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Abstract. We present a statistical generative model for unsupervised learning 
of verb argument structures. The model was used to automatically induce the 
argument structures for the 1,500 most frequent verbs of English. In an evalua-
tion carried out for a representative sample of verbs, more than 90% of the in-
duced argument structures were judged correct by human subjects. The induced 
structures also overlap significantly with those in PropBank, exhibiting some 
correct patterns of usage that are not present in this manually developed seman-
tic resource. 

1   Introduction 

Inspired by the impact that the availability of Penn Treebank (Marcus et al., 1993; 
Marcus, 1994) had on syntactic parsing, several efforts have recently focused on the 
creation of semantically annotated resources. The annotation of verb arguments, their 
roles, and preferential linguistic behaviors represents a significant fraction of these 
efforts. The annotations that we are focusing on here pertain to the argument struc-
tures of a verb. In particular, we look for the words/concepts that constitute the argu-
ments required by the verbs when these are used in real sentences. 

The determination of verb argument structures has been shown to be a hard task 
for several reasons. Little agreement exists with respect to (a) how many canonical 
usages a verb has, (b) which arguments are really required by a verb and (c) in what 
order they may be realized in sentences. For instance, examples (1)-(3) show some 
patterns of usage for the verb bought. 
(1) He had bought them gifts. 
(2) He bought it 40 years ago. 
(3) About 8 million home water heaters are bought each year. 
  
Intuitively, one can induce from these examples that the object/thing that is bought 
(“gifts” in sentence (1), “it” in sentence (2), and “about 8 million home water heaters” 
in sentence (3)) is more likely to be a required argument for the verb than the time 
when the buying event occurred, since the thing bought is specified in all the cases 



and time is not. The examples also show the variation in the order in which the argu-
ments are realized: in (1) and (2), the thing bought is stated after the verb; in (3), it is 
stated before the verb. Ideally, all the possibilities should be acknowledged in the 
semantic specification of verbs. 

There is also little agreement with respect to how the arguments should be la-
beled. Figures 1, 2, and 3 show the information associated with the verb “buy” in 
FrameNet (Baker et al., 1998), VerbNet (Kipper et al., 2000), and PropBank (Kings-
bury and Palmer, 2002), respectively. These are large scale projects that aim at devel-
oping semantic information repositories for verbs, mainly. FrameNet shows the pat-
tern in which a verb occurs and provides representative examples; the resource also 
organizes the verbs into a hierarchy that implicitly encodes how verb structures can 
be inherited from ancestors. VerbNet shows the thematic roles the verb asks for, their 
semantic features, and possible subcategorization frames; VerbNet also provides 
examples for each categorization frame. PropBank makes explicit the argument roles 
of a verb, the possible subcategorization frames, and provides examples for each one. 
PropBank also distinguishes between obligatory verb arguments and optional ones, 
i.e., adjuncts. The adjunct in Figure 3, for example, is the ArgM-MNR argument (i.e., 
argument of manner). By inspecting Figures 1-3, it is not difficult to see that little 
agreement exist with respect to the ontological status of argument labels. What is 
ARG1 after all? Goods? A Theme? Or the Thing Bought? What is the most appropri-
ate level of abstraction for argument labels? 
 
 
 
 
 
 
 
 
 
 
Figure 1. FrameNet annotation for 

the verb buy 
Figure 2. VerbNet annotation for  

the verb buy 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. PropBank annotation for the verb buy 

Roles: 
Arg0:buyer        Arg1:thing bought     Arg2:seller 
Arg3:price paid    Arg4:benefactive 

 
Examples: 

Intransitive: 
Consumers who buy at this level are more educated than they were. 
Arg0:   Consumers  
REL:   buy  
ArgM-MNR:  at this level

Typical pattern: 
BUYER buys GOODS from 
SELLER for MONEY 
 
Example: 
Abby bought a car from Robin 
for $5,000. 

Thematic Roles:  
Agent[+animate OR organization],  
Asset[-location -region], 
Beneficiary[+animate OR +organization],  
Source[+concrete], Theme[] 

Frames: 
Basic Transitive: 
"Carmen bought a dress" (Agent, Theme) 



Given the difficulty of the task, it is not surprising that FrameNet, VerbNet, and 
PropBank have been manually built. However, some research efforts have targeted 
the problem of automatic (Brent, 1991; Resnik, 1992; Grishman and Sterling, 1992; 
Manning, 1993; Framis, 1994; Briscoe and Carroll, 1997; Rooth et al., 1999; 
McCarthy, 2000; Sarkar and Zeman, 2000; Merlo and Stevenson, 2001; Sarkar and 
Tripasai, 2002; Gildea, 2002) and semi-automatic (Korhonen, 2002; Green et al., 
2004; Gomez, 2004) verb argument structures induction (including the related task of 
verb subcategorization frames learning). In general, these approaches rely on syntac-
tic information and/or subcategorization dictionaries for identifying the arguments of 
a verb in a sentence, and/or assume as known the structure types in terms of number 
and order of arguments a verb can assume. The main goal in these approaches is to 
identify the lexemes that are most likely to fill a given verb argument slot. Some 
researchers (Grishman and Sterling, 1994; Framis, 1994; Lapata, 1999; Gomez, 2004) 
try to go beyond these lexemes and generalize the structures that are learned, by com-
puting the similarity between the words occurring across similar structure instances or 
by using lexical resources such as WordNet and Levin (1993)’s verb classes. Most of 
these approaches implement a filtering step, in which inadequate learned structures 
are discarded on frequency-based grounds. 

In this paper, we propose an alternative approach to the problem of determining 
verb argument structures. We present an unsupervised method for learning the argu-
ment structures, modeled over the noisy-channel framework, with the following char-
acteristics: 
• It does not assume that the number and order of arguments are known in ad-

vance. The argument structures are completely learned from naturally occurring 
texts. 

• The argument structures that we learn are grounded in both lexemes and abstrac-
tions (named entities), with the most appropriate abstraction level being auto-
matically determined. 

• It ranks competing structures according to their probability. 
• It makes use of simple tools, such as part of speech and named entity taggers, 

that are both widely available and easy to port across languages and domains. 
 

In the rest of the paper, we first describe our statistical model and the algorithms we 
used to train it (Section 2). We introduce the training data (Section 3) and present a 
human-based evaluation for a representative sample of verb argument structures that 
we learn automatically (Section 4). We end with a discussion of the strengths and 
weaknesses of our model and future work (Section 5). 

2   Our Approach 

We couch our learning problem in a probabilistic noisy-channel framework. This 
framework has been widely used in statistical natural language processing1. In this 
                                                           
1 For a more detailed discussion about the noisy-channel model in natural language processing 

tasks and its characteristics, see Marcu and Popescu (2005). 



framework, one concocts a generative story that explains how data of interest comes 
into existence. For instance, Knight and Marcu (2002)’s generative story shows how 
short sentences can be mapped into long sentences; Brown et al. (1990, 1993) show 
how sentences in English are probabilistically mapped into French sentences; Soricut 
and Brill (2004) show how answers can be mapped into questions. In our model (see 
Figure 4), the generative story explains how natural language sentences (S) are pro-
duced by generating first an abstract argument structure (A) and then mapping this 
structure into strings. Our generative story goes like this:  
1. (a) The head (verb) of the argument structure is first chosen with probability 

P(v). (b) The number of arguments the verb takes is chosen with probability 
narg(no_arg | v). (c) Each argument is generated with probability arg(argument | 
v). Each argument can be either an abstraction/concept (named entity in our case) 
or a word/lexeme. 

2. Once the verb argument structure is generated, a probabilistic parameter phi(N | 
v) decides the number of extra words/concepts that are going to be eventually 
produced in the sentence. 

3. Each extra word/concept is stochastically generated according to the distribution 
ew(word). 

4. If the generative process produces concepts c (named entities), these are trans-
lated into words, with probability t(word | c). 

 
 
 
 
 

Figure 4.  A noisy-channel model for learning verb argument structures 
 

For instance, the sentence Santa has bought them gifts can be generated by the fol-
lowing process. 
1. (a) The head verb bought is first chosen with probability P(bought). (b) The verb 

is associated with 3 arguments with probability narg(3 | bought), which are 
PERSON1, gifts, and PERSON2 (c) with probabilities arg(PERSON1 | bought), 
arg(gifts | bought) and arg(PERSON2 | bought), respectively. At the end of this 
sequence, we have available the following verb argument structure: 
bought(PERSON1, gifts, PERSON2). 

2. One extra word is added with probability phi(1 | bought) 
3. which turns out to be the word has with probability ew(has). 
4. The named entities are translated into words: PERSON1 into Santa and 

PERSON2 into them, with probabilities t(Santa | PERSON1) and t(them | 
PERSON2). 

 
In order to make the training of our model tractable, we make some simplifying as-
sumptions. That is, we assume that the subsequence corresponding to steps 1.a-c 
happens in one shot: an entire event is generated stochastically with probability 
event(verb(arg1,…,argn)). Since named entity taggers work at levels of accuracy 
above 90%, we also assume that it is not necessary to translate concepts into words as 

P(A) 

Source A 

P(S|A)

Noisy-channel S



part of the generative process – we can pre-tag the sentences used for training with 
named entity tags and learn argument structures that include such entities directly. 
From a generative story perspective, this means that we no longer need Step 4 to 
model the translation of entities into words. Mathematically, these choices simplify 
our model tremendously. According to the resulting model, the probability of a sen-
tence S is thus given by the following formula: 
                                                N 
P(S) = Σ P(S,A) = Σ P(A) × P(S|A) = Σ event(A)× phi(N | verb) × Π ew(wi) 
            A                         A          A               i=1 

 
where A is a possible argument structure, N is the number of extra words/concepts 
that are generated, and wi is the ith extra word being generated. In this view, the prob-
ability of the sentence P(Santa/PERSON1 has bought them/PERSON2 gifts) is 
event(bought(PERSON1, gifts, PERSON2)) × phi(1 | bought) × ew(has). 

We use the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to 
estimate the parameters of the model (which are uniformly initialized). To restrict the 
search space and make the training feasible, we assume that a verb can have at most 3 
arguments and that arguments can be only open class words (verbs, adjectives, ad-
verbs and nouns – including pronouns). In order to impose these restrictions, we pre-
tag the data with a part of speech tagger (Ratnaparki, 1996). Now, we are capable of 
doing full EM training on our data, as the number of hidden alignments/argument 
structures that we have to consider for every sentence is reasonable. For example, 
Figure 5 shows all possible hidden argument structures for the sentence He has 
bought them gifts. The arrows leave from the verb and point to the arguments. The 
words not pointed to by any arrow are the extra words. For simplicity, the named 
entity and part of speech tags are not shown. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Possible argument structures in the sentence He has bought them gifts 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 

He has bought them gifts. 



Because we use EM, low probabilities are naturally assigned to uncommon or, hope-
fully, inadequate argument structures. Therefore, it is not necessary to filter our re-
sults in an ad-hoc manner. 

3   Data Preparation 

From TREC’2002 data collection (Voorhees and Buckland, 2002), we have selected 
the 1,500 most frequent verbs for training our model. We extracted from TREC’2002 
corpus all sentences containing occurrences of these verbs. Since our model is not 
ready to properly cope with very long sentences (especially those that contain com-
plex verb sentential complements), we filtered out the sentences longer than 10 
words. We tagged every sentence using the BBN IdentiFinder named entity tagger 
(Bikel et al., 1999) and Ratnaparki’s (1996) part of speech tagger. On average, we 
ended up with nearly 1,400 sentences per verb and a total of 14 million words in the 
collected corpus. 

The use of a named entity tagger is not necessary for our model to work; its use, 
however, enable the model to learn more general argument structures. If entities are 
not used, the structures we learn are completely lexicalized; if a named entity tagger 
is used, we expect to learn both lexicalized and generalized verb argument structures. 
As expected, named entities overcome some of the data sparseness problems and 
yield argument structures that are more likely than the fully lexicalized ones. It is 
worth noting that the most appropriate level of abstraction for arguments (lexemes vs. 
named entities) is learned automatically by the EM algorithm. 

Using WordNet concepts for representing the abstraction level is also possible, 
like many works do. We chose named entities because of the following advantages: 
the set of entities is more intuitive and small, making the learning process more effec-
tive; during tagging, the correct sense of the word is determined. 

Other arrangements we did to our data include: all numbers were replaced by the 
general entity number; excepting it, they and them, all personal pronouns were re-
placed by the entity person; it, they and them were considered to be both person and 
the generic entity thing (that can be anything but person), since they can refer to any-
thing. 

Figure 6 shows a sample of our learning data, with entities in bold.  
 
 
 
 
 
 
 
 
 
 

Figure 6. Data sample 
 

about/IN money/NN home/NN water/NN heaters/NNS are/VBP bought/VBN 
each/DT year/NN 

organization/NNP bought/VBD organization/NN from/IN organization/NN 
last/JJ year/NN 

thing/PRP bought/VBD the/DT outstanding/JJ shares/NNS on/IN date/NNP 

the/DT cafeteria/NN bought/VBD extra/JJ plates/NNS 



It is easy to note that some sentences are completely lexicalized, without entities (e.g., 
the last sentence), while others have several entities. In the first sentence, one can also 
note an error introduced by BBN IdentiFinder: 8 million was misclassified as money. 
Such errors should be naturally discarded by EM as valid arguments, since they are 
not frequent in our corpus. 

4   Evaluation and Analysis 

To assess the correctness of the verb argument structures we learned automatically, 
we carried out two experiments with a randomly selected sample of 20 verbs, assur-
ing that it includes low (i.e., rare), medium and high-frequency (i.e., common) verbs 
in our corpus. The first row in Table 1 shows the selected verbs: “hook”, “spin” and 
“yell” are examples of low-frequency verbs; “raise” and “spend” are examples of 
medium-frequency verbs; “buy”, “die” and “help” are examples of high-frequency 
verbs. 

We compare our results to the results obtained with a baseline algorithm. This al-
gorithm uses a frequency-based method to produce the argument structures: it com-
putes all possible structures that the sentences in our corpus can have, in the same 
way we show in the example in Figure 5, and ranks the produced argument structures 
according to their frequencies. Like in our model, the part-of-speech tags and entities 
are also taken into consideration, i.e., the baseline algorithm is informed about which 
words can be arguments and is able to learn generalized structures. As will be noted, 
this baseline algorithm turns out to be very strong. 

For the experiments we carried out, for each verb, we kept only the argument 
structures learned with probabilities above a threshold of 10-3 in order to make the 
evaluation feasible (for some verbs, our model learns hundreds of possible argument 
structures). Having this, for each verb, we took the same number of structures pro-
duced by the baseline algorithm, selecting the most probable ones.  This way, we 
guarantee that the evaluation is fair. 

In the first experiment, we wanted to verify how many correct/plausible argument 
structures were learned by our model in relation to all structures learned. This is a 
precision measure. We presented the argument structures to three judges (computa-
tional linguists) and asked them to independently judge their correctness/plausibility. 
Each argument structure could be classified as “correct”, “wrong” or “can’t tell” by 
each judge: it should be classified as “correct” if the judge could come up with a 
sentence from the structure; “wrong” in the case it is not possible to come up with a 
sentence; and “can’t tell” when it is not possible to know for sure. 

In the second experiment, in order to verify the correspondence of the learned 
structures to the ones predicted by humans for the verbs, we compared our structures 
to the ones in PropBank. We computed how many structures in PropBank were 
learned by our model, observing the number of arguments and their types in each 
structure and the overall frame. This is, basically, a recall measure. It is important to 
note that precision was not evaluated in relation to PropBank structures because 
PropBank is not complete and, as will be discussed here, our model learns argument 
structures not predicted by this repository. 



The same evaluation was carried out for the structures learned by the baseline al-
gorithm. 

The 2nd and 3rd columns in Table 1 show the number of sentences used for train-
ing our model for each verb and the number of argument structures considered in the 
experiments. The 4th column in Table 1 shows Precision (the average for the three 
judges) and Recall for each verb. In relation to precision, the annotation agreement 
between judges was high: the kappa statistic (Carletta, 1996) was 0.69. A kappa fig-
ure between 0.6 and 0.8 indicates high agreement. In average, our model achieved 
93.7% precision and 73.5% recall, showing good results for low, medium and high-
frequency verbs. The 5th column in the table shows the corresponding results for the 
structures produced by the baseline algorithm: on average, it achieved 81.4% preci-
sion and 59.2% recall. The baseline showed to be a strong one, but our model outper-
formed it. We suspect the good performance of the baseline is explained by the meth-
odology we used to do data collection. 
 

Table 1. Performance of verb argument structure induction algorithm 
Verbs Sentences Structures P & R (%)

Our model 
P & R (%) 

Baseline 
abandon 171 3 100, 50.0 100, 0 

aspire 25 3 100, 100 100, 100 
avoid 482 6 100, 100 100, 100 
buy 2326 44 85.5, 70.0 75.6, 70.0 

cause 1301 29 93.0, 100 63.1, 100 
collapse 153 4 91.6, 75.0 66.6, 50.0 

die 4334 70 85.2, 100 57.5, 100 
earn 971 43 88.3, 75.0 76.7, 50.0 

expect 2597 64 84.3, 100 70.8, 100 
fix 270 18 86.9, 40.0 75.8, 20.0 

hate 594 27 91.3, 100 71.5, 100 
help 3706 54 89.4, 100 76.4, 100 
hook 46 2 100, 33.3 100, 0 
issue 955 10 100, 75.0 73.3, 50.0 
offer 3071 41 95.8, 20.0 77.9, 20.0 
paint 253 5 93.3, 33.3 100, 16.6 
raise 1422 63 93.0, 83.3 66.6, 50.0 
spend 1560 22 96.9, 100 77.2, 25.0 
spin 111 4 100, 66.6 100, 33.3 
yell 110 5 100, 50.0 100, 100 

Avg. 1223 26 93.7, 73.5 81.4, 59.2 
 
We computed the same results for the 10 and 20 most probable structures for each 
verb in order to verify how the consideration of more low-probability structures inter-
fere in the performance of our model. Table 2 shows the results obtained. As ex-
pected, one can note that, as more argument structures we consider, precision de-
creases and recall increases. 



Table 2. Performance of the algorithm for top-10, top-20 and all argument structures 
Our model Baseline Structures 

P (%) R (%) P (%) R (%) 
Top-10 95.2 63.1 86.6 47.5 
Top-20 93.8 65.6 84.8 52.4 

All 93.7 73.5 81.4 59.2 
 
We investigated what led to both recall and precision problems. The recall problems, 
i.e., the inability of the algorithm to induce certain PropBank structures, is explained 
by the following reasons:  
• Some of the argument types found in PropBank structures were not part of our 

training corpus, and, therefore, they were not learned. 
• A few PropBank structures had more than three arguments; our model predicts at 

most 3 arguments. For instance, PropBank lists the sentence John killed Mary 
with a pipe in the conservatory, for which the words John, Mary, pipe and con-
servatory are arguments, while our model predicts structures with two entities of 
type person as arguments and a third argument being the instrument or the loca-
tion of the event, but not both together. 

 
There were two main reasons that explained our precision problems; they pertained to 
improper handling of adverbs and phrasal verbs. Most of times adverbs are adjuncts, 
instead of arguments, and, therefore, should not be included in argument structures. 
However, in some cases, the adverbs are too frequent, co-occurring a lot with some 
verbs, and look essential to the sentence meaning, like in He asked rhetorically and 
He asked incredulously. Corroborating this, PropBank includes adverbs in some ar-
gument structures. Phrasal verbs are also a nuisance to our model. For instance, from 
the sentence He gave up, the model learns that either up is a possible argument for 
gave or that gave asks for 1 argument only, ignoring the particle up completely. 

For exemplifying the learned structures, Figure 7 shows the top 10 structures 
learned for the verb buy with their associated probabilities.  
 

1  buy(organization,organization) 1.20e-01 
2  buy(person,number) 8.44e-02 
3  buy(person,thing) 7.10e-02 
4  buy(organization,thing) 5.63e-02 
5  buy(person,organization) 4.28e-02 
6  buy(organization,person) 3.51e-02 
7  buy(person,house) 1.54e-02 
8  buy(person,thing,anyway) 1.54e-02 
9  buy(money,money) 1.40e-02 
10 buy(organization,organization,date) 8.63e-03 

Figure 7. Argument structures for the verb buy 
 
It is worth noting the following: 
• the 5th and 6th structures are very similar (in the former, a person buys an organi-

zation; in the latter, an organization is bought by a person); 



• the 7th structure has a lexicalized item (house); 
• in the 8th structure, there is an error caused by the inclusion of an adverb (any-

way) in the structure (because it co-occurred enough times with the verb buy in 
the corpus to be learned by the EM algorithm); 

• in the 9th structure, there is an error caused by the phrasal verb buy down (like in 
dollar bought down the yen) (because the system is not able to identify this as a 
phrasal verb and ignore it). 

 
For several verbs, our model was able to learn senses and behaviors not listed in 
PropBank. For instance, for the verb raise, our model learned structures for the 
‘growing’ sense of the verb (like in Peter was raised in a big city), which is not anno-
tated in PropBank. Our model could also learn many possible behaviors (not listed in 
PropBank) for the verb die, for instance: (a) In date, person died; (b) Person died in 
date; (c) Person died in date in location; (d) Person died in location in date. 

5   Conclusion 

The experiments reported in this paper make explicit the strengths and weaknesses of 
our approach. On the positive side, our model is able to yield high accuracy verb 
argument structures with no annotation effort, using relatively simple language tools. 
Our model learns both abstract argument structures, which are grounded in named-
entity types, and specific structures, which are grounded in the lexicon. Not only does 
our method find most of the verb argument structures that are already annotated in the 
PropBank, but it is also able to suggest structures that are not part of this resource. 

On the negative side, our model is still not robust enough to properly handle 
phrasal verbs, adverbs and complex verb sentential complements. Like FrameNet and 
VerbNet, our model does not explicitly differentiate between obligatory verb argu-
ments from adjuncts. According to our interests, in the way the model works, we also 
do not distinguish between active and passive constructions in the learned argument 
structures. However, this is a simple adaptation that could be done by simply distin-
guishing the sentences types. 

A natural extension of this work consists in complementing the argument struc-
tures with more information, e.g., thematic roles and syntactic realization of the ar-
guments. However, these extensions require the use of more sophisticated tools (like 
syntactic and semantic parsers) to identify the arguments roles and syntactic realiza-
tions, making the proposed model less language independent. 

The usefulness of a repository of verb argument structures is unquestionable. It is 
easy to imagine how the learned structures can be used in a variety of natural lan-
guage generation applications (summarization and machine translation, for example) 
to assess whether the generated outputs are consistent with a set of pre-learned struc-
tures. For instance, if such a system generates text that subsumes an inconsistent 
structure, that text is probably semantically ill-formed. 

This paper presented a first investigation on the statistical modeling of argument 
structures learning in the noisy-channel framework. All the detected limitations and 



the improvement possibilities to the model should be investigated in future work, as 
well as the use of the learned argument structures in natural language applications. 
Other models with different generative stories should also be tested. 
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