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Complex networks have been increasingly used in text analysis, including in connection
with natural language processing tools, as important text features appear to be captured
by the topology and dynamics of the networks. Following previous works that apply com-
plex networks concepts to text quality measurement, summary evaluation, and author
characterization, we now focus on machine translation (MT). In this paper we assess the
possible representation of texts as complex networks to evaluate cross-linguistic issues
inherent in manual and machine translation. We show that different quality transla-
tions generated by MT tools can be distinguished from their manual counterparts by
means of metrics such as in- (ID) and out-degrees (OD), clustering coefficient (CC), and
shortest paths (SP). For instance, we demonstrate that the average OD in networks of
automatic translations consistently exceeds the values obtained for manual ones, and
that the CC values of source texts are not preserved for manual translations, but are
for good automatic translations. This probably reflects the text rearrangements humans
perform during manual translation. We envisage that such findings could lead to better
MT tools and automatic evaluation metrics.

Keywords: Complex networks; machine translation; network measurements; translation
quality.
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1. Introduction

Complex systems represented by graphs are now referred to as complex networks,1–4

which have become prominent since the discovery that many real-world networks

cannot be modeled by random networks.5,6 Watts and Strogatz, for instance, showed

that the electric power grid in the USA and the network of actors in Holly-

wood movies are small-world networks.7 Several networks such as the World Wide

Web are scale-free,8 thus possessing highly connected hubs that have been proven
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essential for the dynamics of phenomena modeled by the networks. There is grow-

ing evidence that the structure, function and evolution of these complex networks

are governed by fundamental principles. For example, Costa et al.
9 have shown

that Zipf’s law can be explained by correlating structure and dynamics in a fully

correlated network and with the properties of scale-free networks.

In view of the above, it is not surprising that complex networks have been used

to analyze phenomena from various fields, stemming from social sciences to biol-

ogy (an overview of the many applications of complex networks may be found in

Refs. 1–4). Such applications include linguistics and computational linguistics, the

fields to which our research may be inserted. Sigman and Cecchi10 used complex

networks to analyze lexical resources and Costa11 studied human-induced words as-

sociation, while Dorogovtsev and Mendes12 modeled language evolution. Antiqueira

et al.
13 evaluated network metrics to identify text authorship, Antiqueira et al.

14

and Pardo et al.
15 performed text and summary quality analyses, establishing corre-

lations between network measures and text properties. Building upon these previous

works, in this paper we use complex networks concepts to address some Machine

Translation (MT) issues.

Machine translation, which basically converts a text produced in a source lan-

guage into another text in a target language,16 was probably the first non-numeric

application of computers. The MT research area has experienced several translation

methods and paradigms:17 direct and indirect methods, with linguistic transference

or not, following superficial or deep paradigms, using translation rules, stored trans-

lation templates/examples and/or statistics. The area started with handcrafted

translation rules for each language pair intended to be automatically translated.

This is a very expensive and time consuming task, which is still carried out to-

day and produces very limited results. State-of-the-art results are obtained with

relatively simple statistical models proposed by the IBM research group18,19 and

their several extensions (e.g., Refs. 20–23), for which large translation corpora are

required to train the models. These methods result in statistical translation tables

that are automatically and quickly learned. New language pair translators are easily

produced from new bilingual corpora. Very good translations have been achieved

even for very distant languages.

Despite its relatively long history, evaluation of MT has been controversial.

Manual evaluation of MT results is obviously expensive, time consuming, and prone

to human errors and inconsistencies. Automatic metrics have been proposed to avoid

such problems and to allow for objectivity, reproducibility and fair comparison

among different MT systems. The most representative automatic measure is BLEU

(Bilingual Evaluation Understudy).24,25 Basically, it counts the number of common

n-grams present in both automatic translation and one or more reference (manual)

translations. The higher the BLEU value (it falls between 0 and 1) the better the

translation. The authors of the metric showed that it is as good as a human in

ranking translations by their qualities.
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NIST (National Institute of Standards and Technology) conducts annual con-

tests on machine translation in order to measure and advance the state-of-the-art

in the area. The contest adopts BLEU as the main evaluation metric and con-

siders hard language pairs in its evaluation tasks, for example, Chinese-English

and Arabic-English language pairs. Researchers in the area assume that a trans-

lation method that works for very different languages will also work for more

similar languages. Particularly, Chinese and Arabic languages are challenging by

their rich morphology and long-distance word reordering needed in translation.

In recent years, the contest results (which are publicly available at NIST web-

page26) show that statistical machine translation methods are the best ones and

they significantly overcome traditional rule-based methods. It is interesting to see

the results for 2005 contest, where statistical and rule-based systems competed:

Google statistical translator27 was the best one (and still is nowadays) with a

BLEU score of 0.5131, while Systran,28,29 the most famous rule-based transla-

tor, achieved a much worse BLEU score of 0.1079 for Arabic-English language

pairs. Google translator improved Systran results by approximately 376%. For

Chinese-English language pairs, the difference was lower: 0.3531 for Google against

0.1471 for Systran (Google was 140% better than Systran). Such numbers give

an idea of the state-of-the-art results and the improvements achieved over the

years with new and more advanced translation methods and more robust evalu-

ation criteria.

Here we employ complex networks for representing source texts and their trans-

lations to assess cross-linguistic issues: the translation nature and quality for two

language pairs. By nature, we mean whether the translation is produced by a hu-

man (manual) or by a MT system (automatic). In relation to quality, we aim at

distinguishing good and bad automatic translations from different systems. We

made comparisons between manually and automatically generated translations for

Portuguese-English and Portuguese-Spanish pairs of texts (ranging from 20 to 50)

collected from Revista Pesquisa FAPESP, a scientific magazine. Our approach is

based on the use of network measurements that help characterize a piece of text.

Word adjacency networks were created for each text, and the changes in network

structure owing to translations of different nature and quality were evaluated. This

is a language-independent approach that allows a translation to be analyzed by only

observing the connectivity patterns between nodes. These patterns were captured

by measurements usually employed in characterizing complex networks,4 and were

compared mainly using the Pearson correlation coefficient,30 which gives the degree

of similarity between the measurements of two networks. We show that structural

differences between low and high-quality translations can be identified, mainly in

Portuguese-Spanish pairs, in spite of the use of a linguistically superficial approach.

Before discussing the results obtained in the experiments (Sec. 3), we describe in

the next section the methodology employed. Sec. 4 concludes the paper with final

remarks.



June 4, 2008 12:8 WSPC/141-IJMPC 01228

586 D. R. Amancio et al.

Portuguese source text

English translation (manual)

English translation (Free Translation)

English translation (Intertran)

Um substituto para a insulina injetável,
medicamento para diabéticos, está em testes no
Canadá.

A substitute for injectable insulin, a medicine for
diabetics, is under test in Canada.

A substitute for the insulin injetável, medicine for
diabetic, is in tests in Canada.

A substitute for insulin injetável, medicine about to
diabetic, is under test into the Canada.

Pre-processed version

Pre-processed version

Pre-processed version

Pre-processed version

substituto insulina injetável medicamento
diabético estar teste Canadá

substitute injectable insulin medicine diabetic
test Canada

substitute insulin injetável medicine diabetic test
Canada

substitute insulin injetável medicine diabetic test
Canada

Fig. 1. Manual and machine translations of a Portuguese text into English (left column). The
source sentences and their manual translation were taken from the magazine Pesquisa FAPESP.31

The automatic translations were performed by Free Translation32 and Intertran.33 The automati-
cally pre-processed versions of each excerpt (stopwords removed and remaining words lemmatized)
are shown in the right column.

2. Methodology

In order to carry out the experiments, we must first represent text as graphs.

We model both source and target texts as graphs according to the procedures

established by Antiqueira et al.
14 Briefly, the texts were initially pre-processed

to remove auxiliary verbs and functional words (stopwords). Then, the remaining

words were lemmatized, i.e., they were reduced to their base form. An example of

the pre-processing step is shown in Fig. 1. After this step, the set of unique words

corresponds to the set of network nodes (vertices). Moreover, there is an edge

between two nodes if the corresponding words are adjacent in the pre-processed

text, even if they are in subsequent sentences. The edges weights represent the

number of times those word pairs co-occur. The graph obtained was represented by

a weighted matrix W of dimension N × N , where W (j, i) refers to the weight of

the edge i → j, i and j are adjacent words and N is the total number of distinct

words in the text after the pre-processing step. Only the immediate adjacency

was considered, but the results would probably not be strongly affected if further

neighboring words were considered.15

The experiments were aimed at correlating graph metrics with manual and

automatic translations in order to distinguish them. For some experiments, we had

to map the nodes of the source network onto the target network, which required the

two pieces of text to be word aligned (see Ref. 34 for an overview on text alignment).

The alignment was performed using the system LIHLA,35 which does a pairwise

mapping between words in the source (S) and target (T ) texts. When a group of

ns words in S is translated into a group of nt words in T , LIHLA tries to create

an alignment between the words ns and nt. When a single alignment pair considers

more than one word in S or T , these words are grouped into one single node in the
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respective network. Some nodes may not belong to any alignment, and this occurs

when the mapping is not possible, i.e., when a subset of words of S is not directly

translated into words of T (or vice-versa). In additional experiments, we compared

the results from the LIHLA automatic alignment process with a manual alignment,

and the differences were not significant in terms of the metrics of the networks.

The first two graph measurements are based on the concept of degree. Note

that these measurements are obtained separately for the source text and for the

corresponding translation (the alignment is not considered yet). The weights of the

links that come into a node i are used to compute the in-degree of i:

ID(i) =
N∑

j=1

W (i, j) . (1)

Similarly, the out-degree of a node i considers the links that emerge from i:

OD(i) =

N∑

j=1

W (j, i) . (2)

These measurements are also computed for the entire graph. In this case, the mean

ID(i) is the in-degree ID of the whole network, and the mean OD(i) is the global

out-degree OD. For the graphs considered, the average ID and OD are always the

same.

Another frequently used network measurement is the clustering coefficient

CC(i), which quantifies the level of connectivity between the neighbors of a node

i. Let Nc be the number of nodes that receive a connection from i, then the to-

tal number of possible connections between these nodes is Nc(Nc − 1). The actual

number of directed connections between the Nc neighbors is denoted by B. The

clustering coefficient of node i is the number of connections between the Nc nodes

divided by the maximum possible number of links between them:

CC(i) =
B

Nc(Nc − 1)
, (3)

where 0 ≤ CC(i) ≤ 1. If Nc = 0 or Nc = 1 then CC(i) = 0. The global clustering

coefficient CC is taken as the mean CC(i).

Shortest paths were also obtained for the networks representing the texts. A

shortest path between two nodes i and j is defined as the minimum cost d(i, j)

necessary to reach node j starting from node i. The cost is defined as the sum of

the weights of the edges included in the path. The quantity d(i, j) is then used to

define the mean minimum distance between a node i and the remaining nodes of

the network:

SP(i) =

∑
j 6=i d(i, j)

N − 1
. (4)

Moreover, the shortest paths d(i, j) may be used to obtain a single measure for an

entire network. In this case, any pair of distinct nodes is considered, as the equation
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below shows:

SP =

∑N

i=1

∑
j 6=i d(i, j)

N(N − 1)
. (5)

We used three variations of Eqs. (4) and (5), regarding the computation of the cost

d(i, j):

(i) SP1(i) and SP1, which take a unity value for all edge weights,

(ii) SP2(i) and SP2, which consider the complement of the original weights Wmax−

W (i, j) + 1 (where Wmax is the maximum value of matrix W ) and

(iii) SP3(i) and SP3, which take the inverted weights 1/W (i, j).

The first case removes the weights of the edges, and thus can be useful to assess

the influence of the absence of weights on shortest paths. The other two cases are

used to give priority to the stronger and more important edges (those with higher

weights), since in the usual way these edges would be avoided in the shortest paths.

Finally, when there is no path between nodes i and j, then d(i, j) = ∞. Since

the measures of Eqs. (4) and (5) are used to quantify the overall connectivity of a

network, we had to define useful values of the proximity d(i, j) for this particular

case, instead of infinity. Thus, when no path exists between i and j, we consider

that:

(i) d(i, j) = N , for SP1(i) and SP1, and

(ii) d(i, j) = NW̄ , for SP2(i), SP2, SP3(i) and SP3 (W̄ is the mean weight of all

network edges).

The corpus used in the experiments comprised texts published in Revista

Pesquisa FAPESP,36 a magazine published in Portuguese, English and Spanish.

In the experiments that employ text alignment and individual measurements for

each node of a graph (Secs. 3.2 and 3.3), 20 Portuguese texts and the correspond-

ing manual translations into English and Spanish were used, resulting in 40 aligned

text pairs. In the experiment that uses only global (average) graph measurements

without text alignment (Sec. 3.1), 50 texts in Portuguese were employed for En-

glish translations and 20 for Spanish translations. Each text had approximately

10 sentences. Automatic translations were obtained from the following systems: Free

Translation,32 Google Translator27 and Intertran33 for Portuguese-English transla-

tions; Intertran and Apertium37 for Portuguese-Spanish translations. An example

of the output generated by Free Translation and Intertran is shown in Fig. 1.

3. Results and Discussion

3.1. Comparing average metrics for translated texts

Figure 2 shows a histogram for the number of texts whose average out-degree (OD)

for the MT text exceeds the value for the manually translated text. The original

texts were in English, and the translated versions into Portuguese were obtained
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Fig. 2. Histogram of the relative change in the average OD between a MT text and a manually
translated text ((ODmachine − ODmanual)/ODmanual) from English into Portuguese.

either manually (Human) or with the Google translator, which is essentially a ver-

sion of Systran.28,29 The average OD was therefore calculated for the networks built

from the translated texts only, without using text alignment. It is readily seen that

the average OD is consistently higher for the MT text, even though the difference

is not large. Approximately 90% of all texts fell into this pattern. Considering OD,

it was also possible to distinguish the two types of translations, since 70% of the

Portuguese texts have higher degree than the corresponding texts in Spanish. Fur-

thermore, in subsidiary experiments we noted that other metrics could also be used

to distinguish between manual and machine translations, as it is in the case of the

shortest paths SP (results not shown). In fact, a combined use of these metrics along

with text alignment would allow distinction between the two types of translation

with high accuracy (see next section).

3.2. Comparing mapped networks of aligned texts

One important issue in evaluating the characteristics of translated texts is to com-

pare whether the corresponding networks for the source and target texts can be

mapped onto each other. This requires the analysis of individual node measurements

and aligned texts. The networks were compared by plotting the measurements ex-

tracted from the source and target networks, from which the Pearson correlation

coefficient30 and the slope (angular coefficient) were obtained. Our hypothesis is

that if the measurements of the target network are similar to the ones from the

source network, their scatter-plot should be approximately linear with slope close

to 1, i.e., with angle close to 45 degrees (see Fig. 3 for a scatter-plot using OD

for a Portuguese-Spanish pair). It is possible to measure the strength of a linear
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Fig. 3. Scatter-plot obtained from the alignment between a source text in Portuguese and its
translation into Spanish generated by Apertium. The horizontal axis represents the measurement
OD obtained for each node of the network created from the translated text (in Portuguese). The
vertical axis represents the same measurement obtained for the source text (in Spanish). The
Pearson correlation coefficient is high (0.958), with angular coefficient of 0.954.

relationship with the Pearson coefficient, whose absolute value is close to 0 when

the correlation is far from linear or when there is no correlation at all, and it is close

to 1 when the correlation is close to linear. When the Pearson coefficient is close

to 1, we take the slope of the straight line that fits the data to check whether the

measurements are preserved from one network onto another. If preservation occurs,

the slope is close to 1.

With this methodology, we found that the clustering coefficient (CC) and short-

est paths (SP) are not preserved in manually translated texts for neither Portuguese-

Spanish nor Portuguese-English translations (Fig. 4; the results for SP were not

included), probably because these parameters are affected by text rearrangement

at the supra-sentential level, which is common in human translation. In contrast,

CC values are preserved in good-quality MT but not in low-quality MT (Fig. 5).

Figures 4(a) and 4(b) show small values for the Pearson coefficient for CC for man-

ually translated texts from Portuguese into Spanish and Portuguese into English,

respectively. Figures 5(a) and 5(b), on the other hand, show that high Pearson co-

efficients are obtained for the good-quality MT system for Spanish (Apertium), but

not for a low-quality system (Intertran). In addition, similar results were obtained

for texts translated automatically from Portuguese into English, and the behavior

observed for CC also applied to SP values (results not shown). It will be discussed

later on that one important feature of the good-quality MT systems is the preserva-

tion of the network topology (captured using network measurements) of the source

text in the translated text.
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Fig. 4. Pearson coefficient for CC when mapped from a source text in Portuguese and the target
text in (a) Spanish and (b) English, both obtained by human translation.

Language dependence appeared in the analysis of in- and out-degrees, which are

largely preserved in good translations for Portuguese-Spanish texts. Network nodes

were essentially mapped in a one-to-one basis from one language to the other, with

practically the same values for ID and OD. The scatter plot of Fig. 3 illustrates the

good correlation between OD for Portuguese and Spanish (translated) texts. This

applied to both human translated texts and texts produced with a good-quality

MT tool, as indicated by the high Pearson coefficients in Fig. 6. This is not true

for the low-quality MT tool, perhaps because mapping of grammatical structures

was inaccurate, which is illustrated in the top panel of Fig. 6. Furthermore, in the

bottom panel, one can see that the angular coefficient is also close to 1 for all

translations, probably deriving from the very similar sentence structures of the two

languages. In Figs. 3 and 6 we show only the results for OD, since essentially the

same results were obtained for the ID measurement.

In the English-Portuguese texts, again ID and OD values were preserved for the

quality MT, denoted by the high Pearson coefficient in Fig. 7 (results shown for OD

only). However, in contrast to the Spanish-Portuguese pair, the Pearson coefficient

for the human translation was lower, closer to a lower-quality MT (Intertran).

Furthermore, the correlation between pairs of aligned networks for a given text

was not as good as in the case of Portuguese-Spanish texts, therefore reflecting

the larger structural differences between English and Portuguese. Interestingly, in

human translated texts ID and OD values were consistently lower for English texts,

which result from the differences in word usage for the two languages. The latter
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Fig. 5. Pearson coefficient for CC when mapped from a source text in Portuguese and the target
text in Spanish, where the latter was obtained with a good-quality MT system (a) and with a
low-quality MT system (b).

finding is illustrated in the bottom panel of Fig. 7, where the angular coefficients

are lower than 1 for the human translation. For the good-quality MT the angular

coefficients are again close to 1, as the automatic system apparently does not impose

sentence rearrangements that would affect either ID or OD.

Table 1 summarizes the results for Spanish and English translations regarding

topological preservation with automatic alignment. The Pearson coefficient, along

with the angular coefficient of the straight line obtained by linear regression (both

on average), are shown for the measurements OD, ID and CC. Preservation is higher

for the Apertium and human translations (Spanish), when OD and ID are consid-

ered, since both coefficients are close to 1. For lower quality Spanish translations

(Intertran) the same pattern is not verified, so the preservation of the measurements

does not occur. For the CC cases, no translation seems to preserve the measure-

ment. When considering English translations, the closer we get to measurement

preservation is in the Free Translation case, with Pearson coefficients near 0.8. The

human English translations also appear to preserve OD and ID, but with lower

coefficients than Spanish translations. In general, Spanish translations of higher

quality (human and Apertium) tend to preserve OD and ID, whereas for English

translations this tendency is less strong.
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Fig. 6. Pearson coefficient (top panel) and angular coefficient (bottom panel) obtained for the
metric out-degree (OD) for texts translated from Portuguese into Spanish. Note the high Pearson
coefficients for the human and good-quality MT translations, whereas lower Pearson coefficients
were obtained for the low-quality MT system. The angular coefficient was close to 1 in all cases.

Table 1. Pearson and angular coefficients obtained, on average, for the experiments
with alignments. For Spanish translations (human and Apertium) the measures OD
and ID are likely to be preserved in the translations, since both coefficients (in bold)
approach 1. Data on shorted paths (SPs) were omitted because its behavior is similar
to that of CC.

Type of Avg. Pearson Coefficient Avg. Angular Coefficient
Translation OD ID CC OD ID CC

Spanish — Human 0.93 0.94 0.44 0.99 1.00 0.44

Spanish — Apertium 0.97 0.98 0.93 1.01 1.03 0.85

Spanish — Intertran 0.76 0.80 0.58 0.98 1.48 1.01

English — Human 0.79 0.83 0.31 0.81 0.82 0.33

English — Free Translation 0.81 0.89 0.59 0.96 0.99 0.57

English — Intertran 0.88 0.89 0.71 0.82 0.83 0.98
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Fig. 7. Pearson coefficient (top panel) and angular coefficient (bottom panel) obtained for the
metric out-degree (OD) for texts translated from Portuguese into English. Degrees are only pre-
served for quality MT.

3.3. Distinguishing between manual and machine translations

For the purpose of separating different types of translations, we used the network

measurements in a clustering experiment with the visualization software PEx (Pro-

jection Explorer),38,39 which is capable of creating projections into two dimensions

for n-dimensional data. We analyzed groups of texts according to its classes (namely

human or automatic translations, for both English and Spanish). Starting from a

graphical representation created by PEx, it is possible to distinguish regions that

belong to specific translation classes, as can be seen in Fig. 8, in which each node

in the graph represents one translation pair Portuguese-Spanish, and the x and y

axes indicate the positioning of the text pairs obtained from projection of multidi-

mensional values (network measurements). This plot was created by PEx using six

measures (Pearson and angular coefficient for ID, OD and CC) for each Portuguese-

Spanish translation pair and was identified as small circles. The algorithm used was

the Interactive Document Map, along with a City Block distance.40 In contrast to

the Euclidean distance, which is the square root of the squared differences of coordi-

nates, the City Block distance is the sum of the absolute differences of coordinates.

The edges are produced with the KNN (k-Nearest Neighbor) algorithm, which puts

in the same cluster the k nodes with the shortest City Block distances. In our
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Fig. 8. PEx plot for three types of Portuguese-Spanish translations. The measurements used
for each translation pair were the ones obtained by assessing topology preservation with text
alignment, i.e., the Pearson and angular coefficients for OD, ID and CC. The projection algorithm
of PEx allowed a good separation between the three types of translation.

experiment, k = 2, and therefore the edges connect the points with their nearest

neighbors in a bidimensional plot.41

The three classes considered in the experiment are (i) human translation, (ii)

Apertium translation, and (iii) Intertran translation, which can be spatially sepa-

rated from each other in Fig. 8 with reasonably good accuracy (note that higher

distances between translations indicate stronger differences in translation — as far

as the six measures adopted are concerned). Thus, this 2D plot may be used to

classify the nature and quality of Portuguese-Spanish translations (the clustering

for Portuguese-English translations was less clear — results not shown).

4. Conclusions

The metrics obtained from complex networks used to model texts have been cor-

related to the quality of machine translation systems and employed to distin-

guish between human and machine translation for the Portuguese-Spanish and

Portuguese-English pairs of languages. Among the main results, we observed that

the values for the cluster coefficient (CC) and shortest paths (SP) are not preserved

in manually translated texts for neither pairs of languages, probably because these

parameters are affected by text rearrangement at the supra-sentential level, which is

common in human translation. In contrast, CC values were preserved in quality MT

but not in poor MT. Language dependence appeared in the analysis of in- and out-

degrees, which were largely preserved in good translations. For Portuguese-Spanish

texts, network nodes were essentially mapped in a one-to-one basis from one lan-

guage to the other, with practically the same values for in- (ID) and out-degrees
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(OD). This applied to both human translated texts and texts produced with a qual-

ity MT tool. It was not the same for the poor quality MT tool, perhaps because

mapping of grammatical structures was inaccurate. In the Portuguese-English texts,

again ID and OD values were preserved for quality MT, and not for a poor MT

system or human translation, thus reflecting some language dependence. Indeed,

the correlation between the two corresponding networks for a given text was not

as good as in the case of Portuguese-Spanish texts, owing to the larger structural

differences between English and Portuguese. In human translated texts ID and OD

values were consistently lower for English texts, probably due to the differences

in word usage for these languages. Such differences in these parameters were not

observed in the texts generated by the quality MT system; apparently, in spite of

the good quality in translation, treating the sentence at the sentence level in the

MT tool has hindered the generation of more concise texts.

One may also infer that some differences in network topologies are directly

related to intrinsic differences in the structures of the languages analyzed, with

negligible effects from translation. This is consistent with the finding that network

topologies were closer for the texts in Spanish and Portuguese than for the English-

Portuguese pair. On the basis of the results presented here, we may now extend the

study of modeling texts in a source and in a target language to identify topological

differences that are only caused by poor translation, which should be distinguished

from those intrinsic to language differences. This would increase the ability of a

computational system using complex networks to assess the quality of translations.

As a proof-of-principle, we employed a clustering algorithm within a visual-

ization software, PEx, to distinguish between manual and machine translations,

which may also allow distinction between low and high-quality MT systems. Based

on these results, one may envisage the development of a robust machine-learning

system using complex network metrics to assess the quality of MT systems, prob-

ably with regression algorithms that may allow one to assign scores to the quality

of the translation.
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