**Tema 10: Poincaré series** A fairly good reference for principle ideas in this section (see results stated in [Section 2.5, Knieper '02] is also [Nicholls '89]. Let $X$ be a metric space (we have in mind a Hadamard manifold). Let $\Gamma$ be a discrete infinite subgroup of the group of isometries acting on $X$. In particular \[ d(\gamma p,\gamma q) =d(p,q) \quad\text{ for all }\gamma\in\Gamma, p,q\in X. \] The action of $\Gamma$ on $X$ is //properly discontinuous//, that is, for any $K\subset X$ compact the set $\{\gamma\in\Gamma\colon \gamma K\cap K\ne\emptyset\}$ is finite. Given $p,q\in X$ and $s\in\mathbb R$, consider the //Poincaré series// \[ P(s,p,q) := \sum_{\gamma\in\Gamma}e^{-sd(p,\gamma q)}. \] Given $k\in\mathbb N$, let \[ a_k(p,q) := {\rm card}\{\gamma\in\Gamma\colon k-1\le d(p,\gamma q)c$ and diverges for $s0$ then \[ c := \limsup_{k\to\infty}\frac1kA_k = \limsup_{k\to\infty}\frac1k\sum_{\ell=0}^{k-1}A_\ell. \] A trivial, but sometimes useful, remark is that, in the case when $c=0$, the sequence $(B_k)_{k\ge1}$ given by $B_k:= A_k+kd$ for any $d>0$ has as critical exponent $d>0$. **Lemmq 2.** $P(s,p,q)$ converges for $s>\delta(\Gamma)$ and diverges for $s<\delta(\Gamma)$. **Proof.** Note that \[ a_k(p,q)e^{-s(k-1)} \le \sum_{\gamma\in\Gamma\colon k-1\le d(p,\gamma q)