian Portuguese. 

After all, the common evaluation presented here made it possible to compare differ-
ent systems, allowing fostering AS research especially concerning texts in Brazilian 
Portuguese and, more importantly, delineating future goals to pursue. 
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