

DEVELOPMENT OF AN EMBEDDED EVOLUTIONARY

CONTROLLER TO ENABLE COLLISION-FREE

NAVIGATION OF A POPULATION OF

AUTONOMOUS MOBILE ROBOTS

A thesis submitted to

The University of Kent at Canterbury

In the subject of Electronic Engineering

for the degree of

Doctor of Philosophy

By

Eduardo do Valle Simões

November 2000

To Liane with love

 i

Abstract

 This work studies evolutionary computation applied to robotics. It has

produced a genetic system where the population exists in a real environment, where they

exchange genetic material and reconfigure themselves as new individuals to form the next

generations, providing the means of running genetic evolutions in a real physical platform.

This thesis describes the techniques that could be adapted from the literature as well as the

novel techniques developed to allow the design of the hardware and software necessary to

embedding the distributed evolutionary system. It also describes the environment where the

experiments were carried out in real time and in simulation. These experiments test the

influence of different parameters, such as different mutation rates and partner selection,

crossover, and reproduction strategies. This work reports comparative studies between

different methods of embedding an evolutionary control circuit in a population of six

autonomous mobile robots. The reviewed architectures are: evolvable hardware; dynamic

state machine; condition-behaviour mapping; pulse stream neural systems; and the chosen

one: RAM neural networks.

 This work proposes and implements a fully embedded distributed

evolutionary system that is able to achieve collision free-navigation in a few hundreds of

trials. Evolution can manipulate the morphology of the robot: the configuration of the

sensors and the motor speed levels. This thesis presents the first experimental proofs of the

embedded evolution concept applied to the evolution of the morphology and control circuit

of a population of real robots in real time. It proposes the Predation strategy that not only

can improve the performance of the system but also prevents the population from being

stuck in local optima. It is demonstrated that evolution can help in the traditional design of

robotic platforms, since it can suggest the best features a robot should incorporate to

perform specific tasks. Finally, this work provides understanding on the implementation of

real evolutionary systems and inspiring insights that have potential of application in the

areas of automation and cybernetics.

 ii

Acknowledgments

 Many people supported and helped during the completion of this work, and

now it is time to find the right words to thank all of them.

 I would like to express my deep gratitude to my very kind friend and

supervisor Dr. Keith Dimond for his guidance, advice, and encouragement during the

whole period of this work.

 I am sincerely thankful for the help and assistance provided by the members

of staff in the Electronic Engineering Laboratory. In particular to Harvey who has

generously supplied his deep and diverse pool of knowledge in 68HC11 design and

technologies; and to Clive and Terry, for all the guidance in manufacturing the robots; to

Dave Smith and Gill for being so friendly every time I showed up with a list of hundreds of

components to be ordered.

 My sincere thanks also to my friends Patrícia and Flávio Zigelmann from the

Department of Statistics for the inspiration and endless explanations on how to analyse my

experimental data.

 During the development of my Ph.D., three colleagues stood out and marked

this period with a special shine. They are that kind of people you do not even need to thank,

because they already know… Still, I would like to express my deepest affection to Anne,

Dimitrios, and Rick, for all the unconstrained help, productive discussions, and friendship

that I hope will last far beyond this Ph.D.

 I am also very grateful to the CNPq, the Brazilian Council for Research, for

providing the opportunity to study at the University of Kent.

 I would also like to thank all my friends in the Electronic Engineering

Laboratory, especially Alex, Shanta, Fuadd, Osama, Hossam, Samuel, Elina, Julia, and

William for providing support and a friendly environment. Particularly to Jose for not

touching the electrostatic sensitive robots, and last, but by no means least, to Dr. Ng for

helping so promptly.

 iii

 Finally, I would like to thank my family for giving me the initial

encouragement and tools to pursue my ambitions. In particular, I wish to thank my wife,

Liane who, being a scientist herself, has contributed directly and indirectly to my work.

Without her loving support and encouragement over the years I could never have managed

to get this work done.

 iv

Publications arising from this work

• Simões, E.D.V.; Dimond, K.R. An evolutionary controller for autonomous multi-

robot systems. In IEEE International Conference on Systems, Man and Cybernetics,

October, 1999, Tokyo, Japan, v.6, pp. VI596-VI601, 1999, Invited Paper.

• Simões, E.D.V.; Dimond, K.R. Embedding a distributed evolutionary system into a

population of autonomous mobile robots. To be published at the IEEE International

Conference on Systems, Man and Cybernetics, October, 2001, Tuscon, USA.

• Simões, E.D.V.; Dimond, K.R. Predation: an approach to improving the evolution

of real robots with an embedded evolutionary controller. Submitted to IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2001), October

2001, Maui, Hawaii, USA.

• Simões, E.D.V.; Dimond, K.R. Inheritance Selection: inheriting fitness values in

an embedded evolutionary system. In preparation to be submitted to IEE

Proceedings: Computers and Digital Techniques.

 v

Table of Contents

Abstract...i

Acknowledgments ...ii

Publications arising from this work..iv

Table of Contents ..v

List of Figures...ix

List of Tables ..xxi

Glossary.. xxii

1 Introduction ..1

1.1 Problem Delimitation..5

1.2 Objective...8

1.3 Thesis Organisation ..10

2 Evolutionary Robotics..13

2.1 Evolutionary Computation..13

2.1.1 Genetic Algorithms ...14

2.2 Evolutionary Robotic Systems..19

2.2.1 Issues on Using Simulators ...21

2.2.2 Embedded Evolution ...23

2.2.3 Encoding the Characteristics of the Robot ..25

3 Robot Control Circuit...30

3.1 Embodying an Evolvable Control Circuit...30

3.2 Alternatives for the Controller Architecture ...34

 vi

3.2.1 Evolvable Hardware ..35

3.2.2 Dynamic State Machine...39

3.2.3 Condition-Behaviour Mapping..41

3.2.4 Pulse Stream Neural System..47

3.2.5 Boolean Neural Network ...48

4 The Evolutionary System ...54

4.1 Individual Control Strategy...55

4.1.1 The Navigation Control Circuit...58

4.2 Evolutionary Control System..65

4.2.1 Fitness Evaluation ...69

4.2.2 Partner Selection..71

4.2.3 Crossover Strategy...73

4.3 System Specification...78

4.3.1 Overview ...78

4.3.2 Introduction to the Robot Architecture..81

4.3.3 Computing System ..86

4.3.4 Communication Module..88

4.3.5 Sensor Module...92

4.3.6 Motor Drive Module..95

4.3.7 Power Management ...97

5 Robot Design..98

5.1 The Chassis Design...99

5.1.1 Shape and Size...99

5.1.2 The Adopted Solution ...100

5.2 Computing System..101

5.3 Motor Drive Circuit ..106

 vii

5.4 Sensors Circuit..107

5.5 Communication Circuit ..108

6 Preliminary Experiments ..111

6.1 Environment Organisation..112

6.1.1 Data Monitoring ..113

6.2 Experiment 1: The Influence of the Lifetime..116

6.2.1 Experiment 1.1: the Simple Environment ...121

6.2.2 Experiment 1.2: the Complex Environment..125

6.2.3 Discussion of the Experimental Results ..129

6.3 Experiment 2: Evolving the Sensor Configuration...131

6.3.1 Discussion of the Experimental Results ..139

6.4 Experiment 3: Evolving an Unstructured Controller140

6.4.1 Experiment 3.1: Evolving with a Simple Fitness Function.....................147

6.4.2 Experiment 3.2: Evolving a Biasing Fitness Function151

6.4.3 Experiment 3.3: Evolving a Strongly Biasing Function..........................154

6.4.4 Discussion of the Experimental Results ..156

6.5 Experiment 4: Inheritance...158

6.5.1 Experiment 4.1: Inheritance and a Biasing Fitness Function159

6.5.2 Experiment 4.2: Inheritance and a Strongly Biasing Function................163

6.5.3 Discussion of the Experimental Results ..165

7 Simulated Experiments ..167

7.1 The Simulator ...168

7.2 Experiment S1: Simulated Evolution ...170

7.2.1 Discussion of the Experimental Results ..176

7.3 Experiment S2: Asexual Reproduction ..178

7.3.1 Discussion of the Experimental Results ..181

 viii

7.4 Experiment S3: A Different Way to Evolve ...183

7.4.1 Discussion of the Experimental Results ..185

7.5 Experiment S4: Disabling Back Mutation ..186

7.5.1 Discussion of the Experimental Results ..189

7.6 Experiment S5: The Neural Network Controller..190

7.6.1 Discussion of the Experimental Results ..193

7.7 Experiment S6: Predation ...194

7.7.1 Discussion of the Experimental Results ..197

8 Embedded Evolution..199

8.1 Evolving with a Black Box Controller ...200

8.1.1 Discussion of the Experimental Results ..206

8.2 Evolving with a Neural Network Controller...208

8.2.1 Discussion of the Experimental Results ..212

9 Conclusion..215

9.1 Conclusions Arising From the Experimental Results.....................................216

9.2 Principal Achievements ..222

9.3 Suggestions for Future Research ..225

References ...227

Appendix A ... A-i

Appendix B...B-i

Appendix C...C-i

 ix

Table of Figures

Figure 1.1 – Two different ways of applying evolution to a robotic system. 2

Figure 1.2 – How the evolvable control circuit fits in the robot architecture....................... 3

Figure 1.3 – Different ways to apply evolutionary techniques to robotics: simulated

environment (a); simulated evolution with real robot evaluation (b); and real

population tethered to an external computer where the evolutionary system resides (c).

... 3

Figure 1.4 – The genetic material stored in the robot RAM defines not only the control

circuit, but also the morphological features of the robot. .. 4

Figure 1.5 – General view of the six robots and their working domain. 6

Figure 1.6 – The continuous evolutionary process of the robot population. 7

Figure 1.7 – The proposed system consists of a distributed evolutionary controller

embedded within a population of real robots. All robots are linked by radio, forming a

decentralised system. ... 9

Figure 2.1 – General scheme of a standard genetic algorithm.. 17

Figure 2.2 – Robot body containing different sockets used to connect different blocks that

contain motors, sensors, and actuators with different capacities................................. 21

Figure 3.1 – The programmable logic cell. The settings of the switches that control the cell

are specified by 10 bits; Bits B0 and B1 control the input/output multiplexers and bits

D0 - D7 specify the desired Boolean function... 38

Figure 3.2 – The evolvable hardware controller: a 256 logic-cell (LC) array. Eight 2-bit

proximity sensors (S1 to S8) connect to specific cells on the first column. Two groups

with five specific cells each produce the output signal to the motor drivers (the 5-bit

outputs allow 32 speed levels to each motor). All 256 logic cells are configured with

2560 bits (10 bits per cell) stored into the configuration bit string............................. 39

 x

Figure 3.3 – The evolvable Dynamic State Machine: S1 to S4 are 2-bit infrared proximity

sensors; and M1 and M2 are the motor driver modules. This solution was inspired by

[Tho97a]. ... 40

Figure 3.4 – The implementation of an evolvable controller based onto a

Condition/Behaviour mapping scheme. The controller asks the main processor about

the conditions faced by the robot, and then selects the most adequate behaviour to be

executed by the processor. This solution was inspired by [Mat97b]........................... 42

Figure 3.5 – Example of a lower-level behaviour containing a set of subroutines that are

chosen and adjusted by evolution. M1 and M2 are the left and right motors of the

robot, and S1 and S2 are the left and right sensors. V1 and V2 are the speed levels of

the corresponding motor and Time is the time delay while the subroutine is active. .. 44

Figure 3.6 – Example of three lower-level behaviours and their corresponding set of

subroutines. S1 and S2 are the left and right sensors, V1 and V2 are the speed levels of

the corresponding motor, and T is the delay of one iteration. HBIS1 and HBIS2 are the

light intensity of the home beacon received by the left and right sensors respectively.

... 45

Figure 3.7 – The incremental control system: each behaviour is selected by a central

mapping of condition to behaviour that translates the sensor readings into conditions

and chooses the appropriate evolvable behaviour to control the motor drivers. 46

Figure 3.8 – A self-standing CPWM prototype board controlling a robot as illustrated in

[Rey95]. ... 48

Figure 3.9 – Typical RAM node or neuron as illustrated in [Aus94]................................. 49

Figure 3.10 – The connectivity pattern of a WISARD discriminator, as illustrated in

[Ale84]... 50

Figure 3.11 – RAM Neural architecture controlling a 2-wheeled Robot: S1 to S4 are

infrared sensors; S, F, and R represent the groups of neurons of the classes Stop,

Front, and Reverse, containing five neurons each... 52

Figure 4.1 – Architecture of the robot control system: the Sensor Module and Motor Drive

Module are configured by the Central Control Module, which processes data from the

sensors and commands the motor drive module in how to drive the robot. 56

 xi

Figure 4.2 – The Robot Central Control comprises three main subsystems: the

Evolutionary Control, the Supervisor Algorithm, and the Navigation Control........... 57

Figure 4.3 – The navigation control circuit interfacing the sensor and motor drive modules,

and the evolutionary control. ... 59

Figure 4.4 – The neural network in the navigation control circuit. S1 to Sn are the binary

sensor readings. The Output Adders (O1 to On) count the number of active neurons in

the group. C1 to Cn are the classes of commands to the motor drive module. 60

Figure 4.5 – Example of eight possible commands to the motor drive module. FS, FM, FF,

and S tell the command interpreter the level of speed of the motors and TRS, TRL,

TLS, and TLL specify how the robot is going to turn. ... 61

Figure 4.6 – Example showing a 3-input neuron: Nm,n. ... 62

Figure 4.7 – Example showing the connectivity of 3-input neurons in the neural network

architecture, containing m groups with n neurons each. Randomly initialised, the

Connectivity Matrix defines which sensors are connected to the input lines Li, Lj, and

Lk. .. 63

Figure 4.8 – A 4-input neuron (a) and its 16 bits of memory (b). B0 to B15 are the binary

contents of the neuron. The four inputs (i0, i1, i2, and i3) form the address that points

to a single bit in memory. S1, S2, S3, and S4 are the sensor outputs from the sensor

module. The figure shows how to connect the 4-input neuron to four 1-bit sensors (c)

or to two sensors with 2 bits (d). ... 64

Figure 4.9 – A RAM Neural Network architecture controlling a 2-wheeled Robot: S1 to S8

are infrared sensors; S, FS, FM, FF, TRS, TRL, TLS, and TLL represent the groups of

neurons of the classes Stop, Front Slow, Front Medium, Front Fast, Turn Right Short,

Turn Right Long, Turn Left Short, and Turn Left Long... 66

Figure 4.10 – An evolutionary process of evaluation, selection, and reproduction (or

crossover). ... 67

Figure 4.11 – The cyclic procedure of the robots, or a generation. 68

Figure 4.12 – An example of how a fitness function can be constructed. 71

Figure 4.13 – An example of how the genes in the chromosome are used to configure the

sensor module (eight pairs of genes: B1, B2 to B15, B16), the motor drive module (ten

 xii

genes: B17 to B26), and the navigation control (neuron size × number of neurons: B27

to Bn). .. 74

Figure 4.14 – The strategy to select the sensor module features. As all features are

recessive: only the robots containing “0,0” in their respective positions in the

chromosome have the corresponding sensor enabled.. 74

Figure 4.15 – An example of the possible combinations that can result from the crossing of

two parents containing both the dominant and the recessive genes. 75

Figure 4.16 – Working domain containing the environment where the robots work, as well

as the monitor computer connected to the radio link. ... 79

Figure 4.17 – The monitor computer connected to the radio. .. 80

Figure 4.18 – A close-up of the radio board. .. 80

Figure 4.19 – Four different configurations of the 2.50m × 2.50m workspace showing how

the environment can be modified for the experiments, from simple (a) to very

complex (d).. 81

Figure 4.20 – An example on how simple (a) and complex (b) environments can be

produced by rearranging the obstacles and walls. ... 82

Figure 4.21 – Robot architecture (a) representing the position of the proximity sensors and

motors, the Central Control, the Motor Drive, and the Sensor Modules. A round

bumper (b) with collision sensors surrounds the robot. .. 83

Figure 4.22 – A view of the robot team (a) and top-view of Robot 2 (b), showing the

position of the infrared sensors and bumpers. ... 84

Figure 4.23 – The robot modular architecture, containing the communication system, the

computing system, the sensor pack, the power management pack, and the motor drive

pack.. 85

Figure 4.24 – Components of the robot architecture, showing how the microprocessor

interfaces to the other units. The power monitor can shut down the processor if the

main battery voltage goes low. .. 86

Figure 4.25 – Diagram of the computing system, showing how the processor interfaces the

memory, the radio, and the sensor and motor packs.. 87

 xiii

Figure 4.26 – Diagram of the Communication System, showing how two radios, a

transmitter and a receiver, form the RS232 interface to the processor........................ 89

Figure 4.27 – Structure of the messages sent by the robots via the radio........................... 91

Figure 4.28 – Example of three messages sent by Robot 1 and Robot 2. Message 1 orders

all robots to stop. In message 2, Robot 2 sends its fitness and chromosome to all other

robots. Robot1 sends message 3 to acknowledge that message 2 was received without

problems. ... 91

Figure 4.29 – Illustration of how each sensor reading is converted into a 2-bit signal by the

analogue to digital block (S/C block) and selected to be connected to the neuron

inputs. .. 92

Figure 4.30 – Illustration of the position of the sensors in the robot periphery, showing

approximately the range of each sensor relative to the minimum distance they can

detect a white wall. .. 94

Figure 4.31 – The four round bumpers with collision sensors and the position of four

possible collisions with obstacles. Collision 1 is detected by Cs1 and Cs8; collision 2

by Cs8 only; collision 3 by Cs7 only; and collision 4 by Cs7 and Cs6. 95

Figure 4.32 – The motor drive module. The speed levels Fast, Medium, and Slow are

specified by the chromosome. The command interpretation block has a set of

predefined routines to drive both motors. The microprocessor implements most of this

module, including the pulse-width modulation signals that control the motors.......... 96

Figure 5.1 – The first (left) and the second (right) prototypes of the robot development. . 98

Figure 5.2 – Top view of the robot chassis showing the position of the motors and wheels,

the batteries, and the round bumpers. .. 101

Figure 5.3 – Circular chassis construction and placement of the motors and batteries.... 102

Figure 5.4 – Configuration of the system memory. .. 104

Figure 5.5 – PWM signal with 50% power transferred to the controlled motor. 107

Figure 5.6 – The current through the emitter is progressively increased to allow the

detection of obstacles with four ranges. .. 108

Figure 5.7 – The communication protocol used by the robots. .. 110

 xiv

Figure 6.1 – The different shapes of the obstacles and walls. .. 113

Figure 6.2 – Data displayed on the screen of the monitor computer for one of the

experiments at generation 24... 114

Figure 6.3 – Data obtained by the monitor computer stored in GENE.TXT.................... 115

Figure 6.4 – Data converted into a file called GRAF.TXT, containing the fitness of the

robots for every generation.. 115

Figure 6.5 – Position of the sensors on the robot and their angle in relation to the central

line of the robot. .. 117

Figure 6.6 – Configuration of the neural net with four groups of seven neurons............. 119

Figure 6.7 – Configuration of the simple environment for the experiments in this section.

... 120

Figure 6.8 – Experiment 1.1a: Comparison of five different sensor configurations

evaluated in the simple environment during 30 minutes. Both controller and

morphology are fixed during the experiment. The tested configurations are: S1,S4; S1;

S1,S4,S6; S3; and S1,S3,S7. ... 122

Figure 6.9 – Experiment 1.1b: Comparison of six different sensor configurations

evaluated in the simple environment during 30 minutes. Both controller and

morphology are fixed during the experiment. The tested configurations are: S1,S2,S8;

S4,S6; S3,S7; S2,S6; S2,S8; and S2,S7... 123

Figure 6.10 – The reflected infrared beam (regular arrows) from one sensor interferes

(dotted arrow) with another. .. 124

Figure 6.11 – Configuration of the complex environment for the experiments in this

section.. 125

Figure 6.12 – Experiment 1.2a: Comparison of six different sensor configurations of

Experiment 1.1b now tested in a complex environment during 30 minutes. Both

controller and morphology are fixed during the experiment. The tested configurations

are: S1,S2,S8; S4,S6; S3,S7; S2,S6; S2,S8; and S2,S7.. 126

Figure 6.13 – Experiment 1.2b: Comparison of six different sensor configurations

evaluated in the complex environment during 30 minutes. Both controller and

morphology are fixed during the experiment. The tested configurations are: All off; S1;

 xv

S4; S6; S3; and S7. The configurations S1 and S3 were tested before in Experiment

1.1a. ... 127

Figure 6.14 – Experiment 1.2c: Comparison of five different sensor configurations

evaluated in the complex environment during 30 minutes. Both controller and

morphology are fixed during the experiment. The tested configurations are: S1,S3,S7;

S1,S4; S1,S3; S1,S6; and S1,S7. The configurations S1,S3,S7 and S1,S4 were tested

before in Experiment 1.1a. .. 128

Figure 6.15 – Experiment 1.2d: Comparison of five different sensor configurations

evaluated in the complex environment during 30 minutes. Both controller and

morphology are fixed during the experiment. The tested configurations are:

S7,S6,S4,S3,S2,S1; S7,S6,S3,S1; S6,S4,S3,S1; S7,S3,S2,S1; and S4,S3,S2,S1. 129

Figure 6.16 – Configuration of the environment used in this experiment........................ 134

Figure 6.17 – Experiment 2.1: Evolution of the sensor configuration in an environment of

medium complexity, mutation rate of 5%, sexual reproduction, and generation time of

30s. The controller and speed levels are fixed during the experiment. Here, Robotn is

the fitness of Robot n in the generation... 135

Figure 6.18 – Experiment 2.2: Evolution of the sensor configuration in an environment of

medium complexity, mutation rate of 0%, sexual reproduction, and generation time of

30s. The controller and speed levels are fixed during the experiment. Here, Robotn is

the fitness of Robot n in the generation... 137

Figure 6.19 – Experiment 2.3: Comparison of five mutation rates (0%, 5%, 10%, 20%,

and 40%) for the evolution of the sensor configuration in an environment of medium

complexity, with sexual reproduction, and generation time of 30s. Here, Average is

the average fitness of all robots in the generation and Best is the fitness of the best

robot in the generation for the respective mutation rate. ... 138

Figure 6.20 – The Black Box controller connected to eight sensors with 1-bit resolution. It

produces a 3-bit signal to command the motor drive module according to the encoded

commands. “111” is not used and is interpreted as FF by the motor drive module.. 141

Figure 6.21 – The black box containing three 256-bit lookup tables that form the 3-bit

command to the motor drive module... 143

 xvi

Figure 6.22 – The Black Box controller implemented using a 256-byte memory. Three bits

from the output form the 3-bit command to the motor drive module. 144

Figure 6.23 – Experiment 3.1a: Evolution of the black box controller using a simple

fitness function in an environment of medium complexity, mutation rate of 3%, sexual

reproduction, and generation time of 60s. The population was randomly initialised.

Here, Robotn is the fitness of Robot n and PopAv is the average fitness of all robots in

the generation. ... 148

Figure 6.24 – Experiment 3.1b: Evolution of the black box controller using a simple

fitness function in an environment of medium complexity, mutation rate of 3%, sexual

reproduction, and generation time of 60s. The population was initialised as the hand-

designed controller. Here, Robotn is the fitness of Robot n and PopAv is the average

fitness of all robots in the generation. ... 149

Figure 6.25 – Experiment 3.2a: Evolution of the black box controller using a biasing

fitness function in an environment of medium complexity, mutation rate of 3%, sexual

reproduction, and generation time of 60s. The population was randomly initialised.

Here, Robotn is the fitness of Robot n and PopAv is the average fitness of all robots in

the generation. ... 152

Figure 6.26 – Experiment 3.2b: Evolution of the black box controller using a biasing

fitness function in an environment of medium complexity, mutation rate of 3%, sexual

reproduction, and generation time of 60s. The population was initialised as the hand-

designed controller. Here, Robotn is the fitness of Robot n and PopAv is the average

fitness of all robots in the generation. ... 153

Figure 6.27 – Experiment 3.3a: Evolution of the black box controller using a strongly

biasing fitness function in an environment of medium complexity, mutation rate of

3%, sexual reproduction, and generation time of 60s. The population was randomly

initialised. Here, Robotn is the fitness of Robot n and PopAv is the average fitness of

all robots in the generation. ... 155

Figure 6.28 – Experiment 3.3b: Evolution of the black box controller using a strongly

biasing fitness function in an environment of medium complexity, mutation rate of

3%, sexual reproduction, and generation time of 60s. The population was initialised as

 xvii

the hand-designed controller. Here, Robotn is the fitness of Robot n and PopAv is the

average fitness of all robots in the generation. .. 157

Figure 6.29 – Experiment 4.1a: First test of the evolution of the black box controller using

inheritance selection and a biasing fitness function in an environment of medium

complexity, mutation rate of 3%, sexual reproduction, and generation time of 60s. The

population was initialised as the hand-designed controller. Here, Robotn is the fitness

of Robot n in the generation and AvRn is the average fitness scored by robot n in the

current and the previous two generations. ... 160

Figure 6.30 – Experiment 4.1b: Evolution of the black box controller using a corrected

inheritance selection and a biasing fitness function in an environment of medium

complexity, mutation rate of 3%, sexual reproduction, and generation time of 60s. The

population was initialised as the hand-designed controller. Here, Robotn is the fitness

of Robot n in the generation and AvRn is the average fitness scored by robot n in the

current and the previous two generations. ... 162

Figure 6.31 – Experiment 4.1c: Evolution of the black box controller using inheritance

selection and a biasing fitness function in an environment of medium complexity,

mutation rate of 3%, sexual reproduction, and generation time of 60s. The population

was randomly initialised. Here, Robotn is the fitness of Robot n in the generation and

AvRn is the average fitness scored by robot n in the current and the previous two

generations... 162

Figure 6.32 – Summary of Experiment 4.1c: Summary showing the average fitness

(Average) of all robots and the fitness of the best robot (BestRob) in the generation.

... 163

Figure 6.33 – Experiment 4.2a: Evolution of the black box controller using inheritance

selection and a strongly biasing fitness function in an environment of medium

complexity, mutation rate of 3%, sexual reproduction, and generation time of 60s. The

population was randomly initialised. Here, Robotn is the fitness of Robot n and PopAv

is the average fitness of all robots in the generation.. 164

Figure 6.34 – Experiment 4.2b: Evolution of the black box controller using inheritance

selection and a strongly biasing fitness function in an environment of medium

complexity, mutation rate of 3%, sexual reproduction, and generation time of 60s. The

 xviii

population was initialised with a hand-designed controller. Here, Robotn is the fitness

of Robot n and PopAv is the average fitness of all robots in the generation. 165

Figure 7.1 – General view of the evaluation phase of the simulator. 168

Figure 7.2 – Experiment S1.1: Simulated evolution of the black box controller using

inheritance selection, and sexual reproduction for two different mutation rates: 0.1%

and 0.5%. Here, AvnRobMrm% and BestnRobMrm% are the average fitness of all the

robots and the fitness of the best robot in the generation for the tests with n robots and

mutation rate of m%. ... 173

Figure 7.3 – Experiment S1.2: First 4500 generations of Experiment S1.1, showing more

details of the simulated evolution of the black box controller using inheritance

selection, and sexual reproduction for two different mutation rates: 0.1% and 0.5%.

Here, AvnRobMrm% and BestnRobMrm% are the average fitness of all the robots and

the fitness of the best robot in the generation for the tests with n robots and mutation

rate of m%.. 174

Figure 7.4 – Experiment S1.3: Simulated evolution of the black box controller using

inheritance selection, and sexual reproduction for four different mutation rates: 0.1%,

0.5%, 1%, and 3%. Here, Av is the average fitness of all the robots and Best is the

fitness of the best robot in the generation.. 175

Figure 7.5 – Experiment S1.4: Simulated evolution of the black box controller using

inheritance selection, and sexual reproduction for four different mutation rates: 10%,

20%, 50%, and 80%. Here, Av is the average fitness of all the robots and Best is the

fitness of the best robot in the generation.. 176

Figure 7.6 – Experiment S1.5: Simulated evolution of the black box controller of the six

robots using inheritance selection, sexual reproduction, and mutation rate of 0.0%.

Here, Robotn is the fitness of Robot n in the generation... 177

Figure 7.7 – Experiment S2.1: Simulated evolution of the black box controller using

inheritance selection, and asexual reproduction for two different mutation rates: 0.1%,

and 0.5%. Here, Av is the average fitness of all the robots and Best is the fitness of the

best robot in the generation. .. 179

Figure 7.8 – Experiment S2.2: Simulated evolution of the black box controller using

inheritance selection, and asexual reproduction for four different mutation rates: 0.1%,

 xix

0.5%, 1%, and 10%. Here, Av is the average fitness of all the robots and Best is the

fitness of the best robot in the generation.. 180

Figure 7.9 – Summary: Comparison between the results of Experiments S1.1 and S2.1 for

the mutation rates of 0.1%, and 0.5%. The experiments tested the simulated evolution

of the black box controller using inheritance selection for sexual and asexual

reproduction. Here, Av is the average fitness of all the robots and Best is the fitness of

the best robot in the generation. .. 182

Figure 7.10 – Experiment S3: The results of Experiment S3 compared to Experiment S1.1

for the mutation rate of 0.5%. The experiments tested the simulated evolution of the

black box controller using inheritance selection and sexual reproduction with and

without command manipulation. Here, Av is the average fitness of all the robots and

Best is the fitness of the best robot in the generation. ... 184

Figure 7.11 – Experiment S4.1: Simulated evolution of the new strategy of back-mutation

prevention for sexual and asexual reproduction. The experiment tested the simulated

evolution of the black box controller using inheritance selection with command

manipulation. Only one command (3 bits) is allowed to mutate each time. Here, Av is

the average fitness of all the robots and Best is the fitness of the best robot in the

generation. ... 188

Figure 7.12 – Experiment S4.2: Simulated evolution of the strategy of back-mutation

prevention with asexual reproduction for different population sizes. The experiment

tested the simulated evolution of the black box controller using inheritance selection

with command manipulation. Only one command (3 bits) is allowed to mutate each

time. Here, Popn is the fitness of the best robot in the generation for the test with a

population of n robots.. 189

Figure 7.13 – Experiment S5: Simulated evolution of the neural controller using

inheritance selection and sexual reproduction for four different mutation rates: 0.5%,

1%, 3%, and 15%. Here, Av is the average fitness of all the robots and Best is the

fitness of the best robot in the generation.. 193

Figure 7.14 – Experiment S6.1: Simulated evolution of the predation strategy compared to

evolution without predation. The experiments tested the simulated evolution of the

neural controller using inheritance selection, sexual reproduction, and mutation rate of

 xx

0.0%. Here, Robotn is the fitness of Robot n in the generation in the experiment with

predation and S5Best00% is the fitness of the best robot in the generation in the

experiment without predation (Experiment S5). ... 196

Figure 7.15 – Experiment S6.2: Simulated evolution of the neural controller using

inheritance selection, sexual reproduction, and predation for four different mutation

rates: 0.5%, 1%, 3%, and 15%. Here, Av is the average fitness of all the robots and

Best is the fitness of the best robot in the generation. ... 197

Figure 8.1 – General view of the six robots in the environment of medium complexity used

in the experiments in this chapter.. 199

Figure 8.2 – Experiment E1: Evolution of the black box controller and morphology using

inheritance selection and a biasing fitness function in an environment of medium

complexity, with sexual reproduction, command manipulation, back-mutation

prevention, and generation time of 60s. Only one command (3 bits) is allowed to

mutate each time. Here, Robotn is the fitness of Robot n in the generation.............. 204

Figure 8.3 – Summary of Experiment E1: Summary showing the average fitness

(Average) of all robots and the fitness of the best robot (BestRob) in the generation.

... 205

Figure 8.4 – Details of Experiment E1: More details of the experiment showing the

average fitness of each robot in the last six generations. Here, AvRn is the average

fitness scored by robot n in the current and the previous five generations................ 205

Figure 8.5 – Experiment E2: Evolution of the neural controller and morphology using

inheritance selection and a simple fitness function in an environment of medium

complexity, with sexual reproduction, predation, mutation rate of 1%, and generation

time of 60s. Here, Robotn is the fitness of Robot n in the generation....................... 211

Figure 8.6 – Summary of Experiment E2: Summary of the experiment showing the

average fitness (Average) of all robots and the fitness of the best robot (BestRob) in

the generation. ... 211

Figure 8.7 – Details of Experiment E2: More details of the experiment showing the

average fitness of each robot in the last six generations. Here, AvRn is the average

fitness scored by robot n in the current and the previous five generations................ 212

Figure 9.1 – A pre-trained evolutionary controller connected to a real device. 225

 xxi

List of Tables

Table 3.1 – An example of condition-behaviour mapping.. 43

Table 4.1 – Encoding of the Neural Network Commands. ... 60

Table 4.2 – Probability of a Phenotype to be present. ... 75

Table 4.3 – Conversion of the speed levels of the robot. .. 76

Table 4.4 – The codes used in the robot messages and their translation. 90

Table 6.1 – Initial position and orientation of the robots in the environment. 112

Table 6.2 – Summary of the Experimental Settings.. 121

Table 6.3 – Summary of the Experimental Settings.. 134

Table 6.4 – Summary of the Experimental Settings.. 147

Table 6.5 – Summary of the Experimental Settings.. 159

Table 7.1 – Encoding of the Black Box Commands. .. 170

Table 7.2 – Summary of the Experimental Settings.. 172

Table 7.3 – Summary of the Experimental Settings.. 179

Table 7.4 – Summary of the Experimental Settings.. 184

Table 7.5 – Summary of the Experimental Settings.. 187

Table 7.6 – Encoding of the Neural Network Commands. ... 190

Table 7.7 – Summary of the Experimental Settings.. 192

Table 7.8 – Summary of the Experimental Settings.. 195

Table 8.1 – Encoding of the Black Box Commands. .. 202

Table 8.2 – Summary of the Experimental Settings.. 204

Table 8.3 – Summary of the Experimental Settings.. 210

 xxii

Glossary

AE .. Artificial Evolution

AI ... Artificial Intelligence

ALife Artificial Life

ALU Arithmetic Logic Unit

AM Amplitude Modulation

ANN Artificial Neural Network

ANS Artificial Neural Systems

ASCII American Standard Code for Information Interchange

CD-ROM Compact Disk Read-only Memory

CMOS Complementary Metal Oxide Silicon

CPWM Coherent Pulse Width Modulation

DC Direct Current

DIP Dual Inline Package

DSM Dynamic State Machine

EA .. Evolutionary Algorithm

EC .. Evolutionary Computation

EE .. Embedded Evolution

EEPROM Electronically-Erasable Programmable Read-only Memory

EHW Evolvable Hardware

ER .. Evolutionary Robotics

ES .. Evolutionary Systems

FF ... Front Fast

FM Front Medium

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GAs Genetic Algorithms

GP .. Genetic Programming

GSN Goal-Seeking Neuron

IE ... Incremental Evolution

 xxiii

IR ... Infrared

ISA Industry Standard Architecture

LC .. Logic Cell

LED Light-emitting Diode

NN Neural Network

PC .. Personal Computer

PCB Printed Circuit Board

Ph.D. Doctor of Philosophy

PID Proportional Integral Derivative

PLN Probabilistic Logic Neuron

pRAM Probabilistic Random Access Memory

PROM Programmable Read-only Memory

PS ... Pulse Stream

PWM Pulse-width Modulation

RAM Random Access Memory

ROM Read-only Memory

S/C Signal Conversion

SAGA Species Adaptation Genetic Algorithm

SCI Serial Communication Interface

TLL Turn Left Long

TLS1 Turn Left Short1

TLS2 Turn Left Short2

TPU Time Processing Unit

TRL Turn Right Long

TRS1 Turn Right Short1

TRS2 Turn Right Short2

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VIA Versatile Interface Adaptor

 1

1 INTRODUCTION

 This chapter introduces this Ph.D. thesis, explaining what is proposed and

the contributions to the state-of-the-art. It presents the perspectives of Evolutionary

Robotics (ER) for multi-robot control and overviews its main approaches, unanswered

problems, and some promising directions. This chapter also introduces the workspace, the

chosen application, and the delimitation of the Ph.D. project. It also shows a synopsis of

the thesis organisation, chapter by chapter. The concepts mentioned here will be thoroughly

explained in Chapters 2 and 3.

 This work is concerned with automated synthesis of robotic embedded

controllers using Evolutionary Computation [Par96]. This is a new research field also

known as: Artificial Evolution, Evolvable Systems, or Evolutionary Electronics [Ale66].

Evolutionary methods have been employed for developing robot controllers automatically

in simulation [Cli96], on physical systems [Hig96b], and combinations. Specifically, this

work concentrates in embedding an evolutionary algorithm within a population of physical

robots.

 A review of the state-of-the-art of robot control strategies showed the need

for contributions in the areas of self-training [Cli92] [Gra96], autonomy and auto-

adaptation to changes in the environment where the robots are operating [Hus93] [Per96b]

[Tom96]. Therefore, the main interest of this work will be the development of a strategy

for controlling a group of robots that combines these approaches into a promising solution

involving Evolutionary Computation [Yao97]. It is intended to be applied to control a

group (population) of robots in the field, instead of just using the evolving group to

develop an optimum controller for a single robot, what has been the main purpose of EC

until now [Flo98b]. The proposed evolutionary system innovates for it can produce not

only a trained robot but also an open-ended evolution, continuously adapting the robot

controllers to cope with a variable environment. Figure 1.1 shows the difference between

applying evolution as a solution finder (the traditional approach) and as an open-ended

evolutionary system. The first concentrates on producing an efficient combination of the

 2

available resources in a fixed environment until some threshold level is achieved. The user

then chooses the best robot configuration to replicate. If the environment conditions

change, the robot controller is doomed to fail [Jak95] [Jak96]. The proposed system is able

to face a mutable environment, since the robots are constantly being modified by evolution

to fit these variations.

Solution Finder

! Produce an efficient
combination of the
available resources

! Fixed environment
! User chooses the best

robot configuration to
be replicated

Open-ended Evolution

! Produce a self -adapting
robot system

! Mutable environment
! The robots will

constantly adapt to the
environment

Figure 1.1 – Two different ways of applying evolution to a robotic system.

 Instead of using Artificial Evolution (AE) [Flo94] [Fun00a], such as Genetic

Algorithms (GAs) [Mit95], as an optimisation technique for a conventional Neural

Network (NN) architecture [Gar94b] [Nor94] [Per96a], the proposed solution means using

it to design robot control circuits automatically [Cli94] [Flo96b]. The evolutionary

technique can operate by modifying the configuration of a predefined architecture (such as

a Neural Network), or by building the whole control circuit from scratch using a

programmable device (such as an FPGA). Figure 1.2 shows how the robot control circuit

interfaces a sensor module, from which it receives the sensor readings, and commands the

motor drive module on how to drive the motors. Evolution can work with basic low-level

primitives, together with noise and uncertainty, to synthesise a solution that could be of a

very different nature to the way electronic circuits are normally designed [Tho94c]

[Key97d]. AE can build/evolve systems that are too complex to understand, but functional,

nevertheless. This work consists of building an Artificial Genetic System, where the

population will actually exist as real robots and exchange genetic information in order to

adapt to solve a particular problem.

 3

 Most of the work to date has applied genetic algorithms to produce

controllers for a simulated (Figure 1.3-a) population of robots [Cli96] [Fic00] [Fun00b].

Limited numbers of researches have evolved the controllers in simulation and then

transferred them onto physical robots [Mig95] [Smi98]. An even smaller number of

researchers have conducted experiments where the genetic algorithms run in an external

computer and the configuration pattern for each individual is downloaded to one single

physical robot (Figure 1.3-b) to be evaluated one at a time [Mon95] [Tho95] [Flo96c]

[Flo97b]. This still cannot be considered a real evolutionary system, because the population

cannot interact in parallel and most of the uncertainty of a truly physical evolutionary

system where all individuals exist and interact in real time will not be present [Jak95]

[Jak97a] [Jak97b]. Finally, just a handful of experiments, reported by Floreano and

Mondada [Flo01], makes use of two or more physical robots, but still tethered to external

computation (Figure 1.3-c) where the genetic code resides. Therefore, this work is novel in

implementing for the first time a fully embedded evolutionary system.

Sensors Sensor
Module

Control
Circuit

Motor
Module

MotorsSensors Sensor
Module

Control
Circuit

Motor
Module

Motors

Figure 1.2 – How the evolvable control circuit fits in the robot architecture.

Rob1

Evolutionary
System

Rob1

Evolutionary
System

Evolutionary
System

Rob4

Rob3

Rob2

(a) (b) (c)

Figure 1.3 – Different ways to apply evolutionary techniques to robotics:
simulated environment (a); simulated evolution with real robot evaluation
(b); and real population tethered to an external computer where the
evolutionary system resides (c).

 4

 Differently from other authors that involve simulation in some of the

evolutionary phases [Har93b] [Mil94] [Ste94] [Bul95] [Tho96a], the term Evolutionary

System will be applied in this work to describe an environment where the individuals

physically exist and artificially breed and die, to give place to the next generation. For that

reason, it is not an Evolutionary Algorithm, but a real Evolutionary System. The initial

literature review has demonstrated that an evolutionary system has never been implemented

fully on-board of a population of real robots, working completely independent of external

computation [Har97b] [Yao97] [Lay99a] [Teu99] [Wer99]. It was not until 1999 that

Watson et al. [Wat99a] (evolving the controller) and the publication of the preliminary

results of this work [Sim99] (evolving the controller and morphology) claimed to provide

the first experimental proofs of the Embedded Evolution concept. Embedded Evolution is

defined in this work as evolution that takes place in a population of real robots, completely

independent from external computation or human intervention to evaluate, reproduce, and

reposition the robots for new trials. Therefore, what is proposed is the physical

implementation of a genetic system containing the robots as the individuals and a genetic

code (bits stored in the RAM memory of the robots) that specifies the configuration of their

control device, and their speed and sensor organisation (morphology). In the scope of this

work, the term morphology is defined as the physical, embodied characteristics of the

robot, such as its mechanics and sensor organisation [Mat96]. So far, the few examples of

evolving both morphology and control exist only in simulation [Lip00]. Therefore, this

Control Circuit

! Neural Network
Configuration

Morphological Features

! Precise value of Velocities
– Slow, Medium, Fast

! Selection of Sensors
– Number, Position

Genetic MaterialGenetic Material Robot RAM

Figure 1.4 – The genetic material stored in the robot RAM defines not only the
control circuit, but also the morphological features of the robot.

 5

thesis will show for the first time an embedded system that evolves both the control circuit

and the morphology of the robots. Figure 1.4 shows that the genetic material of the robots

can define their control circuit (the configuration of a Neural Network), the position of the

sensors and the precise value of motor velocities.

 To allow a clear investigation of the implicit interactive features within the

evolutionary approach, a relatively simple task that does not involve explicit robot

interaction was chosen: collision-free navigation [Mor96] [Rao96] [Key97a]. Therefore,

the robots are encouraged to explore the environment while avoiding collisions into the

walls, obstacles, or other robots [Set97]. Although trivial for traditional robotic

computation domains, collision-free navigation provides a non-trivial search space for an

evolutionary system, mainly where both robot control and morphology are evolved

[Wat99a]. Furthermore, evolutionary methodologies for collective tasks in multi-robot

interactive domains have not yet been reported [Lip00]. Hence, the insights that this

research will bring about intend to be basic steps towards the developing of evolutionary

techniques to a level where they can seriously be considered for designing industrial robots.

 The main issues normally addressed by Evolutionary Computation are: i) to

synthesise automatically more complex behaviours than could be produced by hand

[Ang94a] [Bul95]; ii) to exploit all of the available features, considering that some of them

may even be opaque to the designer [Pol00]; iii) to produce the desired behaviour

specifying what the robot should do, but not how the controller works [Tho96b]; iv) to

show that evolutionary techniques can reduce the human effort required to develop control

systems as compared to traditional manual methods [Tho97a]. The main issues to be

addressed in this work lie under ii and iii. Because of simplicity of the task, issues i and iv

do not have significant impact (i.e., the behaviour aimed by the evolutionary controller is

relatively simple, and could have been designed by hand with less effort).

1.1 Problem Delimitation

 To adapt the proposed solution to the conditions of the Electronic

Engineering Laboratories, the theoretical work was evaluated over a set of experiments,

 6

performed within a workspace that can be adapted to reproduce simple robotic

applications.

• The Workspace

 The workspace consists of six autonomous mobile robots working in a

2.50m × 2.50m domain, where they can navigate, avoid obstacles, and perform specific

tasks. The robots have eight two-bit infrared proximity sensors and 32 speed levels for each

motor. Both the robots and their working domain were specially built for the experiments

in this work. Figure 1.5 shows the six robots navigating in their working domain. Because

the workspace contains various robots, the environment also includes some robot-to-robot

interference [Sch96]. Such interference in this work is defined as collisions between robots

and reflection of the infrared signals by approaching robots.

 All robots have a binary bit string, the “chromosome”, containing the

genetic code that specifies their control device and physical features, such as speed and

position of the sensors [Flo94]. The internal architecture is specified by this genetic code at

the control circuit level. This control circuit is implemented within a microprocessor

[Nol94] [Mon96], able to be reconfigured to produce new generations of more adapted

robots. The robot individual capacity is quite simple, but presents the necessary

Figure 1.5 – General view of the six robots and their working domain.

 7

evolutionary capabilities. The evolutionary system is not based in an external computer, but

is distributed between the robots and coexists with their evolvable controller inside the

microprocessor. The distributed embedded evolutionary system of each robot

communicates to the others through an embedded radio [Mat98b].

• The Expected Behaviour

 The robots will navigate and try to perform the obstacle avoidance task

totally independent of human intervention or external computation [Fic99]. The robots

work in a cyclic procedure, where they have a working phase, where they try to perform the

selected task, and a mating phase, where they reproduce. Figure 1.6 shows the continuous

evolutionary process where the robots are constantly adapting to changes at the

environment. Once a robot completes a working phase, it will attempt to find a “partner”

with which to breed. If a partner satisfies the selection criteria, the two robots can exchange

genetic code, and transform themselves into different robots (two parents mate and

reconfigure themselves as two new offspring) [Bac91] [Bed97]. According to the selection

criteria, the robots that are more adapted to perform the specified task will have more

chance of generating descendants. Therefore, the best-adapted robots survive and spread

their characteristics [Mon93]. After many generations (after some threshold level is

Working Season End of
Lifetime

Mating SeasonWorking Season End of
Lifetime

• Task Performing

• Fitness Evaluation

Test the Ability to

Carry out the Task

• Mate Selection
• Chromosome Exchange

• Robot Reconfiguration

Continuous Evolutionary Process

Figure 1.6 – The continuous evolutionary process of the robot population.

 8

achieved), the evolutionary system should produce a majority of well-adapted robots,

qualified to work in the environment, and a few unfit robots.

1.2 Objective

 The objective of this work is to develop a self-training process, where a

group (“population”) of six real robots can be taught to perform specific tasks in a closed

mutable environment, completely independent of human intervention, external

computation or power supply (see Figure 1.7). The robots should be linked by radio,

forming a decentralised evolutionary system. That aim brings substantial technological

demands and considerable algorithm detail must be added before it is workable. The robots

must be able to adapt constantly their control circuit and morphology to changes of the

surroundings, continuously modifying their internal configuration to work properly in that

environment. Therefore, the robots must evolve while deployed “in the field”, using the

real world to act as “its best model” [Bro91b].

 This work studied the main techniques for evolutionary robotics and tested

the most relevant ideas that could be employed to produce a fully embedded evolutionary

controller to navigate a population of physical robots in real time [Rey95]. Therefore,

during the outcome of the work, many different concepts were proposed and investigated

while looking for inspiration to develop the neural network architecture, and the

evaluation, selection and reproduction strategies (e.g., developing the fitness function, or

the crossover and mutation operators). However, some of this research could not be applied

to embedding evolution within the robots and only the optimal results were reported for the

simple reason of space. Nevertheless, the generated insights and understanding are always

present in the discussions and justifications presented in this thesis.

 9

 Goals:

• To implement a workspace with a group of six autonomous mobile robots

and the environment containing the structures that are necessary for

navigation and task performing, such as walls and obstacles, as well as a

monitor computer to produce a data record of the evolutionary experiments;

• To produce a novel distributed fully-embedded evolutionary controller for a

population of autonomous mobile robots applied to collision-free navigation

in the suggested working environment;

• To show that the proposed evolutionary system can produce not only a

trained robot but also an open-ended evolution, continuously adapting the

robot controllers to cope with a variable environment;

• To produce the first experimental proofs of the Embedded Evolution

concept, where both control circuit and morphology are evolved.

Rob1

Rob2

Rob3

Rob4

Rob5

Rob6

Distributed
Evolutionary

System

Real Mutable Environment
(simple to complex)

Proposed Evolutionary System:

-- Real Robot Population;
-- Fully Embodied Controller;
-- Distributed Evolutionary System;
-- Continuous Evolution;
-- Evolving Morphology and Control;

Figure 1.7 – The proposed system consists of a distributed evolutionary
controller embedded within a population of real robots. All robots are
linked by radio, forming a decentralised system.

 10

1.3 Thesis Organisation

 Chapter 2 is devoted to the study of evolutionary computation applied to

robotics. The chapter reviews evolutionary robotics and more specifically genetic

algorithms and presents the most relevant strategies that can be applied to the development

of evolutionary robotic systems. In addition, the principles underlying evolutionary

computation are addressed together with a review of the literature to explore the weak

points and show where improvements are required. It overviews the most important topics

and concepts that will be referred to in the other chapters, so that it provides vital

information to the reader and can be used as a reference of the terms employed in this

thesis. The main addressed topics are: artificial life, embedded evolution, incremental

evolution, species adaptation genetic algorithms, co-evolution of different behaviours, and

co-adaptation of controller and morphology. It also considers the issues on evolving the

robot population in simulation and the problems that arise when the final result is

transferred to a real robot.

 Chapter 3 reports comparative studies between different alternatives to

embedding an evolutionary control circuit in a population of autonomous mobile robots

that is able to achieve the task of collision-free navigation. The chapter debates if the

evolvable control circuit should be structured or not; if it should be simulated or integrated;

and if it should be trained at first and then just refined by evolution. It discusses the main

architectures that can be applied to the design of a navigation control circuit that can be

evolved. It also attempts to apply different strategies to implement the embedded controller

according to the project specifications and limitations and provides a comparative analysis

of these strategies that selected a weightless neural network as the best option. The

reviewed strategies are: evolvable hardware; dynamic state machine; condition-behaviour

mapping; pulse stream neural systems; and Boolean neural networks.

 Chapter 4 introduces the formulation of the proposed evolutionary system

and what is required to allow its implementation in the robots. The chapter describes how

the evolutionary system was developed, the techniques that could be adapted from the

literature to be applied to the proposed system, and the novel techniques developed to

allow the design of every circuit and program necessary to embedding a distributed

evolutionary system in a population of autonomous mobile robots. It presents the robots

 11

and the environment where the experiments were carried out and specifies what is

necessary to perform the evolution of the population towards the desired task-behaviour:

collision-free navigation. It also defines the employed genetic operators such as crossover,

mutation, partner selection, and reproduction. The architecture of the chosen Boolean

neural network is developed and described as well as the strategy of communication that

allows the distributed evolutionary system to control the evolving robots.

 Chapter 5 describes the robot hardware and software, showing how a

population of autonomous mobile robots was built to accommodate the distributed

evolutionary system as they were specified in Chapter 4. The chapter describes the robot

architecture, explaining how its internal circuits were conceived and work. It discusses the

alternatives to build the computing system, the sensor circuit, the motor drive circuit, and

the communication circuit, which allow the robots to communicate and coordinate their

activities. It also describes a stand-alone radio board that was developed to allow a monitor

computer to supervise the evolutionary experiments and produce a data record containing

all the relevant information for each generation.

 Chapter 6 presents the preliminary experiments performed with the real

robots that helped to develop and refine, by trial and error, the configuration of the

evolutionary system, the navigation control circuit, the sensor module, the motor drive

module, and the monitor computer. It tests the influence of different parameters in the

performance of the system. The chapter puts to test the ability of the proposed evolutionary

system to evolve the part of the robot morphology that corresponds to the sensor

configuration. It determines the best sensor configuration that could be used as a reference

to the other experiments. It also investigates if the evolutionary system is able to evolve an

unstructured controller. A different selection strategy, called inheritance selection, which

chooses the robots to reproduce by calculating their average performance in the previous

generations is also proposed in Chapter 6.

 Chapter 7 presents the experiments run in simulation that tested the

influence of different parameters of the evolutionary system, such as different mutation

rates, strategies to select the partners to breed, crossover strategies, and reproduction

techniques. Simulation allowed an efficient and fast way to test novel strategies that

improved considerably the performance of the evolutionary system. The chapter introduces

the developed simulator program and how it was used to evaluate the robots in a virtual

world. It investigates different ways to evolve the robot configuring bit string and proposed

 12

the use of predation to bring new genetic material to the population, introducing more

diversity and preventing it from being stuck in local optima.

 Chapter 8 brings together all the insights and understanding achieved in the

previous two chapters to build a fully embedded distributed evolutionary system that

evolves both the robot navigation control circuit and its morphology and is able to achieve

collision free-navigation in a few hundreds of trials. The chapter presents the first

experimental proofs of the embedded evolution concept applied to the evolution of the

morphology and control circuit of a population of real robots in real time. It attempts to

evolve the configuration of the sensors around the robot and the speed levels of the motors.

It also compares the performances of an unstructured controller and a structured neural

network.

 Finally, Chapter 9 presents the conclusions and the contributions of this

research. The outlined scope and assumptions of this work along with its limitations are

compared to the obtained results to determine if it succeeded in producing a powerful

embedded evolutionary system that is able to achieve obstacle avoidance. The chapter

shows not only what was achieved, but also what was learned while executing the research

and offers some possible opportunities for further investigation to extend the scope of the

work reported in this thesis.

 Appendix A describes the contents of the attached CD-ROM, which

contains the software developed in this work, as well as some photographs and videos of

the robots performing their task. Appendix B contains the schematic diagrams of the

electronic circuit of the robots and the radio board. Finally, Appendix C contains some

tables summarising the many experiments that for reason of space could not be included in

the body of the thesis.

 13

2 EVOLUTIONARY ROBOTICS

 This chapter presents methods of applying Evolutionary Computation (EC)

to design controllers automatically for autonomous mobile robots. It introduces EC and

overviews the state-of-the-art in this area. It also presents several different subdomains of

this research field, such as Genetic Algorithms (GAs), Genetic Programming (GP),

Evolutionary Systems (ES), and Artificial Life (ALife). This chapter will also expand the

Evolutionary System domain into several interesting techniques that can be applied to

improve the evolution of controllers for the robots. Such techniques are: co-evolution; co-

adaptation; incremental evolution; and species adaptation genetic algorithms.

2.1 Evolutionary Computation

 Evolutionary Algorithms (EAs) are an emergent computing strategy because

of their ability to solve difficult optimisation problems and their versatility in applications

involving the machine-learning field [Tom95]. EA methodologies have been applied not

only in academic research, but also in industrial problems [Cal95]. EAs are adaptation,

search, and optimisation procedures inspired by biology, more specifically in the

Darwinian Theory of Evolution [Kni48] [Cam99]. They abstract and mimic some of the

traits of natural evolution to produce functional artificial adaptive processes [Flo97a].

Though evolution-inspired, EA is free to use whatever strategy works well for a given class

of problems, even if it has no direct biological counterpart. EA is particularly suited to a

physical robotic system because, even though it is frequently seen as a sequential execution

of genetic routines in simulation, it is intrinsically parallel, and can control a population of

individuals (robots) that work simultaneously in spatially-extended domains.

 14

 Evolutionary Computation is a research field that involves nature-inspired

techniques such as Genetic Algorithms and Genetic Programming, which are explained

below.

2.1.1 Genetic Algorithms

 Genetic Algorithms (GAs) were introduced in the sixties when the

fundamental biological mechanisms were abstracted away and expressed mathematically in

a form that can be simulated on a computer and applied to a wide range of problems

[Hol62]. GAs are search engines applied to large search spaces of well-defined finite

dimensionality [Shi00]. GAs consist of mapping feasible solutions in some problem space

to individuals throughout a string of binary digits, also called the chromosome. The

characteristics or features of each feasible solution are also called the phenotype, which is

represented by a binary code, called the genotype. Therefore, each individual, through a

suitable coding, represents a point (a feasible solution) in the search space of a given

problem.

 A GA is an iterative procedure where a population of individuals is

randomly generated [Mit95]. Each individual of the population is evaluated in each

iteration step, also called a generation, and given a score, or fitness value, that relates to its

performance in solving the target problem [Tom95]. The following generations are formed

by evolution so that, in time, the population comes to consist of better (fitter) individuals.

Each subsequent generation is created, traditionally, by applying two genetic operators,

known in biology as crossover and mutation, to a selected group of individuals from the

previous generation [Wat00b]. In a fitness-proportional selection [May96], the individuals

are selected with a probability proportional to their relative fitness, so that good individuals

have a greater chance of being selected to reproduce. The parents reproduce, creating a

resultant individual consisting of a mixture of the parental genetic material (crossover)

along with a small amount of copying errors (mutation). Reproduction may be sexual,

when crossover between two parents occurs, or asexual, in which case just mutation is used

to produce offspring from a single parent [Bro00].

 15

 The crossover operator usually works by exchanging substrings of the parent

chromosomes after a randomly-selected crossover point. The mutation operator adds

background noise to the process to prevent premature convergence into local optima.

Mutation is applied to the chromosome by flipping bits at random with a certain probability

called the mutation rate [Ang94b]. If the natural metaphor is to be followed, a given

generation consists of different creatures (individuals) whose chances of survival are in

relation to their fitness. The better (fitter) a creature, the higher its probability of survival,

and in time, the population will be comprised of better creatures. However, GAs are

stochastic and convergence is not guaranteed [Koz98].

 There are several possibilities to select individuals for reproduction as a

function of their fitness [Bar98]. Fitness-proportional selection is one of the best-known

methods [Fun98]. Once the fitness fi of each individual i in a given generation is obtained,

it is possible to calculate the total population fitness TF:

∑
=

=
Popsize

i
fiTF

1

 Then, a probability pi is assigned to each individual as follows:

TF
fipi =

 Finally, a cumulative probability Cpi is obtained for each individual by

adding up the fitness of the individual to the fitness of the preceding population members:

∑
=

=
i

k
pkCpi

1

, i = 1, 2,…, Popsize

 A random number r uniformly distributed in [0,1] is generated Popsize

times and the individual i is selected for reproduction each time:

Cp(i-1) < r < Cpi

 16

 If r < Cpi, the first individual is selected for reproduction. This method can

be compared to the spinning of a biased roulette wheel [Tom95] divided into Popsize slots,

each with a size proportional to the fitness of the respective individual. If an individual has

a high fitness score, it has a high probability of being selected many times and will produce

many descendants. One problem with this approach is that, after the population converges

and the individuals get better, the differences in fitness between individuals become small,

which renders selection ineffective [Tom96]. Other methods that do not allocate trials

proportionally to fitness try to solve this problem. Examples of such methods are Ranking

selection and Tournament selection.

 In Ranking selection, the individuals are ordered by fitness and the best

individual is selected a predetermined multiple of the number of times the worst one is

selected [Tod97]. In tournament selection, a number of individuals (the tournament size)

are selected at random with uniform probability and only the best one among them is

selected to reproduce. The selection pressure is proportional to the tournament size

[Har93a]. This method is not global so that local tournaments can be held simultaneously

in spatially isolated populations.

 Figure 2.1 illustrates how a standard GA works. The population is randomly

initialised and tested in the environment. The best individuals reproduce to create the next

generation, which will be tested again. The process only stops when a termination

condition is satisfied [Set98a]. Therefore, evolution continues until a satisfying solution is

found. In some cases, there is an implicit fitness evaluation as the individuals battle for

virtual resources necessary for survival. In other cases, an explicit fitness function is

applied to each generation of creatures, forcing evolution in a desired direction [Bro91a]

[Bro92].

 In classical GA, crossover is the fundamental operator and mutation is seen

as a supplementary function [Tom96]. Crossover combines parents selected from beneficial

trials, thus combining strings that have already been proven relatively good, and so having

more chance of generating fitter individuals [Bro00]. Selection and crossover alone tend to

cause rapid convergence, with the danger of losing potentially useful genetic material. The

original version of the crossover operation is one-point crossover, where, once two bit

strings have been selected to produce offspring, a position p is selected at random between

one and the length of the strings minus one [Tom95]. Both strings are then divided at this

position, generating four substrings: substring1a; substring1b; substring2a; and

 17

substring2b. Two new strings are produced by swapping all bits of these substrings:

offspring1 = substring1a + substring2b; offspring2 = substring1b + substring2a (here “+”

means concatenation). These two new offspring will enter the new population for the next

generation in place of their parents. This strategy was inspired by biology and is very

simple and efficient [Bro00]. The idea was expanded into multi-point crossover. It applies

the same strategy, but divides the original strings in more than one cut point and the

substrings are swapped among these points.

 Another strategy is uniform crossover, which forms two offspring from two

parent bit strings. For each bit in the first offspring, a bit in the corresponding position is

copied randomly with some probability from one of the parents. The second offspring gets

the corresponding bit from the remaining parent. This strategy is less likely to preserve

good building blocks, but provides a more uniform distribution of the bits [Wat00b].

Environment

Test the
Performance of all
Individuals in the

Environment

Randomly Generated
Initial Population

of Individuals

Select Fitter
Individuals and
combine them

Mutate the new
Individuals

Replace some bad
individuals by the

new ones

Test
Termination
Condition

End Yes No

Figure 2.1 – General scheme of a standard genetic algorithm.

 18

 Mutation is necessary to avoid search stagnation by introducing new

diversity. Without mutation, evolution can only combine the individuals of the population

to form the next generations. As only the best individuals are selected to reproduce, the

population tends to converge to a single better configuration. Therefore, after some

generations, the configuring bit strings of the population will be all the same and the

population will cease to improve, since it cannot be modified anymore. Mutation

introduces new diversity by randomly flipping some bits of the chromosome every time the

individuals reproduce. Hence, modifying their configuring bit string and allowing evolution

to proceed. Nonetheless, mutation rates need to be low, otherwise the search tends to

degenerate into a random walk [Har96].

 Generally, applying mutation to a fit individual often produces negative

results, deteriorating its fitness, and is only occasionally positive [Tho94c]. Neutral

mutations are the ones that modify the genotype, but leave the phenotype unchanged (and

fitness) [Bar98]. Nevertheless, they open the possibility of a further mutation making some

difference. In this case, the mapping from genotype to phenotype contains redundancy such

that a phenotype is represented by many genotypes [Shi00]. This allows genetic changes to

be made while maintaining the current phenotype and thus may reduce the chance of

becoming trapped in sub-optimal regions of genotype space.

 Adaptive mutation schemes vary the rate or the form of mutation, or both,

during the GA run [Tho97b]. Therefore, the search space can be explored uniformly at first

and more locally towards the end, locally improving the best candidates. A small mutation

rate will tend to converge the population into a local optima [Har93a]. If the mutation rate

increases, the population can spread around this local optima to search the neighbourhood

towards ridges of new hills, but if the mutation rate becomes too big, then the fitness of the

population may disperse completely. Usually, GAs are not strong enough to demonstrate

conclusively that the global optimum has been reached [Cli97] [Har97a].

 A variant of GA, called Genetic Programming (GP), was proposed by J. R.

Koza [Koz98]. While in a GA evolution takes place at the genotypic level (i.e., at the level

of coding sequences), GP emphasises phenotypic adaptation (i.e., the behavioural

expression of a genotype in a specific environment). GP is an attractive approach to

evolving controllers in simulation since it manipulates higher-level primitives, such as Lisp

programs, for example. This abstraction leads to a reduction of the search space, making

evolution work much faster [Ban93].

 19

 Since it was proposed, GP began to conquer some space from GA

applications. De Garis applied GP to configure neural networks [Gar94a]; and Sen applied

GP to multi-robot systems [Hay95]; Later, Koza and Rice were successful in evolving box-

pushing behaviour with the same approach, but still in simulation [Koz92]. Nordin applied

GP to evolve a real robot controller [Nor96] and Koza et al. also employed FPGAs to

accelerate the evolutionary process [Koz97]. However, the effectiveness of these

approaches is dependent on the proper design of the behaviour primitives.

 As the complexity of applications increases, the foresight needed to design it

by hand will soon be outstripped, making progress beyond relatively simple domains

infeasible [Cli92]. Therefore, the possibility of an automatic synthesis without explicit

design offered by evolution becomes very attractive [Har93a]. Natural evolution is the

existence proof for the viability of this approach, given that relatively complex designs like

the human eye were produced in this way [Kep94] [Tod97].

2.2 Evolutionary Robotic Systems

 Since John von Neumann, in the early 1950s, posed the question “Can a

machine reproduce?”, many researchers have attempted to investigate the logic necessary

for reproduction. In analogy with nature, this was an attempt to allow an artificial machine

to create a copy of itself, which in turn could create more copies [Mic95] [Mey97]. Ever

since, many attempts to create such self-replicating machines succeeded in computer

simulations. A good example is Chris Langton’s Cellular Automaton [Maz98]. The effort

culminated when Langton and his colleagues defined the term Artificial Life (ALife)

[Lan89]. They attempted to abstract the fundamental dynamical principles underlying

biological phenomena, and recreate these dynamics in other physical media [Sip95]

[Dau98]. Differently from biological research, which is essentially analytic, ALife is

synthetic, attempting to construct phenomena from their elemental units [Mic95] [Mit95].

The reproductive process proposed by von Neumann is as real as that carried out in nature

[Bro92] [Ste95].

 20

 ALife studies not only improve the understanding of nature, but also bring

insights into artificial models such as Evolutionary Systems (ES). ES offers the ability of

adaptation to a dynamic environment [Nol94]. Therefore, ES offers greater adaptability to

deal with unforeseen events than traditional design. Brooks combined ALife and ES

methods to design robots that had the necessary adaptability to function in a human

environment [Bro91a] [Bro91b]. These methods work differently from the top-down

methodology of traditional Artificial Intelligence (AI) [Ste95]. AI starts by identifying a

complex behaviour and then tries to build a system that presents all the details of the

behaviour [Neb96]. ALife starts from simple elemental units, gradually building its way

upwards through evolution, in a bottom-up manner [Sip95]. Whereas AI has traditionally

concentrated on complex human functions, ALife concentrates on basic natural behaviours,

emphasizing survivability in complex environments [Dau98].

 In a recent article [Lip00], Lipson and Pollack attempted to bring computer

models closer to physical reality. They described a system that evolves locomotive

machines in simulation, but can also employ a rapid-prototyping device to build them

automatically. They claimed to have achieved automatic reproduction of robotic life forms.

However, their work consists of a simulated evolutionary process, where some individuals

can be automatically prototyped. As evolution goes on in the computer, there is no

connection to the physical world, such as fitness evaluation. What their work really

innovates, therefore, is the ability of automatically prototyping some individuals to display

physically what is going on in simulation. Their robotic population does not exist or

reproduce in the real world. In evolutionary terms, there is no difference from their

previous work [Fun99], where they implement the structures by hand out of real Lego

blocks. However, they have only used this to show the robustness of the structures

generated by evolution in the simulation. Hence, there is some way to go before self-

reproducing robots can exist in the real world [Bro00].

 What a truly evolutionary robot system needs is a strategy that allows the

“robot creatures” to self-replicate [Kan97]. The only feasible solution so far is to build the

next generation by hand, using some modular blocks that can be attached to the bodies of

the robots, enabling them to modify their configuration from one generation to the next

[Tem95]. These blocks can contain different sensors, motors, or actuators, so that robots

containing different features, or characteristics, can be produced [Har93c] [Har94]. Figure

2.2 illustrates how different blocks containing actuators, sensors, and motors with different

capacities can be mounted on the robot body. However, there is an alternative to automate

 21

this strategy. Consider an evolutionary system where different sensor configurations are to

be evolved together with the robot controller. If all the available sensors are placed around

the robot, and can be enabled or disabled by the genotype, different physical characteristics

can be produced, so that the robots can have different sensor configurations. In comparison

to natural evolution, where humans lost their tail because it was not practical anymore, this

strategy consists of giving the robots many “tails” (redundant sensors) and letting evolution

decide which ones to pick [Har97c]. Therefore, new robots with different physical

characteristics can be produced without the necessity of rebuilding their mechanical bodies.

This strategy is used in this work to produce the evolutionary robotic system that will be

described in Chapter 4.

2.2.1 Issues on Using Simulators

 When EC is used to design automatically a robot controller, a software

simulation of the robot will make it easier to be manipulated by evolution [Har94] [Hus95].

Even when a real robot is used, the actual controller undergoing evolution is usually

simulated in software [Tho97a]. When developing EAs using simulation, to achieve

realistic results the simulation must take account of the imperfection of the real world, such

Motor Blocks
with different

capacities

Sensor Blocks
with different

ranges

Sockets for the
Motor Blocks

Robot
Body

Sockets for the
Sensor Blocks

Sockets for the
Actuator Blocks

Actuator Blocks
with different

capacities

Connectors

Figure 2.2 – Robot body containing different sockets used to connect
different blocks that contain motors, sensors, and actuators with different
capacities.

 22

as noise, and non-ideal performance of sensors [Jak95]. However, a significant drop in

performance may occur when the results of the algorithm optimisation are loaded into the

robot [Jak96] [Jak97a]. Another approach is to use the real robots themselves [Jak97b]

[Jak98b]. However, the problem with this approach is the prohibitively long time taken, as

demonstrated by experiments on Khepera robots [Nor97]. Nevertheless, the experiments in

Chapter 8 will show that fully-embedded evolution of simple behaviours can succeed in

less than two hours, because it allows the evaluation of the whole robot population in

parallel [Fic99] [Sim99] [Wat99a].

 Most of the reported work with evolutionary systems makes use of computer

simulations of the robots [Cli96] [Cha98]. Some authors used faithful representations of

the environment, including some effects of noise [Nol94] [Jak95] [Mat95]. However, many

concluded that if noise levels in the simulator differ significantly from those in the real

robots, the obtained solutions are less likely to be transferred to the real system [Mat96].

Brooks advertised in [Bro92] that when building a simulator it would be very difficult to

estimate the uncertainty that the real world presents. In addition, there is a danger of

confusing the global world-view, where sensors, for example, return perfect information,

with the robot view of the world. Hence, it is likely that the evolved controllers will rely on

unrealistically accurate actuators and sensor responses. Any abstraction made in a

simulation may be exploited by the EA and result in behaviour that is badly adapted to the

real world.

 The simulators are limited by the experience of the programmer on the

relevant factors to be included [Cli92]. That is, the simulation will only include the levels

of noise that the programmer expects to happen. For complex robots, a faithful simulation

may take more time than trials on real robot architectures [Mig95]. According to Harvey et

al. in [Har94], producing sufficiently accurate simulations of visual sensing can be

prohibitively long. Thus, when applying simulated evolution to robot vision, using a real

video input system proved a more attractive option [Bro91b].

 There can be no substitute for experience with real robots, but simulations,

though, do have some benefit if the appropriate care is taken [Cli96] [Smi98]. In an open-

ended evolution, for example, simulation can be used to speed up the process by training

basic skills to simulated robots in an abstracted environment, and then the best solutions

can be transferred to the robots to be refined later, while the robot continues evolving in the

real world. This strategy may accelerate evolution, even though performances may

 23

significantly deteriorate when the best simulation solutions are transferred to the physical

robots [Nol94] [Nol95].

 Another good use of simulators is in abstracting complexity from the robots

and environment [Mig95]. This strategy will be used in the work reported in Chapter 7 to

allow different characteristics of the system to be analysed individually in simulation. It is

possible in simulation, for example, to isolate the robots from the uncertainty of the real

world, and analyse the effects of genetic operations like the crossover and mutation

strategies. Therefore, simulation is acknowledged as a valuable tool, used to gain insight

and understanding of complex systems. However, the developed simulator was not

intended to provide a high-fidelity simulation of the robots and their environment. Instead,

it served only as a testbed to set up new experiments.

2.2.2 Embedded Evolution

 Floreano and Mondada in [Flo96a] took the first steps towards bridging the

gap between computer models and physical reality. They used a physical Khepera robot to

provide physical sensor readings, tethered to an off-board workstation, hosting the

evolutionary software. They were followed by many researches, such as Harvey [Har97b],

Jakoby et al. [Jak98a], Husbands [Hus98], Mataric et al. [Sch96], and Thompson

[Tho97a], among others. Nevertheless, all these authors lack parallelism or independence

from external computation, or both. Watson et al. [Wat99a] and the preliminary results of

this work [Sim99] described the first experiments with the Embedded Evolution (EE)

concept.

 EE is a methodology for the automatic design of physical robot controllers

that takes place in a population of real robots [Wat99a]. It avoids the problems of evolving

in simulation and transferring the design to physical robots and speeds up evolution by

evaluating each robot in parallel. The evolutionary algorithm is decentralised [Mat97c],

distributed among and embedded within the robot population so that there is no need for

human intervention to evaluate, breed, reconfigure, or reposition the robots for new trials

[Och99a]. Fitness evaluation, partner selection, and reproduction are carried out

 24

autonomously and individually by the robots [Sim99]. The robots are not only autonomous

in their task behaviour, but in the evolutionary algorithm as well [Fic99].

 When designing control systems for physical robots, it is not always clear

how a robot control system should be decomposed and the sub-systems often include

interactions mediated via the environment [Har97b]. Another major problem is that the

interactions among sub-parts tend to grow exponentially as the systems become more

complex [Tho97a]. When the complexity of the interactions grows, a primary

decomposition into perception, planning, and action becomes difficult to obtain [Pol00].

An alternative to this is to allow evolution to deal with the unexpected interactions between

sub-systems and design a controller based on the behaviour of the complete system (i.e.,

seeing the robot as a whole: body; sensors; motors; and controller) [Flo94].

 In EE, evolution is manipulating a physical object that exists in real-time

and space, and behaves according to the mechanics of the robots [Tho97a]. To determine

the interactions between the robot components, it is crucial to consider their size, shape,

and location. This fact makes those interactions richer, but, in some ways, more

constrained, since the characteristics of the components and their interactions are not

exactly predictable or constant over time. Evolution should be able to exploit freely the

collective behaviour of the components without the necessity of predicting it from

knowledge of their individual properties [Tho96b]. It can take advantage of the rich

structures and dynamical behaviours that are natural to the robot hardware, far beyond the

scope of conventional design, which is only a sub-set of the possibilities. Even stochastic

noise is not always a problem and can present advantageous effects [Tho94c]. However, it

alters the behaviour of the robot hardware, modifying fitness and obscuring the fitness

landscape. This effect decreases the difference in fitness between two robots that are

neighbours in genotype space and may lead to imprecision in selecting the fittest robot

[Set98b]. These effects will be analysed in Chapter 6 where this problem will be

approached.

 A noticeable disadvantage of EE is that it is difficult to collect experimental

data from the robots, since there are no centralised mechanisms for evolution [Wat99a]. EE

is also susceptible to failure if the robots become reproductively isolated, which can easily

happen in communication systems based on a local-range infrared link [Fic99]. EE adds

even more difficulty to the inherent robotic problem of replicating entire experiments

[Tho97a]. Noise in the sensors, effectors, and the environment result in a large variance

 25

across trials [Mat96]. This uncertainty was already difficult to reproduce in simulation,

even by preserving the same random seeds, but it is practically impossible in a physical

controller, embedded within a population of real robots. Any stochastic components in the

algorithm compound the problem. In simulated evolution, the programmer can manipulate

the rules to eliminate non-determinism and produce repeatable trials [Jak96].

 Much of the analysis of expected behaviours in EE is provided by the user

(i.e., it is qualitative and based on human judgment) [Mat95]. Typically, statistical tests are

not significant as insufficient data are available. Because genetic algorithms are stochastic,

the average result over several runs is a more useful indicator of their performance [Set97].

However, because of the uncertainty and variability of physical experiments, an average

performance is also difficult to establish as trials may vary significantly.

 The design of a fitness function in EE is more difficult than in simulation,

because not all sensory information taken by simulation (such as the position of the robot

in the environment) is actually available from the point of view of the robot in the real

world [Nol94]. Towards the end of the evolutionary experiment, the differences between

individual fitness become smaller, resulting in a less effective selection [Tom95]. In EE, a

possible alternative is to increase the duration of a generation at the end of the experiment,

to introduce more selection pressure in the environment and differentiate the better-adapted

individuals [Sim99] [Pol00].

2.2.3 Encoding the Characteristics of the Robot

 When an evolutionary algorithm is distributed among a population of

physical robots, some parameters must be selected to codify their control circuit and

embedded characteristics [Har93c]. These parameters are usually represented by a binary

string of bits (alleles), also called the robot genotype. The chromosome contains the binary

string. Then, the genotype is applied to configure the robot features, also called the robot

phenotype, in such a way that determined groups of bits (genes) in specific locations in the

chromosome configure specific features [Nol94]. If the encoding is robust enough, that is,

if it presents some redundancy, small modifications (mutation) in the genotype should not

 26

produce radical changes in the phenotype [Cam99]. This is a concept referred to in biology

as Neutrality, Neutral Mutations, or Neutral Variation [Ler76]. Therefore, some genetic

variations observed in populations are probably trivial in their impact on reproductive

success. Moreover, even if only one fraction of the extensive variation in a genotype

significantly affects the organisms, it is still a reservoir of raw material for evolution.

 Neutrality can be obtained by using an artificial neural network (ANN) to

implement the robot controller [Bee91] [Nol92]. ANNs have usually an intrinsic

redundancy, tolerance to noise, and low degradation with respect to component failure

[Ale90]. They typically have a smooth fitness landscape and present good neutrality,

allowing some neuron contents or weights to be modified without radically changing their

fitness (their response for the same set of stimulus) [Mat96]. Some care must be taken

when mapping phenotype to genotype, because the size of the chromosome exponentially

affects evolution performance. For a chromosome of length n, and b possible alleles at each

position, the search space is calculated as bn possibilities. Typically, the bigger the search

space, the longer the time that the evolutionary process spends evaluating complex designs

to find an appropriate configuration of primitives. Then, successful evolution becomes a

practical impossibility [Bac91].

 Although crossover is viewed as the fundamental operator in classical GAs

[Tom95], in EE, the population size tends to be comparatively very small (e.g., ten

individuals or less) [Sim99] [Wat99a]. In these cases, the search can rapidly converge to

stagnation in few generations and mutation alone will be the only source of diversity in

evolution. Therefore, after an initial phase where crossover boasts evolution to a rapid

convergence, EE will rely on selection and more sophisticated versions of mutation as the

principal evolutionary operators [Sch95]. In general, a compromise must be found between

exploitation of good fitness regions (local improvement by crossover) and further

exploration of the search space (use of mutation to avoid missing better regions further

away) [Har96] [Cli97].

 There are several strategies to encoding the characteristics of the robot

architecture. The most relevant ones will be presented below:

 27

• Incremental Evolution

 Incremental Evolution (IE) was suggested by Harvey in [Har92] [Har93a]

and states that rather than randomly initialising the population to evolve controllers to a

challenging task, it is better to evolve from a population that has been selected for a similar

but less challenging task [Cli92]. IE works with no predetermined number of components

to be used in the design [Mee96]. A sequence of increasingly complex tasks is presented,

involving the evolution in succession of progressively more complex systems. Brooks’

approach is an example of “wiring in” new behaviours one at a time, and waiting until

current behaviours are thoroughly debugged before “wiring in” the next one [Bro91b].

Evolutionary robotics typically needs adaptive improvement techniques rather than the

optimisation skills of the GAs on a fixed-dimensional search space [Mit95]. The number of

components required to produce the expected behaviour may be unknown a priori.

Incremental evolution will progressively increase the number of components through

successively more difficult tasks. This approach takes GAs as adaptive improvers rather

than optimisers [Bro92].

• Species Adaptation Genetic Algorithms

 To allow for a wider variety of possible control architectures, the length of

the genotype may be variable [Har93b]. Species Adaptation Genetic Algorithms (SAGA)

was proposed by Harvey [Har92] explicitly for dealing with variable-length genotypes.

SAGA makes use of incremental evolution starting with a short, simple genotype, which

produces elementary behaviour. It lets evolution synthesise the elementary behaviours at

first and then progressively increases the genotype size, allowing evolution to synthesise

again from this better-adapted population [Mat96]. Therefore, complex individuals can be

evolved from simple ones, with associated increase in genotype lengths [Har93a]. These

two phases (genotype alteration and synthesis) repeat until a sufficiently complex design is

obtained. The variations in the genotype length should be achieved, on the average, without

significant impact on fitness [Har94]. In SAGA, crossover between individuals is only

allowed for parents within a certain genotype distance from each other. Reproduction can

be problematic with genotypes of different length and domain-specific GA programs may

be necessary [Tho94c].

 28

• Robot Symmetry

 To reduce the search space for evolution, the physics of the robot and its

controller can have some degree of symmetry [Bro92]. For example, with bilateral

symmetry, both sides of the controller and morphology can be specified by the same

genome [Mat96]. If the encoding scheme allow some repeatability of modular structures, a

genotype that encodes only the type and number of predefined substructures will be much

more compact [Ban94].

• Co-evolution of different behaviours

 The co-evolution of two or more behaviours is a delicate process that has

been achieved mostly in simulation [Bul95] [Bla98] [Och99b]. Co-evolution, as for

example in the pursuit-evasion context [Flo01], occurs when one kind of pursuing robot

has its fitness determined by the current behaviour of another kind of evader, and vice

versa [Har97b]. GAs typically work on static fitness landscapes. Alternatively, co-

evolution works on dynamic fitness landscapes that change over time [Mil94] [Flo98a]. To

achieve this, co-evolution makes use of the relationships among the systems that are being

evolved in such a way that they depend on each other. Rather than evolving to solve a fixed

problem, the organisms are constantly adapting to each other and their surroundings,

including food, mates, competitors, and predators. For example, stealth can be the response

of a predator for countering a more agile prey, and so on [Flo97a]. Competitive fitness

functions that are dependent on the constituents of the population can provide a more

robust training environment than independent fitness functions [Nol98a].

 Co-evolutionary strategies proved successful alternatives in many works

involving simulation, such as parental imprinting, aggressive signalling, sexual selection,

and evolved communication. Embedded co-evolution in robotics involves the construction

of two or more robotic populations (predators and prey for example) that are interrelated to

each other [Bul95]. This adds complexity and cost to the already difficult task of

embedding an evolutionary algorithm within physical hardware.

• Co-adaptation of controller and morphology

 A truly general encoding scheme should smoothly integrate specifications of

both controller and morphological features [Mat96]. This scheme may include

 29

configuration codes that define and permit co-adaptation of the control architecture and

parameters specifying sensory and motor characteristics [Nol98b]. Distinctively from the

interactions between competitive behaviours of co-evolutionary algorithms, co-adaptation

involves parallel evolution of different features of the same individual [Wat00a].

Therefore, the morphology of a robot, such as sensor distribution and range can be selected

by evolution while the controller progressively learns how to deal with the new features

[Lun97]. Using the natural metaphor, it is like both nervous system and body shape

evolved together in the natural world of a species, as the genetic code can configure the

shape of the body as well as the instinct in the brain. In this way, the natural skills that an

individual is born with as well as the characteristics of its body are manipulated by

evolution from generation to generation, until an efficient combination emerges to solve

the target task.

 30

3 ROBOT CONTROL CIRCUIT

 This chapter discusses alternative strategies to the traditional

implementation of robotic control systems based on artificial intelligence (AI) and

evolutionary computation (EC). It describes some of the main approaches, pointing out the

key challenges, unanswered problems, and some promising directions. An analysis of the

state-of-the-art will select the best technique for the implementation of an embedded

evolvable control scheme for a group of autonomous mobile robots.

3.1 Embodying an Evolvable Control Circuit

 From the study of the Evolutionary Robotics field presented in Chapter 2, it

was possible to identify the necessary characteristics of a control strategy for the

adaptive/evolvable behaviour-based robot controller. The working environment attributes

and the number of robots that will carry out the chosen evolutionary scheme were

introduced in Chapter 1. Once the environment and the tasks have been determined, the

next step before drawing the robot architecture is to define the technique that will

implement the robot controller.

 The strategy for the implementation of an embedded evolvable controller

has to provide the appropriate building blocks for evolution to work with [Mat96]. The

Evolutionary System (ES) has to be able to manipulate the controller primitives, adjusting

them to perform the desired behaviour. It has to allow the designer (the evolutionary

technique) to see the robot as a whole (body, sensors, motors, and “nervous system”), as a

dynamic system coupled with a dynamic environment [Lun97]. To do so, there are several

possibilities. Consequently, it is necessary to consider some classification and concepts:

 31

• Should the Control be Structured or not?

 One of the main problems in evolving robotic controllers is how to

guarantee the possibility, at any time, of understanding what is really implemented inside

the chosen adaptable (evolvable) device [Gru94] [Tho94a]. This can be achieved by using

some high level semantic groupings. However, this approach inevitably incorporates the

human designer’s prejudices (and limitations) [Har97b]. So the controller primitives

manipulated by the evolutionary process should be at the lowest possible level, but still

permit some kind of structured arrangement that can be deduced from the circuit [Tho96].

This restriction practically eliminates any unconstrained use of low-level semiconductor

physics.

 Without restrictions, evolution can go on by taking note of the overall

behavioural effect of variations made on real circuits. This is very different from

conventional structured design techniques, which proceed by modelling, abstraction, or

analysis [Wag95]. These are simplifying constraints normally imposed to make design

tractable by humans, a decomposition of a complex system into separate parts of

manageable size [Tho94c]. Evolution does not need a prior analysis of the problem and

such constraints can be relaxed. If some objective fitness function can be written to tell

how well an individual can carry out some specific task, evolution should allow the gradual

emergence of a solution for a complex system without explicit design. However, all this

freedom generally costs a large number of trials of a real circuit working in a physical

environment [Hig94]. In addition, sometimes evolution cannot evolve hardware

unsupervised, because of the danger of damaging expensive parts or injuring people

[Hig96b]. There is the risk, for example, of short-circuiting outputs, over stimulating

drivers and actuators, or repetitive mechanical collisions of movable parts [Iba97]

[Key97a]. Adequate simulation, normally used to speed up evolutionary processes, may

take much longer than using real hardware, or may not even be feasible as when vision

modelling or detailed semiconductor physics are involved [Har97b].

 The use of abstract models or structures simplifies design and allows the

result of an evolutionary process to be extracted from the circuit and subsequently analysed

[Tho99]. However, useful properties of the real hardware that have been abstracted away

will not influence the behaviour of the designed control circuit [Tho00]. Evolvable

Hardware (EHW) avoids the need of design abstractions and the accompanying constraints,

and works by observing variations made into the real hardware [Har96] [Tho97a]. It does

 32

not need to consider the spatial structure (modularity) or the temporal structure

(synchronisation) of the circuit. Furthermore, there is no need to constrain artificially the

dynamics of the configurable hardware being used [Tho98]. Physical electronic circuits can

display a broad range of dynamic behaviours, of which discrete time systems, digital

systems, and even computational systems are just subsets [Tho96c]. Nevertheless, the

evolutionary process can also benefit from a kind of modularity, such that different

phenotype characteristics can be improved semi-independently by genetic operations

[Wag95]. It must be observed that any kind of modularity that is appropriate to the future

identification of the designed circuit could be very different from that which benefits

evolution [Kod98].

 Although human and evolutionary decomposition may sometimes coincide,

evolution, according to Thompson [Tho94b], should ideally “be allowed to explore the full

range of possibilities without inheriting limitations from humans”. Unconstrained

evolution can also integrate into the design an ability to function in the presence of faults

[Tho96a]. Therefore, it can produce a working system from faulty parts, integrating fault

tolerance and automatic design [Key97c]. To make it possible, it is important that

evolution operates at the same level of abstraction as the faults, imposing very low-levels

of abstractions to generate a fault tolerant integrated control circuit [Key98].

 Certainly, unconstrained evolution has a considerable potential for many

applications [Har94] [Tho96c], but as this work concentrates in studying embedded

evolution, it is more important to identify and exploit generic structures that can produce

the desired phenotype for the expected behaviour [Jak96]. Therefore, it is important to take

complexity out from the controller and the task behaviour, concentrating the effort in

designing and analysing a distributed embedded system [Key97a] [Key97b]. Hence, a

modular higher-level architecture will be selected.

• Should the Control be Simulated or Integrated?

 To evaluate the fitness of an individual, its genotype is expressed to produce

a setting of the evolvable control circuit configuration [Har93b]. In the so called “intrinsic

hardware evolution”, that data set is then applied to the chip, which instantiates the

corresponding circuit, and the behaviour of this real circuit is then evaluated to give a

fitness score. In the “extrinsic” case, evolution is carried out using a simulated model, with

only the final score being downloaded onto the chip [Cha98]. When using simulations, it is

 33

important to decide how realistic the model should be; that is how timing, communication,

and interactions among control, sensors, and motors should be handled [Tho97a]. In

simulations, evolution cannot proceed by analysing the overall behaviour of the real circuit,

and has to manipulate abstract models, as described in Chapter 2.

 Since the goal of this work is to produce a population of self-training real

robots that can control their own evolution, only the issues associated with intrinsic

hardware will be addressed. Hence, the question here is: should this programmable control

circuit be integrated into a distinct hardware circuit or implemented in software and

executed by the robot on-board microprocessor? If the genetically specified piece of

hardware is tested in situ, the low-level physics of the hardware can be used, and the

components can behave at their natural timescales, without the necessity of global clocking

or other design constraints [Chi93]. The embedded evolutionary algorithm will execute

within the robot on-board microprocessor. This means that a processor and memory will be

already available on the robots and, therefore, implementing the evolvable control in

software is the simplest alternative.

• Should the Control be Trained at First and Then Refined by Evolution?

 The major problems for evolving a robot controller for a specific

environment were explained in Chapter 2. It pointed out the risk of choosing an

Evolutionary Algorithm (EA) that cannot produce the expected behaviour [Har97b]. In

Evolutionary Robotics (ER), a genotype specifies the characteristics of a control system,

and depending on the application, it may not be a fixed-dimensional search space of known

size and the fitness landscape is not always smooth [May96] [Bar98]. Moreover, the

number of components required to produce an appropriate behaviour may be unknown at

first, and the number of needed components will increase over time when Incremental

Evolution (IE) is applied through successively more difficult tasks [Har93a].

 An initial training phase where the control system can be taught to work

properly with samples of the most common situations that can be found in the real

environment can be run in simulation [Cha98]. This possibility facilitates the specification

of the crossover and selection parameters, and the mutation rate, in a fitness-proportional

selection [Bar98]. The idea is to generate a training set to be used by the chosen

evolutionary technique and use it to produce an initial population of distinct trained control

circuits, able to behave adequately in some standard situations. This population can then be

 34

downloaded in to the real robots and continue to evolve in the real noisy environment

[Cli92]. This solution can be more complex, but should reduce the amount of time that is

necessary to achieve a reasonable adapted behaviour. It is also a safe way to evolve real

hardware, since the circuit will be pre-defined in simulation where trials involving

dangerous situations can be performed. Once a safe, stable configuration is found;

evolution can be applied to tune its parameters.

 Although applying an initial training phase may sound attractive to

embedded evolution, it may bias evolution to early convergence into a local optima and

include fallible designer’s prejudice [Mee96]. As the chosen task-behaviour of collision-

free navigation is relatively simple and can be safely executed with a population of real

autonomous mobile robots, a complete evolution of the global system is preferred. To give

evolution more freedom to explore uniformly the search space in the initial phase of the

experiment, it is a better idea to start with a randomly initialised population, positioned into

random places in the environment [Tho97a].

3.2 Alternatives for the Controller Architecture

 The possibilities presented below for implementing the evolvable control

circuit of the robots were chosen according to their relevance to the state-of-the-art and the

viability of evolving them on hardware. This section reviews some alternatives to

implementing the robot embedded controller, presenting insights obtained while

considering their viability to this work. This analysis is not a comprehensive study leading

to the implementation and test of all alternatives, but a brief review of their relevant

characteristics and how they can be adapted to implement an embedded evolutionary

controller.

 35

 The alternatives considered for implementing the evolutionary controller

are:

a) Evolvable Hardware;

b) Dynamic State Machine;

c) Condition-Behaviour Mapping;

d) Pulse Stream Neural System;

e) Boolean Neural Network;

 Even though most of the suggested alternatives were inspired by the work of

other authors, such as Thompson [Tho94a] [Tho96b] (alternatives a and b), Mataric

[Mat97b] (alternative c), Reyneri et al. [Rey93] [Chi95] (alternative d), and Simões et al.

[Bot96] [Sim97] (alternative e), this section presents insights and new solutions for

adapting them to fit the evolutionary controller and the robot application suggested in

Chapter 1.

3.2.1 Evolvable Hardware

 Evolvable Hardware (EHW) is a recently introduced concept [Tho97a] that

allows artificial evolution to manipulate directly the configuration of a silicon chip.

Intrinsic EHW deals with evolving electronic circuits in real time, measuring performance

directly from the hardware to calculate the fitness value [Hig96b].

 A Field-Programmable Gate Array (FPGA) was considered to be evolved by

the genetic system to perform the robot control. In an FPGA, the functioning of the chip is

not determined in the factory, but in the field by the users [Lay99b]. The use of a real chip

has some problems that must be considered: the limit on the number of times it could be

reconfigured; the ability to reconfigure while basic operations are still being performed; the

presence of a layer of secret proprietary software between the user and the chip; the

possibility of easily damaging the device with an invalid configuration; and the dependency

of the internal components on the temperature and singular physical properties of the chip

 36

[Hig94]. It is also possible to build custom configurable hardware systems out of separate

components [Tho95], but each architecture will have its own characteristics.

 There are many interesting possibilities arising from the use of evolvable

techniques together with FPGAs [Tho96c], such as fault-tolerant design or design under

low power/area constraints. If the evolvable algorithm uses no modelling or abstraction,

then the physical properties of the chip can be explored to generate the desired behaviour.

This approach also allows physical faults to be used as positive characteristics (phenotype)

to be evolved into a useful controller [Tho94a]. However, evolving circuits in lower levels

of abstraction that could work over the full range of conditions (both external, like

temperature, and internal, like the properties peculiar to individual chips) which they could

encounter in an industrial application is still a difficult problem with the present scientific

state-of-the-art [Gar97]. Another problem is interfacing the FPGA to an IBM PC-

compatible ISA bus or a serial port, to provide a communication link between the robot

main processor and the programmable controller; hence, the configuration bits can be

downloaded to the FPGA. These problems are specific to the application and depend on the

FPGA being used. Xilinx is aware of these problems and produced the XC6200 Series that

overcame many of these difficulties [Xil96]. Before this series, FPGA architectures were

proprietary and researchers could not manipulate their internal structures, nor understand

the meaning of their configuring bit string. The architecture of the XC6200 is open and the

configuration bits can be written in small sections that change local circuitry.

 To guarantee that each generated configuration will have the same

phenotype on all controller chips, one simple solution is the use of a clock signal for

synchronisation [Tho97a]. This temporal co-ordination (phase control) can also be

manipulated by evolution and be determined in real time according to the problem at hand.

Such strategy can add a powerful new dimension to electronic systems: time. Then, the

physical/analogue characteristics of the chip under evolutionary control will not alter the

phenotype of the controller. However, they are not useful to the algorithm anymore

[Tho00].

 At the initial phase of this work, where FPGAs were being investigated to

implement the robot controller, real time evolution of a physical FPGA was only beginning

to be proved experimentally by Thompson [Tho94c] [Tho96c]. To simplify the robot

architecture, a software implementation of an array of logic gates can be run by the robot

on-board microprocessor, instead of using a real FPGA. This approach reduces complexity

 37

and cost and allows a larger population to be built. It also permits to concentrate in

embedding the evolutionary strategy, instead of dealing with problems associated with the

controller real hardware physics. With this technique, many problems pointed out above

(physical properties, interfacing...) do not need to be considered anymore.

 For a software implementation of an evolvable hardware controller, an

initial solution consists of an array of 256 logic cells, where each cell has three inputs and

its output can produce all Boolean functions of three inputs. Figure 3.1 represents how the

output of each cell can be connected through reconfigurable switches to any input of its

four neighbouring cells only, to form a two-dimensional array. This limitation is necessary

to prevent short circuits among the outputs of the cells if this strategy is to be transferred to

a real FPGA in future work. Consequently, the variety of wires for the interconnection of

the logic cells, so common in most FPGAs [Tho96c], had to be suppressed. A

configuration memory holds the genotype containing the settings (two bits) of the switches

that control the routing of the cell inputs and outputs, and a set of eight bits for each cell

that compose the performed Boolean function.

 The contents of the configuration memory are then codified on to a genotype

and an evolutionary algorithm can automatically evolve these bits to obtain a robot control

circuit to achieve a given task. Therefore, a genotype of 2560 bits (256 × 10 bits per cell)

can encode the functions and the interconnection patterns of the 256 logic cells. Figure 3.2

shows an example of how the logic cell array can be connected to eight 2-bit proximity

sensors to calculate the corresponding speed levels for two motors. The population of robot

controllers (depending on the number of available robots) is initialised randomly. For each

generation, every genotype is used to configure the software implementation of the logic

cell array that coexists with the evolutionary algorithm within the robot microprocessor.

The architectures presenting the best performances are selected and their configuration bit

strings are combined to produce daughter architectures (resulting configuration strings) that

are used to reconfigure the robot control circuit before starting another evaluation phase.

 38

 Once problems related to intrinsic EHW are solved, such as how to

automate the crossover process having a commercial software between the FPGA and the

supervisor system, a real FPGA can be used in the robots with few modifications in the

evolutionary system. Because of this, the evolutionary software can evaluate, select, and

reproduce the individuals, which are FPGA configurations, but can only generate an output

file that needs to be manually loaded into the commercial software that burns the FPGA

circuit. The commercial software cannot be automatically controlled by the evolutionary

system, imposing human interference. Each generated circuit (phenotype) can be

previously evaluated, to check if there is a path between the controller inputs and outputs,

so that trials will not be wasted with infeasible solutions [Tho96c]. The parent genotypes

will be combined until a group of adequate individuals is generated.

 An evolvable hardware as the presented FPGA is an alternative to

implement the robot evolutionary controller, but some problems can be anticipated: this is

a complex architecture that is difficult to simulate and demands computation power that a

simple microcontroller will have problems to provide [Mot96]; the number of components

(cells, interconnections) necessary to produce the robot task behaviour is still unknown, so

the architecture may not be able to achieve a good performance; despite the modularity of

the array, the connectivity of the cells depends on their position in the array, making it

I1 I2 I3 O
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

B0, B1B0, B1

Output
Mux

 Logic Cell

Input
Mux

 Boolean Function

Contacts to
other Cells

Figure 3.1 – The programmable logic cell. The settings of the switches that
control the cell are specified by 10 bits; Bits B0 and B1 control the
input/output multiplexers and bits D0 - D7 specify the desired Boolean
function.

 39

difficult to add more cells to expand functionality; and in spite of being inspired in a real

FPGA architecture, their similarities are not enough to guarantee a direct conversion to a

real circuit [Per96b]. Therefore, the use of EHW was discarded.

3.2.2 Dynamic State Machine

 Another alternative to the implementation of the robot evolvable controller

is the use of a random-access memory (RAM) to implement a dynamic state machine

(DSM) [Tho95], instead of the well-known “direct-addressed ROM” implementation of a

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

S2

S1

S3

S4

S5

S6

S7

S8

Motor
Driver 1

Motor
Driver 2

Configuration Bit String

Logic Cell Array

Figure 3.2 – The evolvable hardware controller: a 256 logic-cell (LC) array.
Eight 2-bit proximity sensors (S1 to S8) connect to specific cells on the
first column. Two groups with five specific cells each produce the output
signal to the motor drivers (the 5-bit outputs allow 32 speed levels to
each motor). All 256 logic cells are configured with 2560 bits (10 bits per
cell) stored into the configuration bit string.

 40

finite state machine (FSM). It can be obtained by placing the contents of the RAM under

evolutionary control [Tho99]. Each signal can be latched according to the clock or feed

directly the memory address inputs. Figure 3.3 shows a DSM applied to control a robot,

where the sensor signals are converted to digital inputs and held by a clocked register as the

current state for a central DSM control with evolvable contents. This configuration was

inspired by the solution proposed by Thompson in [Tho97a]. The memory outputs contain

the speed commands to drive the motors in the next state. Each present-state and input

combination form the address that select a specific output. These binary codes are then

converted by the motor drive modules M1 and M2, and used to control both motors.

 If a fixed clock is applied to the system, the sensory/control/motor

functional decomposition cannot be removed. Therefore, evolution cannot manipulate the

dynamics of the signals and environment to generate the control system [Tho95]. However,

it makes possible that complex digital sensors and motor drivers are used to allow well-

elaborated tasks. Nevertheless, the system still produces a rich range of possible dynamic

behaviours. The evolutionary system can have control of the latch and decides which of the

input lines are clocked, and which are free running. Therefore, it can decide from which

lines it will keep a trace of previous stimuli and actions. If no clock is applied, it will not be

possible to simulate the control machine in software, since the effects of the asynchronous

variables and their interaction with the clocked ones depend upon physical properties of the

hardware.

4k RAM – 8 bits

 12 Address Inputs 8 Data Outputs

 Genetically Controlled
 Latch

 S1 S2 S3 S4
M1 M2

 2 2 2 2

 2 2 12 4

 Clock

Figure 3.3 – The evolvable Dynamic State Machine: S1 to S4 are 2-bit infrared
proximity sensors; and M1 and M2 are the motor driver modules. This solution
was inspired by [Tho97a].

 41

 The size of the RAM as well as the number of state variables depend on the

characteristics of the sensors and motors used in the robot and the expected behaviour. A

4Kbyte memory with four state variables can be applied to control a two-wheeled robot

with four infrared sensors. More state variables can be introduced incrementally as the

difficulty of the task is increased [Mee96]. The genetically controlled latch needs 12 more

bits to select which address input will be clocked. The contents of the RAM and the

clocked/unclocked condition of each variable are directly encoded onto a linear bit-string

genotype (32,768 + 12 bits) [Wat99b]. This very simple controller can drive the robot

around based in the information supplied by its four proximity sensors. Nevertheless, it

constitutes an enormous search space (232780 possibilities) and the evolution towards a good

solution may take too long and seems impracticable [Shi00]. Even making use of

incremental evolution to reduce the search space, the dimensionality of this approach may

be untreatable in a real time embedded evolutionary system [Har93c]. Considering that a

more complex robot architecture containing eight proximity sensors and motor drivers with

32 speed levels was proposed, the use of this approach to implement the control circuit

would get even more complex and had to be discarded.

3.2.3 Condition-Behaviour Mapping

 The “state and action” representation of the world of a mobile robot can be

described in a higher level of condition and behaviour abstraction [Mat97a]. Behaviours

are control laws that achieve and/or maintain particular goals. They are designed (or

learned) so as to provide the desired outputs while abstracting away the low-level details of

control [Mat97b]. Behaviours are triggered by conditions predicated on sensor readings and

mapped into a proper subset of the state space, which is necessary and sufficient for

activating a particular behaviour [Mat94]. This subset is typically much smaller than the

complete robot state space. Behaviours abstract away the details of the low-level sub-

controllers driving the robot, while conditions abstract away the details of the robot state

space.

 The learning strategy consists of finding (evolving) a mapping from

conditions to behaviours into some effective procedure for a specified task [Mat96]. Each

 42

robot controller can be evolved to select the most appropriate conditions for triggering each

specified behaviour. This strategy requires pre-processing and post-processing to deal with

the abstraction of noisy sensor readings into an input state and the low-level details of

controlling the robot according to the selected behaviour. Therefore, the evolvable

controller has to ask the main processor about the conditions faced by the robot, and then

selects and tells the processor the most appropriate behaviour to be executed [Mic97].

Figure 3.4 shows a controller inspired by the work presented by Mataric in [Mat97b].

 Some examples of possible conditions encountered by the robots are:

• near wall;

• have object;

• low battery;

• obstacle on the left;

 These conditions are in general easily detected internally by the robot and

will trigger appropriate behaviours according to the chosen procedure [Wer96]. Some

expected behaviours are:

• disperse;

• go home;

• look for recharge;

• turn right;

Sensors

Main Processor

Evolvable
Control

Motor
Drivers

Noisy Sensor
Readings

Commands

 Conditions

Behaviour

Figure 3.4 – The implementation of an evolvable controller based onto a
Condition/Behaviour mapping scheme. The controller asks the main processor
about the conditions faced by the robot, and then selects the most adequate
behaviour to be executed by the processor. This solution was inspired by
[Mat97b].

 43

 The fitness function can be calculated using some reinforcement learning

concepts, such as reward and punishment [Mat93]. Immediate reward and progress

estimating functions can be applied to evaluate a robot fitness. It can be analysed externally

(e.g., the relative position of the robot to targets, obstacles, other robots…) or internally

(e.g., sensor readings, distance to obstacles, collisions, low battery indication…) [Mat97a].

When implementing an embedded evolutionary controller, the fitness function can only be

analysed internally. The learning process consists of allowing evolution to adjust the values

of a table containing the mapping of each condition to the corresponding behaviour, as it is

exemplified in Table 3.1.

 The controller is an ordering table implemented in the robot RAM memory.

In the example given by Table 3.1, this memory (a mapping table) only needs 16 × 4 bits to

implement the evolvable controller. If more than one behaviour are selected (by writing

one in its corresponding position) in the table, the ones to the left have priority to be

chosen. Therefore, the order of the behaviours in the table rows is also important. In a real

situation, however, the memory will be considerably bigger to accommodate all possible

conditions and behaviours necessary to navigate the robot safely. The evolutionary

algorithm can control the bits stored in this memory and adjust them to a proper mapping

between the conditions and behaviours. The memory bits can then be arranged in sequence

to form a bit string: the robot genotype (or chromosome) [Set99]. The execution of the task

Table 3.1 – An example of condition-behaviour mapping.

Condition Behaviour
near
wall

have
object

low
battery

obstacle
on the left

disperse go home look for
recharge

turn
right

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 0 1
0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 0 1
1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
1 0 1 1 0 0 0 1
1 1 0 0 1 0 0 0
1 1 0 1 0 0 0 1
1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 1

 44

may appear quite simple, since its learning space has been appropriately minimised. In

practice, however, a uniform exploration and learning of the optimal policy can present a

considerable challenge for an evolutionary technique in a highly dynamic, uncertain

environment, where many conditions and behaviours are present [Mat98a].

 A mixed strategy consisting of refining (or evolving) each behaviour

separately at first, using an evolutionary algorithm to control their parameters, was

considered to be used to implement the robot control. The idea consists of considering each

behaviour as a lower-level task and evolving a distinct sub-controller to achieve each one

of them [Cli92]. Each sub-controller is a reconfigurable circuit that can be implemented in

software in the robot microprocessor and memory, having a limited set of subroutines

containing speed values and time delays for each motor driver. Figure 3.5 shows an

example of a lower-level behaviour containing a set of chosen subroutines. The values of

V1, V2, and Time are adjusted by evolution.

 Once the set of subroutines is chosen for each behaviour, evolution can

adjust the speed and time variables until the robot is able to perform it. Figure 3.6 shows an

example of three lower-level behaviours and their corresponding set of subroutines. In the

figure, T is a time constant that represents the delay of one iteration. If for example, the

robot executes one iteration each 10ms, T = 10ms. If behaviour 1 is selected, the robot will

adjust the speed of motor 1 (V1) to zero, and motor 2 (V2) to Vmax, the pre-defined value

for maximum speed, and keep these settings for 100 iterations (1s). In doing so, the robot

stops the left wheel and turns around it as demonstrated in the figure. The first subroutine

of behaviour 2 sets negative speeds for both motors, making the robot reverse for 200

iterations (2s) before turning around its centre for 0.5s. If the “GO HOME” behaviour

 Subroutine 1: V1, V2, Time;
 Subroutine 2: V1, V2, Time;
 ...
 Subroutine n: V1, V2, Time;

Lower Level Behaviour

M2RobotM1

S2S1

Figure 3.5 – Example of a lower-level behaviour containing a set of subroutines
that are chosen and adjusted by evolution. M1 and M2 are the left and right
motors of the robot, and S1 and S2 are the left and right sensors. V1 and V2 are
the speed levels of the corresponding motor and Time is the time delay while
the subroutine is active.

 45

(behaviour 3) is selected, the sensor information will be used to drive the robot towards an

infrared beacon that indicates the position of “home”. HBIS1 and HBIS2 represent the light

intensity of the home beacon received by the left and right sensors respectively. The

difference of intensity is added to the speed, turning the robot until it is facing the beacon

when the difference becomes zero.

 The sub-controllers can be then evolved individually until each necessary

behaviour is capable of driving the robot accordingly. When this first step can produce

satisfactory results, all the sub-controllers (performing specific behaviours) are attached to

a central condition-behaviour-mapping controller, which receives the present conditions of

the robot as inputs. Then, the complete controller can be evolved in the dynamic

environment to select the appropriate behaviours according to each situation the robot

 V1 = Vmax + (HBIS2 - HBIS1);
 V2 = Vmax + (HBIS1 - HBIS2);
 Time = "While robot is not Home" ;

Behaviour 3: Go Home

M2RobotM1

S2S1

Home
Beacon

 V1=0, V2=Vmax, Time=100T;

Behaviour 1: Turn Left Long

 V1=-Vmax, V2=-Vmax, Time=200T;
 V1=-Vmax, V2=Vmax, Time=50T

Behaviour 2: Reverse and
Turn Left Short

V2V1

Figure 3.6 – Example of three lower-level behaviours and their
corresponding set of subroutines. S1 and S2 are the left and right
sensors, V1 and V2 are the speed levels of the corresponding motor, and
T is the delay of one iteration. HBIS1 and HBIS2 are the light intensity
of the home beacon received by the left and right sensors respectively.

 46

faces. Each behaviour as well as the central mapping of condition-behaviour can still be

continuously refined by the genetic algorithm. Figure 3.7 shows a general view of the

incremental control system.

 This is a powerful solution that can be implemented on-board the robot

microprocessor. It abstracts away from evolution the complexity of the sensory structures

and motor drivers, allowing a significant reduction of the search space [Mee96]. The

behaviours can become progressively more complex to accommodate other robot

applications. The only reason this solution was not chosen is the necessity of human

intervention to evaluate when each behaviour is obtained or to reposition the robots for

new trials.

Evolvable
Central Mapping

Controller

Evolvable
Controller:

Behaviour 1

Evolvable
Controller:

Behaviour 2

Evolvable
Controller:

Behaviour 3

Evolvable
Controller:

Behaviour 4

Motor
Drivers

Sensors

Figure 3.7 – The incremental control system: each behaviour is selected by a
central mapping of condition to behaviour that translates the sensor readings
into conditions and chooses the appropriate evolvable behaviour to control the
motor drivers.

 47

3.2.4 Pulse Stream Neural System

 An interesting alternative to implement the evolvable controller is the use of

Artificial Neural Systems (ANS), which are computing systems based on cognitive

approaches [Rey94]. In PS neural systems, information is contained in waveform timing,

not in the amplitude. Coherent Pulse Width Modulation (CPWM) [Rey93] is a PS

technique which presents good performance for control applications [Chi95]. There are

many ANS techniques already prototyped in hardware that can be used for robot control,

but a fair comparison among them is difficult to find. Nevertheless, the CPWM

implemented by Chiamberge, described in [Rey95], is a good solution for robot navigation

problems. It was chosen for it can be easily evolved by a genetic algorithm, since the

weights of the synapses are controlled by the voltage on specific capacitors, periodically

refreshed from an external digital memory [Chi96]. The memory contents can be dealt with

as a genotype and evolved by the chosen evolvable technique.

 The CPWM chip has a self-standing prototype board to interface it to a

controller plant [Rey95]. This board can be used as described in Figure 3.8 to perform the

programmable control of the robots [Chi93]. The system array has 16 inputs coming from

the external world (eight digital for direct CPWM signals and eight analogue, internally

converted by on-chip converters). The chip has 32 digital outputs, including the 16 hidden

ones, which are also available outside.

 The inconvenience of applying the CPWM chip to control the chosen robots

is that it requires an interfacing board, which may consume too much power to fit into a

small-sized robot. However, if this technique is to be used, a specific interface for

controlling the configuration memory and the CPWM chip from the robot microprocessor

needs to be designed. This approach would involve a complex design of the robot

architecture and the overall cost would exceed this project budged. Therefore, it had to be

discarded.

 48

3.2.5 Boolean Neural Network

 Boolean Artificial Neural Networks have been used in many situations

providing fast training, processing speed, and easy hardware implementation [Fil92]

[Sim94] [Har97d] [Sim97]. Boolean neural networks can have weights between nodes or

not. In the last case, they can also be described as “RAM-based”, “n-tuple based”, or

Weightless neural networks [Lud99]. As the last name suggests, these models do not have

weighted connections between neuron nodes, and work with binary inputs and outputs. The

neuron functions are stored in look-up tables that can be implemented in software or using

Random Access Memories (RAMs). The learning phase consists of directly changing the

neuron contents in the look-up tables, instead of adjusting the weights between nodes. This

characteristic generally allows a faster learning than weighted neural networks, since by

modifying weights the previously learned information is also modified. In the more flexible

Boolean neural networks, the neurons can learn new information by changing only the

memory contents corresponding to the new input pattern, without modifying the

information related to other inputs.

 Since the original work by Bledsoe and Browning [Ble59] and Aleksander

[Ale66] proposed the N-tuple sampling technique, many weightless models were proposed

such as the PLN (Probabilistic Logic Neuron) [Ale90], pRAM (Probabilistic RAM)

[Aus94], and GSN (Goal-Seeking Neuron) [Aus98]. They consist in the addition of new

CPWM Chip

8 Digital Inputs (D0 to D7)
8 Analog Inputs (A0 to A7)

32 Digital Outputs (O0 to O31)

Proximity
Sensor A0

Proximity
Sensor

A7

.

.

.

.

.

.

Collision and
other Warning

Signals

 D0

 D7

.

.

.

O0 O31 . . .

Motor
Drivers

Figure 3.8 – A self-standing CPWM prototype board controlling a robot as
illustrated in [Rey95].

 49

features and learning schemes, resulting in more powerful neural nodes. In relation to robot

implementations, the RAM model, or RAM node is very attractive, since it provides great

flexibility, modularity, parallel implementation, and high speed of learning, what leads to

less complex architectures that can easily be implemented with simple commercial circuits

[Fil92]. Figure 3.9 shows a representation of a typical RAM neuron, as illustrated in

[Aus94]. The RAM node is a random access memory addressed by its inputs. The

connectivity of the neuron (N), or the number of inputs, defines the size of the memory: 2N.

The inputs are binary signals that compose the N-bit vector of the address that can access

only one of the memory contents. This neuron consists of a memory that stores a look-up

table that implements any Boolean function performed by the neuron. Therefore, a RAM

neuron can compute any Boolean function of its inputs.

 A RAM neural network is a single layer architecture where the number of

neurons is typically enough to cover all of the network binary input vector and depends on

the neuron connectivity. Simões et al. studied the main issues and constraints of the

connectivity pattern in RAM networks in [Sim96]. Figure 3.10 shows the connectivity

pattern of a RAM discriminator [Ale84]. For an input vector of size K, the number of

necessary neurons J of connectivity N that should be used to cover all inputs of the input

Output

Typical RAM node

M(2N-1)
.
.
.

M(0)

Input 1

Input N

Input 2

Read/Write Data

Figure 3.9 – Typical RAM node or neuron as illustrated in [Aus94].
 Where: N is the connectivity (number of inputs);
 Input 1 to Input N are the input terminals of the neuron;
 M(0) to M(2N-1) are the memory contents (neuron contents);
 Output is the output terminal that transmits the addressed
 content;
 Data is the input terminal to receive learned data;
 Read/Write defines the working mode of the neuron: if it
 is in the learning or recognition phase;

 50

vector should satisfy: J × N > K. This neuron group is called a WISARD discriminator and

its response is produced by connecting an adder that sums the neuron outputs, counting the

number of active neurons (neurons outputting “1”) in the group [Lud99]. A WISARD

system is built by grouping together a set of discriminators, each one being responsible by

recognising a different class of patterns. A winner-takes-all-block can be attached to the

adder outputs to choose the discriminator containing the greater number of active neurons,

pointing to the winning class. Although individual RAM neurons cannot generalise, a

WISARD discriminator is able to classify unknown patterns based on the knowledge

acquired by the learning phase.

 Learning in a RAM neuron is much simpler than adjusting weights in

weighted neural networks. It is performed by just writing new contents to the memory of

the neurons [Aus88]. The neurons are initialised with “0” in all contents, and are taught to

respond with “1” to the patterns that belong to the class corresponding to the neuron group,

or discriminator. This is accomplished by writing “1” to the memory positions of all

neurons of the corresponding class addressed by the input pattern.

 Once a RAM architecture containing neurons grouped in discriminators for

each class was chosen, a new strategy is necessary to allow its use to form an embedded

evolvable controller for the robots. This strategy consists of replacing the learning phase by

an evolutionary algorithm [Cli92], able to manipulate the neuron contents. To exemplify

Adder

K
-s

iz
e

In
pu

t V
ec

to
r

Output

RAM
Neuron

RAM
Neuron

RAM
Neuron

RAM
Neuron

Figure 3.10 – The connectivity pattern of a WISARD discriminator, as
illustrated in [Ale84].

 51

how this solution works, consider the same example of Section 3.2.2, where the robot has

four infrared sensors and two motors. Each sensor reading is converted into a 2-bit signal

and the network output consists of three classes of commands to each motor driver: Stop;

Front; and Reverse. Different behaviours can be obtained by combining those three speed

commands so that the robot can perform a long turn or a short one around its centre, stop,

or move forward.

 The implementation consists of two RAM neural networks, one controlling

each motor. The size of the input vector (K), containing four sensors and two bits per

sensor, for each neural net is 4 × 2, which equals to 8 bits. An n-tuple classifier [Aus88]

with five two-input neurons is enough to cover all bits of the input vector. The neural net

architecture is presented in Figure 3.11, where the neurons can be previously trained with

the most common situations faced by the robot during normal navigation or just randomly

initialised. The evolutionary algorithm will then try to adjust the neuron contents until the

network behaviour is able to drive the robot properly. The neuron contents are directly

encoded onto a linear bit-string genotype containing 120 bits (15 neurons for each motor;

four bits per neuron). After randomly initialising this bit string, the genetic code can be

evolved by the evolutionary algorithm in real time until the robots can perform the desired

tasks, allowing the evolvable controller to face a real noisy environment.

 This solution was inspired by a similar architecture, investigated before in

[Bot96], that applied the fast training and simple hardware design of the RAM model to

control a mobile Khepera robot. The article presented two weightless neural networks used

to control the robot: the GSN [Sim94] and the RAM model [Sim96]. The implementation

using the GSN model made use of two pyramids to control each wheel. The sensor values

were directly connected to the pyramid inputs, and the network outputs were applied to

control the wheel motors. The article presented a new concept that allowed each neuron,

after the training phase, to be manipulated as a "black box". All possible combinations of

neuron inputs were analysed to convert the complete network into a combinational circuit.

The minimisation of the circuit logic was processed according to [Sim96]. There, a

description of the minimised neuron network was converted into an Assembler language

code that used simple basic instructions. Consequently, the network circuit could be

directly executed by the microprocessor ALU (Arithmetic Logic Unit). This strategy

decreased the execution time of the algorithm, because simple logic functions (NOT, AND,

and OR) are faster to execute than complex floating-point operations used by a great

number of robot control models [Pol00]. This strategy of mapping the behaviour of a

 52

complete circuit into a logic table will be applied to a RAM controller in the experiments

described in Section 6.4 of this thesis.

 The RAM neural network shown in Figure 3.11 has three behaviour classes

with five neurons each that control the robot motors. The RAM model was implemented

according to the same approach used for the GSN in [Bot96], with the inclusion of simple

additions and comparisons, both necessary to the RAM model output evaluation, executed

by the “Select Action” block in the figure. The RAM neural network simplicity and its

implementation as elementary logic functions are responsible for its fast performance. The

weightless neural networks, mainly the RAM and the GSN models, tend to occupy a small

portion of memory. Therefore, memory allocation is not a great issue, increasing the

possibilities for the robot computing system. The mapping of the RAM neural network into

simple ALU logic functions and their direct execution in the microprocessor ALU can

reduce even more the total memory required by the control algorithm. The faster speed

provided by these simple implementations allows a faster controller, which can improve

the decision rate in complex sensory systems, like artificial vision [Smi98]. This strategy

also allows the use of low-cost microprocessors.

 The strategy of previously training the neural net with examples of pre-

defined situations and then leaving the neuron contents to be refined in real time

Figure 3.11 – RAM Neural architecture controlling a 2-wheeled Robot: S1 to S4
are infrared sensors; S, F, and R represent the groups of neurons of the
classes Stop, Front, and Reverse, containing five neurons each.

 53

manoeuvring can be faster than allowing evolution to work with a randomly initialised

neural network [Tho99]. However, it can lead the population to become trapped into a local

optima, and prevent evolution from exploring different controllers through the genotype

space before climbing a fitness slope, reaching the expected behaviour [Har93a]. For all

advantages mentioned above, a RAM neural network was chosen to implement the

embedded evolutionary controller for the robot population. Chapter 4 presents more details

of the chosen neural network architecture and shows how it is combined with the

evolutionary system.

 54

4 THE EVOLUTIONARY SYSTEM

 This chapter presents the strategies chosen to implement the individual

controller of each robot and the evolutionary system that controls the group of robots. It

also shows an overview of the complete system and an introduction to the robot

architecture. Although the strategies described in this chapter can be applied, in theory, to

control any number of robots, in this work the global idea was adapted to control a group of

six robots. Even though the suggested system was proven to work with such a small

population, a larger population of robots would give greater diversity to evolution,

improving the performance of the system [Fic00]. Thus, more individuals provide more

genetic combinations and increase the chances of finding a good solution to the problem.

 The goal of the implemented evolutionary system is to train automatically a

team of six autonomous mobile robots to interact with an unforeseen environment in real

time. The system is also able to continuously refine the generated solution during the whole

working life of the robots, coping with modifications of the environment or in the robots.

Although implemented into a specific group of 2-wheel differential-drive robots for a

specific task, the evolutionary system described in Sections 4.1 and 4.2 can be adapted to

control other kinds of robots performing different tasks. Section 4.3 and Chapter 5 describe

how the system was specifically adapted to our team of robots. Nevertheless, these two

sections are general enough to be used as guidelines to help the conversion of the system to

other mobile or static platforms.

 To test whether randomly initialised robots could really be trained by

evolution to do something practical, a very simple task was chosen: exploration with

obstacle avoidance [Mor96]. Such a simple task, that is also known as collision-free

navigation [Rao96] [Key97a], facilitates the implementation of the system and allows its

development in relatively low-cost robots. Therefore, more robots could be built and

evolution can benefit from more diversity in the population. The main issue considering

functional specification in an evolutionary system is to tell evolution what the robots have

to do, without telling it how they are going to achieve that [Flo96a]. In our case, the robots

 55

are encouraged to explore the environment, going as fast as possible without colliding into

the obstacles or each other. Because the workspace contains various robots, the

environment also includes some robot-to-robot interference [Set97] (e.g., collisions

between robots and reflection of the infrared signals by approaching robots). Though the

presented task is simple and does not involve explicit robot interaction, the transparency of

this domain allows a clear investigation of the implicit interactive nuances within the

evolutionary approach. Chapter 6 will show how, based on a reward-punishment scheme,

evolution can find unique, unexpected solutions for that problem.

4.1 Individual Control Strategy

 The robot architecture can conceptually be seen as a central control module

interfacing all other functional modules, which either supply or demand data required for

autonomous processing (see Figure 4.1). The modules were implemented using a

combination of dedicated hardware and software executed by the robot microprocessor.

The robot architecture is configured by a set of parameters, a certain number of bits stored

in RAM memory. In evolutionary terms, this set of parameters is called the robot

chromosome [Koz98]. The Sensor Module is configured by a subset of the chromosome

that indicates the number of sensors used and their position in the robot periphery. The

motor drive module is configured by another subset of the chromosome that configures the

speed levels of the robot.

 The Motor Drive module receives and translates commands from the central

control module and controls the direction of travel and speed of the two robot motors. The

proximity of obstacles is obtained by the sensor module that decides which proximity

sensors are connected to the central control module according to the parameters stored in

the robot chromosome.

 The subsystems of the Central Control Module are presented in Figure 4.2.

Connected together via the communication module, the Evolutionary Control circuits of all

robots control the complete evolutionary process. They process the data stored in the

chromosome and send the configuration parameters to the Navigation Control and the other

 56

modules. The evolutionary control systems of all robots use communication to combine

and form a global decentralised evolutionary system [Mat98b]. This global system controls

the evolution of the robot population from generation to generation. It is responsible for

selecting the fittest robots (the best-adapted to interact with the environment), mating them

with the others by exchanging and crossing over their chromosomes, and finally

reconfiguring the robots with the resultant data (the offspring) [Tom95].

 A Supervisor Algorithm monitors the robot performance, informing the

evolutionary control how well-adapted it is to the environment. According to events and

tasks performed by the robot, perceived internally by special sensors, a score or fitness

value is calculated and used by the global evolutionary system to select the best-adapted

individuals to breed. The supervisor algorithm is responsible for activating a rescue

routine, a built-in behaviour that is able to manoeuvre automatically the robot away from a

dangerous situation once it is detected by the sensors. Contact sensors in the bumpers

determine the occurrence and position of a collision. When activated, the rescue routine

will take control of the robot until it is safely recovered. It can communicate directly to the

motor drive module, by-passing the navigation control. When the rescue manoeuvre is

completed, the supervisor algorithm allows the motor drive module to accept once more

the commands of the navigation control circuit and the robot resumes on its way.

Central Control
Module

Sensor
Module

Motor Drive
Module

Sensor Readings Direction/Speed

Communication
Module

D
at

a

Configuration Data Configuration Data

Figure 4.1 – Architecture of the robot control system: the Sensor Module and
Motor Drive Module are configured by the Central Control Module, which
processes data from the sensors and commands the motor drive module in
how to drive the robot.

 57

 It is the Navigation Control, configured by the evolutionary control, that

commands the motor drive module according to the information provided by the sensor

module. It processes the information of the sensors and decides what the robot has to do.

Then, it sends a command to the motor drive module, which will control the speed of the

motors to make the robot manoeuvre accordingly. The navigation control is the centre of

the autonomous navigation of the robot. Configured by the parameters stored in the

chromosome, it drives the robot independently. Evolution is responsible for adjusting these

parameters so that the robot performs well in the environment. The implementation of the

navigation control circuit is explained below in Section 4.1.1.

 Section 4.2 explains how the developed evolutionary system works. All

components of the robot architecture are presented in more detail in Section 4.3 and

Chapter 5 describes them in terms of hardware and software.

Sensor Readings
D

at
a

Configuration Data Evolutionary Control Configuration Data

Navigation Control

Supervisor
Algorithm

Chromosome

C
on

fig
ur

at
io

n
D

at
a

Fi
tn

es
s

Bumper Sensors

Direction/Speed

Se
ns

or
 M

od
ul

e

M
ot

or
 D

riv
e

M
od

ul
e

Comunication Module

Central Control Module

Direction/Speed

Figure 4.2 – The Robot Central Control comprises three main subsystems: the
Evolutionary Control, the Supervisor Algorithm, and the Navigation Control.

 58

4.1.1 The Navigation Control Circuit

 A RAM neural network was chosen to implement the navigation control

circuit basically for the reasons given in Section 3.2.5. RAM neural networks have unique

features that facilitate their evolution by the system, simplify the implementation in the

robot hardware, and allow small modifications to be carried out with minimum effort

[Sim96] [Sim97]. They provide a robust architecture, with good stability to mutation and

crossover. Most neural networks, like the chosen one, present redundancy between the

genotype and the phenotype [Shi00]. In other words, a small change in the bits of the

chromosome (the genotype) will not produce a radical change in the behaviour of the

network (the phenotype) (see Section 2.1.1 for a detailed explanation of these terms). This

characteristic is called Neutrality [Kni48]. Therefore, the selected neural network is stable

enough to allow evolution to gradually refine the configuration parameters of the

navigation control circuit, seeking a better performance. Its good neutrality makes it suited

to be evolved by the system since a small mutation on a fit individual should, on the

average, produce an individual of approximately the same fitness [Bar98]. Similarly,

crossover between two parents of similar fitness, on the average, should produce offspring

with similar fitness.

 A Boolean neural network such as the RAM is a good solution for

implementing with an embedded controller (see Section 3.2.5), because it is fast and small

enough to cope with the speed and memory restrictions of the on-board microprocessor

[Bot96]. It allows the utilisation of command outputs that can be interpreted as high-level

routines or be employed as low-level incremental commands executed in each iteration

[Sim96].

 Figure 4.3 shows the sensor module processing the information of the

sensors and feeding the neural network inside the navigation control circuit. The output of

the neural network is a command that tells the motor drive module how to control the

motors. The evolutionary control reads the information contained in the chromosome and

sends the parameters to configure the sensor and motor drive modules. It also reads the

contents of the neurons from the chromosome and transfers them to the neural network in

the navigation control circuit. The motor drive module intercepts the command and

activates the corresponding routine that generates the signals for the motors.

 59

 Figure 4.4 shows more details on how the navigation control circuit

interfaces the sensor and motor drive modules. Section 3.2.5 presented an introduction to

the RAM neural network architecture. This section will show in more detail how it can be

configured to implement the navigation control circuit. The neurons are connected in

groups (discriminators) that correspond to one of the possible classes of commands (C1,

C2, … Cn) the neural network can choose. The groups are connected to an Output Adder

(O1, O2, … On) that counts the number of active neurons in the group. The Winner-takes-

all block receives these counting from the output adders, chooses the group with more

active neurons, and sends the corresponding Command to the motor drive module. The

sensor module converts the analogue readings of the infrared proximity sensors into 2-bit

signals that can be connected to the neuron inputs.

 Figure 4.5 presents an example of eight possible commands. The commands

FS, FM, FF, and S tell the command interpreter inside the motor drive module the level of

speed it should signal the motors to go. The robot can Stop; or move to the ahead with

three different speed levels: Fast, Medium, and Slow. The commands TRS, TRL, TLS, and

TLL specify how the robot is going to turn. It can Turn to the Left or Right in a Short way

(turning around its centre with one wheel going forward and the other backwards) or Long

way (stopping one wheel to do an arch).

Sensors

Sensor
Module

Neural
Network

Motor Drive
Module

Motors

Neuron Contents

Parameters Parameters
ProximityAnalog Command Signals

Evolutionary
Control

Chromosome

Configuration Data

Navigation Control Circuit

Figure 4.3 – The navigation control circuit interfacing the sensor and motor
drive modules, and the evolutionary control.

 60

Table 4.1 – Encoding of the Neural Network Commands.

Command Denomination Hex Code Binary Code Description
Command 1 FS 00 00000000 Front Slow
Command 2 FM 01 00000001 Front Medium
Command 3 FF 02 00000010 Front Fast
Command 4 S 03 00000011 Stop
Command 5 TRS 04 00000100 Turns Right Short
Command 6 TRL 05 00000101 Turns Right Long
Command 7 TLS 06 00000110 Turns Left Short
Command 8 TLL 07 00000111 Turns Left Long

 Table 4.1 shows the encoding of the commands chosen by the neural

network to control the motor drive module. Each command is represented by a

hexadecimal number (00 to 07) and converted into eight bits that are transmitted to the

Motor Drive
Module

Command
Interpretation

Navigation Control Circuit

o
o
o

o
o
o

o
o
o

O1

o
o
o

o
o
o

o
o
o

O2

o o oo o oo o o

o
o
o

o
o
o

o
o
o

On

Winner Takes All Block

C1 C2 Cn
Command

o o oo o oo o o

Command

Sensor
Module

S1

S2

Sn

o
o
o

o
o
o

o
o
o

S
en

so
r R

ea
di

ng
s

Sensor
Output

On

Neuron

Output Adder

o
o
o

o
o
o

o
o
o

On

Neuron Group

Figure 4.4 – The neural network in the navigation control circuit. S1 to Sn are
the binary sensor readings. The Output Adders (O1 to On) count the number
of active neurons in the group. C1 to Cn are the classes of commands to the
motor drive module.

 61

motor drive module. The commands can then be interpreted by the motor drive module and

the corresponding speed levels are selected to drive the motors. As it can be seen in the

figure, only the first three bits are being used. The other five bits can be used to

accommodate more codes in future applications.

 In the selected approach, the inputs of the RAM neurons are connected to

the sensor outputs provided by the sensor module. All neurons of the network have the

same number of inputs, although that number may vary according to the application

[Lud99]. In the implemented network, all neurons in the same position in the groups are

connected to the same inputs (i.e., the first neuron of the first group will have the same

inputs as the first neuron of the second group and so on…). Figure 4.6 shows a 3-input

neuron where i0, i1, and i2 are different neuron inputs connected to the input lines that

bring in the signals from the sensors. Nm,n is the neuron designator where m is the number

of the group to which the neuron belongs and n is its position in the group [Fil92]. All

neurons with the same position n are connected to the same input lines Li, Lj, and Lk, and

consequently, to the same sensor outputs.

 The connectivity between the input lines and the sensor outputs is controlled

by a Connectivity Matrix that defines which sensor outputs are connected to Li, Lj, and Lk.

Figure 4.7 exemplifies how the groups of neurons are connected in the neural network

architecture. The connectivity matrix is randomly initialised at the beginning of a new

Motor Drive
Module

Command
InterpretationWinner Takes All Block Command

FS - “front slow”; FM - “front medium”; FF - “front fast”;
TRS - “turn right short”; TRL - “turn right long”;

TLS - “turn left short”; TLL - “turn left long”; and S - “stop”

Figure 4.5 – Example of eight possible commands to the motor drive module.
FS, FM, FF, and S tell the command interpreter the level of speed of the
motors and TRS, TRL, TLS, and TLL specify how the robot is going to turn.

 62

evolutionary experiment. In the figure, the dotted lines between the sensor outputs and the

input lines exemplify one randomly-generated possibility of how the connectivity matrix

can connect the sensors to the network. In Chapters 6, 7, and 8, different experiments will

be described with the same architecture, but with a different number of neurons and neuron

inputs. In this way, an efficient configuration that is not too complex to be evolved by the

system, but can still drive the robots properly, could be found.

 One other advantage of RAM neural networks is their modularity [Ale90].

This characteristic simplifies the modification of the architecture. The number of neuron

inputs can be modified by rearranging the connectivity to the sensors alone. Sensors can

also be added or removed in this way. New commands are easily included by inserting

more neuron groups [Aus98]. Figure 4.7 shows how to insert a new command (e.g.,

Reverse – R) in the network architecture by connecting a new neuron group (neuron group

m+1) to the input lines that run horizontally through the architecture. This flexibility

helped in carrying out many experiments where different configurations of the basic

architecture were tested (see Chapter 6).

 The RAM neural network can be evolved by simply storing sequentially the

neuron contents into the robot chromosome and allowing the evolutionary algorithm to

manipulate these bits. Section 3.2.5 explained how the architecture was chosen, and its

configuration depends on insights gained through a long trial-and-error process that will be

presented in the experiments in Chapters 6, 7, and 8. Basically, the neural network must

have enough inputs to cover all the sensors, although some of the sensors may be

connected to more than one input line [Sim97]. To avoid saturation, enough neurons must

be placed in the groups so that the network can learn all the different input configurations

To Other Neurons
with same n

i0

i1

i2
Neuron
Output

Li

Lj

Lk

Nm,n

Figure 4.6 – Example showing a 3-input neuron: Nm,n.
Where: m – is the group the neuron belongs;
 n – is the position of the neuron within the its group;
 i0, i1, and i2 are the neuron inputs;
 Li, Lj, and Lk – are input lines connected to the sensor outputs.

 63

that correspond to the correct output commands [Fil92]. If the network is having difficulty

learning a different configuration, more neurons should be added. Different architectures

were implemented and simulated in software until the developed solution was obtained.

 Figure 4.8 shows a 4-input neuron with capacity in its memory to store 16

bits. It presents a neuron (a) and its four inputs i0, i1, i2, and i3. The neuron contents are

stored in the 16 bits of memory (b), addressed by the inputs. B0 to B15 are the binary

contents of the neuron and can be “0” or “1”. The four inputs (i0, i1, i2, and i3) form the

address that points to a single bit in memory. This figure also shows how a neuron can be

connected to four sensors (c) working with just 1-bit signals: these sensors can detect the

presence of an obstacle, but are unable to tell how far away it is. Figure 4.8 (d) shows how

the inputs i0 and i1, and i2 and i3 are combined to connect the neuron to two sensors that

work with two-bit signals: they are able to tell the distance from obstacles with a range of

four levels. This illustrates once more the flexibility of the RAM neural network. In a

simple application, the sensor module can make use of 1-bit sensors to find the direction of

obstacles. For a more elaborate navigation task, where the robot needs to discriminate how

far it is from the obstacles, the sensor modules can be modified to supply the neural

Neuron
Group 1 o o oo o oo o o

o
o
o

o
o
o

o
o
o

ooo ooo ooo Nm,n

ooo ooo ooo Nm,2

ooo ooo ooo Nm,1

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

S1

Lin

Lkn

Ljn

Neuron
Group 2

Neuron
Group m

S2

S3

S4

S5

S6

Sn-2

Sn-1

Sn

Random
Conectivity

Matrix

Li1

Lk1

Lj1

Li2

Lk2

Lj2

N2,1

N2,nN1,n

N2,2N1,2

N1,1

Figure 4.7 – Example showing the connectivity of 3-input neurons in the neural
network architecture, containing m groups with n neurons each. Randomly
initialised, the Connectivity Matrix defines which sensors are connected to
the input lines Li, Lj, and Lk.

 64

network with 2-bit signals from each sensor output. Both variations can be connected to the

neural network without modifications of the architecture, allowing different experiments to

be performed with the same navigation control circuit.

 Figure 4.9 shows a different configuration of the RAM neural network used

in some of the experiments to implement the navigation control circuit of the robot. It

consists of an n-tuple classifier that provides eight commands for the motor drive module

[Aus88]. The network is formed by 64 neurons containing four inputs (eight groups with

eight neurons per group) connected to eight 2-bit sensors controlled by the sensor module

[Sim99]. This is one variation of the configuration of the RAM neural network architecture

studied in this work, with a different number of neurons, neuron inputs, commands, and

sensor outputs. Chapters 6, 7, and 8 present a series of experiments that explored different

configurations of the same basic architecture.

i0 i1 i2 i3 Out
0 0 0 0 B0
0 0 0 1 B1
0 0 1 0 B2
0 0 1 1 B3
0 1 0 0 B4
0 1 0 1 B5
0 1 1 0 B6
0 1 1 1 B7
1 0 0 0 B8
1 0 0 1 B9
1 0 1 0 B10
1 0 1 1 B11
1 1 0 0 B12
1 1 0 1 B13
1 1 1 0 B14
1 1 1 1 B15

 Input Address Data

Neuron Contents

(b)

i0

i1

i2

i3

Nm,n
Out

(a)

S1

S2

S3

S4

Nm,n

1 bit: i0
1 bit: i1
1 bit: i2

1 bit: i3

Out

(c)

S1

S2

2 bits: i0,i1

2 bits: i2,i3

Out
Nm,n

(d)

Figure 4.8 – A 4-input neuron (a) and its 16 bits of memory (b). B0 to B15 are
the binary contents of the neuron. The four inputs (i0, i1, i2, and i3) form the
address that points to a single bit in memory. S1, S2, S3, and S4 are the
sensor outputs from the sensor module. The figure shows how to connect the
4-input neuron to four 1-bit sensors (c) or to two sensors with 2 bits (d).

 65

 Each sensor reading is converted into a 2-bit signal as shown in Figure

4.8(d). For each sensor, the sensor module can enable or disable this 2-bit signal,

preventing the sensor to be connected to the input lines. Sections 4.3.2 and 4.3.5 describe

in more detail how the sensor module performs this. The connectivity matrix is initialised

randomly every time a new evolutionary experiment begins. The network output consists of

eight commands to the motor drive module: S - Stop; FS - Front Slow; FM - Front

Medium; FF - Front Fast; TRS - Turn Right Short; TRL - Turn Right Long; TLS - turn Left

Short; and TLL - Turn Left Long. The Turn Short command means that the robot will turn

with one wheel going forward and the other backwards. The Turn Long command makes

the robot turn by stopping one wheel. The winner-takes-all block chooses the group of

neurons containing more active neurons, according to the sensor inputs in each iteration,

and selects the corresponding command. The resultant manoeuvre and speed values are

determined by the motor drive module, that gradually increments or decrements the speed

of the motors in each iteration, until reaching the selected level (i.e., stop; slow; medium; or

fast).

 Figure 4.9 presents only one of many possibilities of implementing the

navigation control circuit of the robot. It is not the final version and was modified many

times in the experiments reported in Chapters 6, 7, and 8, in addition, other alternatives

will be presented when each experiment is introduced. Chapter 5 explains in more detail

the hardware and software that were used to implement the navigation control circuit.

4.2 Evolutionary Control System

 It is the evolutionary control system, located inside the central control

module of the robots (see Figure 4.1 and Figure 4.2), that performs the evolutionary

processes of evaluation, selection, and reproduction [Tod97]. All robots are linked by

radio, forming a decentralised evolutionary system. The evolutionary algorithm is

distributed among and embedded within the robot population. Figure 4.10 exemplifies a

cyclic evolutionary process where the individuals are evaluated according to their capacity

to perform the tasks in the environment. If they perform well, it can be said that they are

 66

S1 A/D
2 bits

S2 A/D
2 bits

S3 A/D
2 bits

S4 A/D
2 bits

S5 A/D
2 bits

S6 A/D
2 bits

S7 A/D
2 bits

S8 A/D
2 bits

Sensor1
Enable 1

2

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

1

32

34

54

67

86

8

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

5

7 1

2

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

1

32

34

54

67

86

8

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

5

7 1

2

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

1

32

34

54

67

86

8

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

5

7 1

2

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

1

32

34

54

67

86

8

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

5

7

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

16 bit
 N

euron
16 bit

 N
euron

 Commands: S FS FM FF TRS TRL TLS TLL

Winner Takes All Block

Motor Drive
Module

Selected
Command

Pulse Modulation
Motor 1 Motor 2

Sensor2
Enable

Sensor3
Enable

Sensor4
Enable

Sensor5
Enable

Sensor6
Enable

Sensor7
Enable

Sensor8
Enable

Figure 4.9 – A RAM Neural Network architecture controlling a 2-wheeled
Robot: S1 to S8 are infrared sensors; S, FS, FM, FF, TRS, TRL, TLS, and
TLL represent the groups of neurons of the classes Stop, Front Slow, Front
Medium, Front Fast, Turn Right Short, Turn Right Long, Turn Left Short,
and Turn Left Long.

well-adapted to (or fit for) the environment [Mit95]. The robots are assigned a score, or

fitness value, that tells how fit they are. When the evaluation period is over, the individuals

 67

select a partner to mate with according to their fitness value. The best individuals have

more chance of being selected to breed. Next, they exchange their chromosomes, crossing

over their genes to form the new combinations. The resultant chromosomes are then used

to reconfigure the old individuals, originating new ones, or the offspring. Then, a new

evaluation phase starts again. Assuming that new robots cannot really be created

spontaneously, the offspring must be implemented by reconfiguring selected old

individuals.

 An evolutionary process, in the context of this work, is the procedure

necessary for the development of suitable controllers for the population of robots. The

process can stop when the average fitness value of the population reaches a specified

threshold or continue indefinitely while the robots execute a certain task. In the developed

evolutionary system, the robots work in a cyclic procedure, differently from a traditional

design technique, where the controller is designed or trained at first and then transferred to

the robot that is put to work. This cyclic procedure is inspired by the natural world where

animals, like some birds for example, have a working or foraging season and a mating

season, where they concentrate their attention in finding a mate and reproducing [Mit95].

 The cyclic procedure of the robots, a generation in evolutionary

computation terms [Bac91], is exemplified in Figure 4.11. The robots do not pursue

reproductive activities concurrently with their task behaviour. Instead, they perform a

working season, where they execute the selected task in the environment (or working

domain) and are evaluated according to their performance. The internal timer of Robot 1

indicates the beginning of the mating season. It is important to observe that the

evolutionary scheme is decentralised and distributed amongst all six robots. Robot 1 is by

no means dominant in this process. The internal timer of Robot 1 is just used to signal the

others, indicating the beginning of the mating season. It was necessary to avoid

Fitness
Evaluation

Partner
Selection

Crossover
of the Genes

Reconfiguration

Figure 4.10 – An evolutionary process of evaluation, selection, and
reproduction (or crossover).

 68

synchronisation problems, since it was impossible to guarantee that all robots would begin

the mating season at the same time. In the mating season, the robots communicate to let the

others know their fitness value. They start emitting a “mating call”, where they “shout”

their identification, their fitness values, and chromosomes. The best robots survive to the

next generation, breeding to become the “parents” of the new individuals [Nol94]. The less

well-adapted robots recombine their chromosomes with the better-adapted ones,

reconfiguring their parameters as a new robot before starting a new generation.

 The robot recurring procedure for one generation, shown in Figure 4.11,

works according to the following algorithm:

• Working Season:
1. Avoid obstacles;

2. Count collisions;

3. The internal timer of Robot 1 indicates the beginning of the
mating season;

• Mating Season:
1. Robot 1 orders all robots to stop;

2. Robot 1 sends a mating call via the radio (containing its
identification, fitness value, and chromosome);

3. Robot 2 then sends its mating call and so do all other robots, one
after the other, until the last one;

4. All robots listen for mating calls, receiving every fitness value,
comparing with the others, and then selecting the partner to mate
with (if own fitness is the highest, the robot does not breed);

5. When all genes are received and partners chosen, start Crossover;

Reconfiguration

Working
Season

Mating
Season

Internal Timer

Fitness
Evaluation

Partner
Selection

Crossover
of the Genes

Figure 4.11 – The cyclic procedure of the robots, or a generation.

 69

6. Begin reconfiguration with the resultant chromosome and wait
until…

7. Robot 1 announces the end of the mating season and orders all
robots to start another cycle.

 The process begins with the random initialisation of the robot chromosomes.

Then, the first generation starts with all robots performing their tasks in a working season.

For the case of obstacle avoidance, they will navigate and have their fitness value

calculated according to a function similar to the one presented in Figure 4.12. Robot 1 has

control over the duration of the working season and uses the radio to stop the other robots

when its internal timer reaches the end of the working season or the “lifetime” of the

robots. That is important to synchronise the cycle and make sure that all robots will stop

working at the same time. Starting with Robot 1, each robot transmits, one by one, a

mating call via the radio, containing its identification, fitness value, and chromosome.

When they are not transmitting, the robots listen for other mating calls, receiving the

fitness value from the call, comparing it with the others, and then selecting the optimal

partner with which to mate. If own fitness is the highest, the robot does not breed and

“survives” to the next generation. The cycle will be completed when all robots find a

partner to mate with and combine their genes in the crossover phase. The mating season

lasts until all the six robots signal Robot 1 that they have found a partner, have mated, and

have reconfigured themselves with the resultant chromosome. Robot 1 then orders them to

restart another cycle (once more Robot 1 is used only to synchronise the next phase). In

other words, the best-adapted robots “survive” to the next generation, while the others

“die” after mating, to lend their bodies to their offspring.

4.2.1 Fitness Evaluation

 A simple obstacle avoidance task was chosen. The limited complexity of

this task allows a good evaluation of the fitness in a short period. A complex task requires

more time so that the robots can be subjected to more challenges in order to show that they

can perform well in more than specific situations. A smaller generation time means a faster

evolution, because more combinations of solutions will be tried [Pol00].

 70

 A reward-punishment scheme is applied during the fitness evaluation

process, executed by the supervisor algorithm (see Figure 4.2). Each robot is evaluated

during the “working season”, where its fitness function is calculated by penalising

collisions and lack of movement (reducing the fitness value), encouraging the exploration

of the environment (rewarding by increasing the fitness value for every second of

movement). A major issue that must be addressed is how to detect a good (fit) robot. This

question may be highly complex in nature [Har93a], but in the context of evolutionary

programming, it can be simply defined by the programmer, in accordance with the

particular problem at hand. Nevertheless, defining the rule for fitness evaluation is a crucial

phase in evolutionary programming, since evolution proceeds without human intervention,

relying on this rule to select the best individuals, and may produce a solution different from

the expected [Ste94]. Furthermore, writing a fitness function depends on the targeted

behaviour and the characteristics of the robot, and the necessary insights are gained through

incremental augmentation over many trials in the environment.

 For the obstacle-avoidance problem, a simple rule can be applied: a robot

will increase its fitness each time it comes across an obstacle and successfully avoids it.

Each time it collides, the fitness will be decreased. Figure 4.12 shows an example of a

fitness function where the robot fitness is increased by one for every second the robot is in

movement, encouraging exploration. It is punished by decreasing its fitness by ten when it

collides. The fitness is also decreased by 100 to punish the robot for turning for more than

five seconds. Therefore, this sub-function prevents a particular efficient solution that kept

the robot spinning in a small circle within an obstacle-free area.

 In a situation where an obstacle is close to the robot, but the proximity

sensor readings are not interpreted correctly by the navigation control or are not enabled by

the sensor module, a collision may occur and the fitness variable will be decreased. The

bumper sensors will then be analysed by the supervisor algorithm to calculate where the

collision took place in a total of 12 sectors with 30 degrees each (Section 4.3.5 explains

this in more detail). Once the place of collision is detected, a rescue routine will drive the

robot away from the obstacle, returning the navigation control to the neural network. When

the robot is moving forward without colliding with obstacles, its fitness will be increased

every second.

 From the experience of a number of trial-and-error experiments, it was

found that a simple fitness function usually produces the best results. This is because it

 71

does not eliminate the autonomy of evolution [Flo96a]. As more complex behaviours are

evolved, the designer has a tendency to gradually add sub-goals to the fitness function. This

strongly biases the possible solutions [Mat96]. This approach, although effective, reduces

the search space of evolution and fails to facilitate the work of the designer.

4.2.2 Partner Selection

 The procedure for partner selection is based on the robot fitness value or

score. Whereas biologists try to analyse the selection mechanisms they believe exist in the

natural world, artificial evolution seeks inspiration in nature to propose novel selection

mechanisms [Har93a]. They can be very simple, like choosing the best robot to mate with

all other ones, or more complex, such as the roulette-wheel technique (see Chapter 2)

[Mit95]. In this work, the simple approaches are preferred because of the restrictions of an

embedded controller (i.e., low processor speed and small memory size – there is a limit to

how much memory the processor can address). These present a limit of what can be

implemented on-board the robots. As the population is very small, a simple technique can

deal with the robot selection without problems. Therefore, some simple, but efficient

Fitness Function

More Sub-functions... More Conditions...

Fitness = Fitness + 1 For every second the robot is moving;

Fitness = Fitness - 10 If a collision is detected;

Fitness = Fitness - 100 If robot is turning for more than 5 seconds;

Figure 4.12 – An example of how a fitness function can be constructed.

 72

selection techniques were developed, and will be described in more detail when they are

tested in the experiments in Chapter 6. These techniques are:

1. Select the robot with the highest fitness value in the generation to breed with all

other robots and survive to the next generation. This tries to make sure that in the

next generation the best fitness will be at least similar to the present one.

2. The fittest robot survives and the others choose their partners giving 80% chance of

selecting the fittest robot, and 20% chance of selecting any other but itself.

3. An “Inheritance” scheme was developed: the score used to select the robot is the

average of the robot fitness in the last five generations (i.e., inheriting the scores of

its previous generations). The robot with the best average survives, but only breeds

with the robots with the fitness in the present generation lower than its own fitness.

This approach protects new robots that are actually better than the one with the

highest average, but need more generations to be selected by their average.

4. Another very simple strategy that was effective in the experiments is to select the

fittest robot, allow it to survive, and reconfigure all the others with a small variation

(mutation) of its chromosome. This is a form of “asexual reproduction”, where the

robots do not cross over their chromosomes. All robots in the next generation will

be a copy of the best one, but will suffer random changes (mutation) in a few genes.

This has come to be called Naive Evolution by the GA community [Har93a]. This

strategy has been changing the opinion of most GA researchers that emphasise the

importance of crossover [Tom95].

 All techniques suggested above are elitist. Elitism requires that the current

fittest member (or members) of the population is never deleted and survives to the next

generation [Tom95]. The developed inheritance scheme prevents a robot from being

deleted even if it is not the fittest, but has the biggest accumulated average fitness value. It

is the only selection technique where the fittest member of the population does not have the

same number of offspring (or the same probability to have offspring) whether it is far better

than the rest, or only slightly better. In the other ones, it will always have the same

probability to have offspring; and in most of them, will breed with all other robots. This

approach is often too severe in restricting exploration by the less fit robots [Bli96].

 73

 These techniques are better explained in Chapter 6, that shows many

experiments performed with variations of the solutions presented above. A common

problem with these techniques is the possible appearance of a super fit individual that can

get many copies and rapidly come to dominate the population, causing premature

convergence to a local optima [Tho94c]. This can be avoided by suitably scaling the

evaluation function, or by choosing a selection method that does not allocate trials

proportionally to fitness, such as ranking selection and tournament selection [Har93a]. This

work, however, does not experiment with these methods. Instead, another solution will be

developed to attack this problem (see Section 6.5).

4.2.3 Crossover Strategy

 The crossover is the phase in the evolutionary algorithm where the

chromosomes of both parents are combined to produce the offspring [Tom95]. Many

techniques are proposed in the literature to implement the crossover phase [Hig96a]

[Lan96] [Hem97] [Lan97]. Nevertheless, this work uses a very simple strategy, because of

the restricted resources of the embedded controller.

 In the developed evolutionary system, both morphological features and the

controller circuit are evolved to respond to changes in the environment. The robots

constantly adapt to changes in the surroundings by modifying their features and the

contents of the RAM neural controller. The term “morphology” is defined as the physical,

embodied characteristics of the robot, such as its mechanics and sensor organisation

[Lun97]. In the experiments described in Chapter 8, the morphological features modified

by evolution are the number and position of sensors, as well as the speed levels of the drive

motors. Therefore, the genetic material specifies the configuration of the robot control

device and morphological features, as shown in Figure 4.13. The control device is

implemented within the robot microprocessor (a neural network for navigation control) and

two programmable modules control the robot features, which are the sensor module and the

motor drive module (see Figure 4.1).

 74

 For the selection of the robot features controlled by the sensor module, a

more complex “dominance approach” was implemented to combine the eight pair of genes

[Ler76]. Each sensor in the sensor module is configured by two genes (two bits – B1, B2 to

B15, B16 in Figure 4.13) in the chromosome: i) two genes will determine the presence of a

feature (“enable the sensor”); ii) one gene comes from each parent; and iii) all features are

recessive [Cam99]. The two genes are coded using bits in such a way that the combinations

“1,1”, “0,1”, and “1,0” disable the sensor, and “0,0” enables it (see Figure 4.14).

Dominance:

The sensor module features:

 Two genes determine the presence of a feature

 One gene comes from each parent

 All features are recessive

 Dominant: "1"

 Recessive: "0"

Figure 4.14 – The strategy to select the sensor module features. As all features
are recessive: only the robots containing “0,0” in their respective positions
in the chromosome have the corresponding sensor enabled.

 An example where two robots mate using the developed strategy to select

the sensor module features is shown in Figure 4.15. Considering only the feature that

enables or disables sensor 1, the father’s chromosome has B1 = “1” and B2 = “0”; the

Motor Drive
 Module

Sensor Module

0 1

Se
ns

or
 1

En
ab

le
Se

ns
or

 2
En

ab
le

Se
ns

or
 3

En
ab

le
Se

ns
or

 4
En

ab
le

Se
ns

or
 5

En
ab

le
Se

ns
or

 6
En

ab
le

Se
ns

or
 7

En
ab

le
Se

ns
or

 8
En

ab
le

0 1 0 0 0 1 0 1 1 0

Speed Control

Navigation
Control

1 0 0 1 0 0 ... 1 1 0 1 0 1

Neural Network
(Neuron Contents)Fast Medium Slow

B1,B2 B17 to B26 B27 to BnB15,B16

1 1 0 0 0 1 1 1 0 1 1 0 0 1

Chromosome

Figure 4.13 – An example of how the genes in the chromosome are used to
configure the sensor module (eight pairs of genes: B1, B2 to B15, B16), the
motor drive module (ten genes: B17 to B26), and the navigation control
(neuron size × number of neurons: B27 to Bn).

 75

mother’s chromosome has the same genes, B1 = “1” and B2 = “0”. The strategy combines

the chromosomes to produce the new B1 and B2 for the offspring. One of the two genes of

the father and mother is randomly selected. By crossing such individuals, four possible

combinations can be produced in the genotype, each with a 25% probability of occurring.

Table 4.2 shows the probability of the phenotype, where the resultant robot has only a 25%

chance of having the feature enabled. This is a way of introducing neutrality to the genes

that select the sensors [Ler76] [Shi00] (i.e., different genotype configurations produce the

same phenotype).

Posible Resultant
Combinations:

Sensor 1 Enable:

... 1 0 ...

... 1 0 ...

... B1 B 2 ...

Father

Mother

Offspring 1 0

1 11 10

0 01 00

Figure 4.15 – An example of the possible combinations that can result from
the crossing of two parents containing both the dominant and the recessive
genes.

Table 4.2 – Probability of a Phenotype to be present.

Phenotype Probability
Do not have the feature 75%

Have the feature 25%

 The motor drive module has ten bits associated with it in the chromosome.

The features selected by the module are the three different speed levels for the motors.

Figure 4.13 shows that the three speed levels, Fast, Medium, and Slow are controlled by

these ten bits. The contents of these ten bits (B17, B18, B19, B20, B21, B22, B23, B24, B25, and

B26) are added together to form a decimal number that indicates the speed level Fast. The

result is a number between zero and ten that indicate the level of the Fast speed. The

contents of the first six bits (B17, B18, B19, B20, B21, and B22) are added together to form a

decimal number that indicates the speed level Medium. The result is a number between

zero and six. In the same way, the contents of the first three bits (B17, B18, and B19) are

 76

added together to form the decimal number that indicates the speed level Slow. The result

is a number between zero and three. Therefore, as they use the same bits, this guarantees

that the level Fast is always greater than or equal to Medium, which is always greater than

or equal to Slow.

 The resultant speed for the three levels is converted by the motor drive

module to a value (an internal parameter) between 1 and 32, because the robot motor can

have 32 speed levels. This conversion is not linear, because of the way the motors are

controlled by pulse modulation, as it will be explained in Chapter 5, and the corresponding

values are shown in

Table 4.3. This approach permits co-adaptation where the chromosome integrates

specifications for both controller and morphological features [Lun97]. Evolution can select

not only the number of sensors to use, but, if the number of sensors is fixed, it can select

which ones to pick (i.e., the sensor position on the robot).

Table 4.3 – Conversion of the speed levels of the robot.

 Speed Level: 0 1 2 3 4 5 6 7 8 9 10

 Value (internal parameter): 1 7 9 11 14 17 20 23 26 29 32

 Velocity (m/s): 0 0.02 0.05 0.08 0.1 0.13 0.15 0.17 0.2 0.23 0.26

 For the genes that control the neural network and the motor drive module, a

random exchange of the genes from the parents is used to form the resultant chromosome.

This strategy is called uniform crossover [Lan96], although here only one offspring is

produced. Therefore, a gene is selected from the father or the mother to occupy the

corresponding position in the offspring chromosome. Considering the configuration given

by Figure 4.9, a random exchange of the 1034 genes (64 neurons with 16 bits each, plus 10

bits to select the motor drive module) from both parents occurs after a dominance selection

of the 16 bits that enable the sensors.

 After the crossover is completed, a mutation phase starts. Applying mutation

to a chromosome means that a small number of copying errors may occur when copying

the genes from the parent chromosomes to the offspring [Och99a]. In this work, a mutation

rate of M% means that each gene in the chromosome has a probability of M% of being

selected and binary inverted (e.g., new gene = NOT(gene)). Therefore, for each bit in the

 77

chromosome a random real number r is generated between 0.0 and 100.0, if r < M flip the

bit. Small mutation rates, usually between 1 and 3%, are the ones that produced the best

results in the experiments. Higher mutation is only useful in the beginning of the

evolutionary experiment. A high mutation rate does not help to evolve faster, and did not

prove to be a good strategy. Although it may help in the beginning of the process to bring

more variety into such a small population (e.g., six robots), it slows down the process after

the initial genetic material is combined. Therefore, in the long term, it produces a very

uneven population, where the fittest individual is considerably distant from (better than) the

average fitness of the population. Generally, only a few robots will be well adapted to the

environment.

 A low mutation rate makes the whole evolutionary experiment much faster

[Och99a]. It produces a population with limited variation where the average fitness is

almost as high as the fitness of the fittest individual. There are two reasons for this: i) late

in the evolutionary experiment, the population that is combined to produce the next

generation will present a high fitness value if the mutation rate is small. When such a

converged population mate, it is more likely to produce a fit individual than a less fit one;

ii) by applying a small mutation to a chromosome containing a majority of good genes,

there is a chance that the few bad genes alone will be modified, thus producing a better

offspring (i.e., if a high mutation modifies many genes in a chromosome that has more than

50% of good genes, the chance of changing good genes to bad ones is greater than

changing bad to good ones). A low mutation rate is also important if the robots are working

as a group and a bad performance can severely affect the overall operation [Har93c].

 A variable mutation rate would theoretically make use of a high rate to

speed up evolution until a certain “fitness level” is achieved, and then reduce mutation in

order to increase the average fitness and produce a more balanced population [Har93a].

However, it has not been possible to find a way to detect when that “fitness level” is

achieved in the embedded controller from the robot point of view. Therefore, there is no

way of knowing how close to the final result the robot is, because that result is unknown

and may not be a unique solution for the problem. It was expected that a premature drop of

the mutation rate could cause the population to be stuck in a local optima for a longer time

[Har92], but that did not happen experimentally. Instead, fixing a low mutation rate from

the beginning of the process actually made the whole evolution a lot faster (see Chapter 7).

The ideal mutation rate turned out to be the one that has the greatest chance of modifying

 78

only one of the genes in the chromosome (e.g., 1% for a chromosome containing 100

genes, 0.1% for a chromosome with 1000 genes, and so on).

4.3 System Specification

 This section presents in a general way how the robotic system should be

implemented to work with the developed evolutionary system. Chapter 5 describes how the

system was designed in terms of hardware and software in the lowest details. The ideas

described here, in principle, can be adapted to work with other robots, in different

environments.

4.3.1 Overview

 The mobile autonomous robots form a decentralised embedded evolutionary

system where no host computer is required. Nevertheless, an IBM PC is used to monitor all

data exchanged via the radio link, producing a complete record of the chromosomes,

parameters, and variables for every generation.

 Figure 4.16 shows a perspective of the working domain containing the

environment where the robots work and the monitor computer, connected to the radio link

to monitor the communication among the robots. The robots can communicate with each

other and the monitor computer via an asynchronous serial data link using their

communication module. The computer monitors the robot internal variables without

interfering in the system, but has the capacity to start or stop an evolutionary experiment.

 79

 A radio board is connected to the monitor computer, which logs data on the

evolutionary experiment. It is a multi-channel driver/receiver interfacing the IBM PC via

its serial port. A software interface permits the downloading of software, data, and

commands between the robots and the computer. Programming and low-level debugging

are provided by the computer. When programming or debugging, bi-directional data

between the robot processor and the computer can operate either via a wired link or via

radio. Chapter 5 shows more details of the software and hardware involved. Figure 4.17

shows the monitor computer connected to the radio and Figure 4.18 shows a close-up of

the radio board that is used by the monitor computer to communicate with the robots and

monitor the evolutionary experiment.

-- 2.50m
 --

-- 2.50m --

Monitor
Computer

Radio

Rob1

Rob2

Rob3

Rob4

Rob5

Rob6

Figure 4.16 – Working domain containing the environment where the robots
work, as well as the monitor computer connected to the radio link.

 80

Figure 4.17 – The monitor computer connected to the radio.

Figure 4.18 – A close-up of the radio board.

 The experiments were performed within a 2.50m × 2.50m working domain,

containing walls and obstacles of varied sizes, where the robots can explore the

environment, avoiding collisions. Many movable obstacles and internal walls of different

sizes are available to change the scope of the workspace where the robots navigate. Figure

 81

4.19 shows how the workspace can be modified into four different configurations by

rearranging the obstacles and walls. This flexibility is necessary to allow different degrees

of complexity of the environment during the experiments. Figure 4.20 shows different

configurations of the workspace representing a simple (a) and a complex (b) environment.

4.3.2 Introduction to the Robot Architecture

 The robot architecture consists of a two-wheel differential-drive platform

(20cm diameter), containing a Motorola 68HC11 - 2MHz, 64Kb of RAM [Mot96],

bumpers with eight collision sensors, and eight peripheral active infrared proximity

sensors. It exchanges information with the other robots at 1.2Kbps by a 418MHz AM

radio. Both robots and workspace were specially built for the experiments.

Relative Size of
a Robot = 20cm

2.50m

 (a) (b)

 (c) (d)

Figure 4.19 – Four different configurations of the 2.50m × 2.50m workspace

showing how the environment can be modified for the experiments, from
simple (a) to very complex (d).

 82

(a)

(b)

Figure 4.20 – An example on how simple (a) and complex (b) environments
can be produced by rearranging the obstacles and walls.

 Figure 4.21 shows a plan view of the base, where the position of the infrared

proximity sensors, the four bumpers, and the wheels are illustrated. All eight proximity

sensors are connected to the sensor module, which is configured by the chromosome. The

module can individually enable or disable the sensors, changing the number of active

 83

sensors and, consequently, their position in each generation. Therefore, the physical,

embodied characteristics of the robot can be modified. In evolutionary terms, these

constitute the morphology of the robot [Lun97]. The wheels are placed in the middle of the

robot, allowing it to turn around its central axis. The robot has four round bumpers on its

front, back, left, and right, which are attached to the base by eight contact sensors (Cs1 to

Cs8). These sensors permit the supervisor algorithm to pinpoint the location of a collision.

 Figure 4.22 (a) shows the team of robots parading in their workspace. Robot

1 is a prototype and is larger than the others. Figure 4.22 (b) shows a top-view of Robot 2,

displaying its infrared proximity sensors and round bumpers. Each robot has a banner

identifying it by displaying its number. The three green keys on the right form a small

keyboard used to enter commands to the robots manually.

 The robot architecture is composed of modules that interface each other and

can be combined with other circuits to allow new features, such as a different chassis,

power supply, actuators, or even a new communication system to be installed. Figure 4.23

shows how the five units are packed together. The base contains the communication

system, the computing system, the sensor pack, the power management pack, and the motor

drive pack. The communication system contains the radio link, which allows serial

S1S2

S3

S4

S5

S6

 S7

S8

 Right
Wheel

 Left
Wheel Motor Motor

 Round
Bumpers

Sensor Module

Central Control
Module

Motor D.
Module

Proximity
Sensors
S1 to S8

(a)

Cs1

 Motor Motor

Collision
Sensors:

Cs1 to Cs8

Sensor Module

Central Control
Module

Motor D.
Module

Cs2

Cs3

Cs4 Cs5

Cs6

Cs7

Cs8

(b)

 Round
Bumpers

Figure 4.21 – Robot architecture (a) representing the position of the proximity
sensors and motors, the Central Control, the Motor Drive, and the Sensor
Modules. A round bumper (b) with collision sensors surrounds the robot.

 84

(a)

(b)

Figure 4.22 – A view of the robot team (a) and top-view of Robot 2 (b),
showing the position of the infrared sensors and bumpers.

 85

communication among the robots and the monitor computer. The computing system

contains the neural network of the navigation control and the evolutionary control system.

It accesses the sensors through I/O ports and uses the COM port to interface the radio. The

sensor pack groups the infrared proximity sensors around the periphery of the robot and the

contact switches attached to the bumpers. The power management pack is basically

composed of the voltage monitoring circuit, which can switch off the microprocessor, the

sensors, radio, and the motors to protect the data in memory until the battery is replaced.

The motor drive pack contains the high-current drivers and controls the pulse signals,

which drive the motors.

 The centre of the robot architecture is its microprocessor, the Motorola

68HC11 [Mot96]. Most of the robot functionality is implemented in software and executed

by the microprocessor. The sensors and motor drives are connected to the microprocessor

Robot Architecture

Communication System:
♦ Radio Serial Link;

Computing System
(NN + EA Implementation):

♦ I/O Ports;
♦ Com. Port.

Sensor Pack:
♦ Proximity Sensors;
♦ Collision Sensors.

Power Management Pack:
♦ Batteries;

♦ Power Monitoring Circuit.

Motor Driver Pack:
♦ Motor Drivers;

♦ Motors/Gear box/Wheels.

Figure 4.23 – The robot modular architecture, containing the communication

system, the computing system, the sensor pack, the power management pack,
and the motor drive pack.

 86

through I/O ports and the radio through a RS232 serial port. The RAM memory, which

stores the program and data, has a small internal backup battery. A power monitor circuit

supervises the condition of the main battery and shuts down the microprocessor if the

voltage drops below a threshold, stopping all operations to protect the data stored in

memory. The program counter and all other internal variables are preserved and the robot

can resume its operation as soon as a new battery is replaced.

 Figure 4.24 shows the components of the robot architecture. It displays the

main data and control lines among the units. The microprocessor receives information from

the other robots and the monitor computer, and specifies the internal configuration of the

neural network, which will control the motors according to the sensor readings.

4.3.3 Computing System

 The robot modular architecture permits different combinations of the

modules with other hardware and software, so that new robot architectures can be

generated. It was conceived in this way, because it allows future work to be carried out by

Robot

Sensors

Processor

Motors

RAM
Memory

Radio
Interface

Drivers

Main
Battery

Power
Monitor

Radio link to the
Monitor Computer

Radio link to other
robots

Data

Data

Data

Control

Control

Control

Control

Auxiliary
Battery

Power

Figure 4.24 – Components of the robot architecture, showing how the
microprocessor interfaces to the other units. The power monitor can shut
down the processor if the main battery voltage goes low.

 87

modifying the existing robots to perform different, more complex tasks. Therefore, the

computing system consists of a processor unit and memory, interfacing the other units

throughout input/output ports (I/O ports) and a serial COM port. Figure 4.25 shows a

diagram of the computing system and its ports.

 The microprocessor and memory are used to implement the software

algorithms of the central control, the communication, the sensor, and the motor drive

modules. Therefore, the computing system takes part in the implementation of the software

of every module. For the central control module, it implements the algorithms of the

navigation control (the neural network functions), the supervisor algorithm (the evaluation

of robot performance), and the evolutionary control (the coordination of the evolutionary

process). For the sensor module, it controls the infrared pulses, calculates the sensor

readings, and selects which sensors are active according to the chromosome. For the motor

drive module, it interprets the command from the neural network and generates the pulse-

width signals that will control the motor high-current drivers. For the communication

module, it produces and identifies a series of commands and the standard RS232 signals

necessary to establish the communication protocol with the other robots and the monitor

computer.

Microprocessor
68HC11

Memory
64 Kb - 8 bits

D
at

a

C
on

tro
l

Radio

D
at

a
C

O
M

 P
or

t

Sensor
Pack

I/O Port
 Control

 Data
I/O Port

Motor
Drive
Pack

I/O Port
Control

Computing System

Figure 4.25 – Diagram of the computing system, showing how the processor
interfaces the memory, the radio, and the sensor and motor packs.

 88

• Computing Module Requirements

 The main concerns when designing such a system are: i) will the

microprocessor be fast enough to perform all subroutines of the modules and still

manoeuvre the robot smoothly and with good clearance from obstacles? And ii) will the

memory size be large enough to store all programs and variables? Basically, to guarantee a

smooth control of the robot speed and direction, the navigation controller must provide at

least 100 iterations a second. It means that the processor must be able to perform a sensor

reading, choose the appropriate command, and control the motors accordingly in less than

10ms. It needs to execute not only these routines, but also the higher-level layers of fitness

evaluation and radio monitoring.

 The available memory needs to be enough to contain the programs of the

modules and store the contents of the neurons and the chromosome. This is one of the

reasons why a RAM neural network is so attractive. It is a binary architecture, what

facilitates its implementation in a processor-based design. Considering the configuration

presented in Figure 4.9, it is only necessary to have 1050 bits of memory to store the

contents of all neurons. However, the current implementation needs 1050 bytes of memory,

since the bits cannot be accessed individually and the chosen memory works with eight

bits. It is still only a reasonably small amount of the memory required.

4.3.4 Communication Module

 The communication module comprises a transmitter radio and a receiver

radio, connected to an RS232 converter, which forms the serial communication link to the

other robots and to the monitor computer (see Figure 4.26). The corresponding software is

implemented in the microprocessor. It is a routine that monitors the radio for messages

while the robot navigates. In case a message is detected, the communication module

identifies which robot it was sent to, stopping the robot navigation to deal with it if the

robot is the addressed one.

 A radio board was also manufactured to be connected to the monitor

computer via its serial port COM2. It contains the basic units shown in Figure 4.26, with a

 89

slightly different RS232 converter. Therefore, the PC can be seen by the other robots as

another of their kind. It is also possible to communicate to the monitor computer via a

cable, allowing a faster 9.6Kbps connection (see Figure 4.26). This cable is more often

used when developing new software for the robots, because it allows the process of

downloading, controlling the execution, and debugging software to be done much faster.

 The robots communicate with each other via messages. The communication

module also enables access to the monitor computer, which takes no part in the evolution,

but monitors the communication among the robots. The messages are a sequence of bytes

containing data and codes that identify which robot is calling, the receiver of the message,

and coordinate the transmission. Table 4.4 presents a list of the codes of the robot language

and their meaning.

 The robots exchange many messages during the evolutionary process. They

all follow one of the two structures shown in Figure 4.27. The long message in (a) is a data

transmission formed by a heading (Start) followed by a code that in this case must be Z to

indicate that data will be transmitted. Then, the codename of the robot to which the

message goes is followed by the codename of the robot sending the message. A string of

data bytes is sent next, followed by three hexadecimal bytes (7F, FF, FF). These bytes

indicate the end of the data string and must be followed by the End code (W), marking the

end of the message, and the checksum of the transmitted bytes. Figure 4.27 (b) shows a

Microprocessor
68HC11

Tr
an

sm
itt

er

Communication System

RS232
Converter

C
O

M
 P

or
t

Tx Rx
Antenna

R
ec

ei
ve

r Antenna

RS232
Converter Serial Cable

PC
Serial Port

COM2D
at

a

Figure 4.26 – Diagram of the Communication System, showing how two
radios, a transmitter and a receiver, form the RS232 interface to the
processor.

 90

short message or command, used to give orders (N, O, V, S, and M) or query other robots

about the last transmitted message (P).

 As an example of communication between two robots, consider the cyclic

procedure described in Figure 4.11. When the robots finish their working phase, they try to

find a partner to breed with by sending a mating call. Figure 4.28 exemplifies a

communication between Robot 1 and Robot 2 (see also Table 4.4). The figure shows the

contents of three messages using the ASCII codes and the corresponding hexadecimal

bytes. Message 1 is a command from Robot 1 to order all robots to stop by the end of the

working season. When this message is received, the robots stop navigating and start

transmitting their fitness and chromosomes one by one, coordinated by Robot 1. Robot 2 is

the first to send its data, and message 2 in the figure shows how it does that. Robot 1 then

acknowledges having received the message, telling Robot 2 that it was transmitted without

problems. If any problem occurred during the transmission (e.g., interference in the radio

waves), Robot 1 would indicate it had problems receiving it, sending the message:

“UUUUUUUUUU-X-N-B-A”.

Table 4.4 – The codes used in the robot messages and their translation.

Code Hex Translation
A 41 Robot ID: Message to/from Robot n°. 1
B 42 Robot ID: Message to/from Robot n°. 2
C 43 Robot ID: Message to/from Robot n°. 3
D 44 Robot ID: Message to/from Robot n°. 4
E 45 Robot ID: Message to/from Robot n°. 5
F 46 Robot ID: Message to/from Robot n°. 6
Y 59 Robot ID: Message to/from PC
T 54 Robot ID: Message to all Robots
U 55 Start: sent to clear noise in the radio receiver
X 58 Start: code to start message reception
Z 5A Code: start data reception
N 4E Code: data transmission error, retransmit
O 4F Code: message received OK – checksums correspond
V 56 Code: abort listening for messages
S 53 Code: stop navigating
M 4D Code: resume navigation
P 50 Code: Was last message received OK?
W 57 End: message terminator (last Byte before checksum);

 91

 Start-Code-AddressedRobot-Robot ID-Data-End-Checksum
Data Transmission

 Start-Code-AddressedRobot-Robot ID
Order/Query

(a)

(b)

Figure 4.27 – Structure of the messages sent by the robots via the radio.
Where: Start – Initialises the message. It contains a string of 10 Us to clear

noise in the radio receiver, followed by X that initialises a
transmission;

Code – A code that orders the receiving robot to start the message
reception (Z) or a command that gives another order (see other
“Codes” in Table 4.4);

AddressedRobot – Identifies to which robot the message goes (see
“Robot ID” in Table 4.4);

Robot ID – Identifies which robot is sending the message (see
“Robot ID” in Table 4.4);

Data – The body of the message. It is a string of data bytes
followed by 7E, FF, FF (bytes in Hexadecimal);

End –A code indicating the end of the message. It is the byte W;
Checksum – Is 1 byte containing the sum of all transmitted bytes.

Robot 1 Robot 2

 Codes: UUUUUUUUUU-X-S-T-A
 Hex: 55,55,55,55,55,55,55,55,55,55,58,53,54,41

Message 1

 Codes: UUUUUUUUUU-X-O-B-A
 Hex: 55,55,55,55,55,55,55,55,55,55,58,4F,42,41

Message 3

 Codes: UUUUUUUUUU-X-Z-T-B-Fitness&Chromossome-W-Checksum
 Hex: 55,55,55,55,55,55,55,55,55,55-58-5A-54-42-Data,7F,FF,FF-W-Checksum

Message 2

Figure 4.28 – Example of three messages sent by Robot 1 and Robot 2.
Message 1 orders all robots to stop. In message 2, Robot 2 sends its fitness
and chromosome to all other robots. Robot1 sends message 3 to
acknowledge that message 2 was received without problems.

 92

• Communication Module Requirements

 The speed of the radio link between the robots needs to be at least 1.2Kbps

or the time wasted in communication will disturb the evolutionary process too much.

Considering that six chromosomes containing about 1050 genes (considering the neural net

configuration of Figure 4.9) need to be transmitted together with other codes, roughly 12

seconds will be wasted by communication alone during the mating season. Considering a

generation time of one minute, it means that the robots will stop working for at least 1/6 of

their lifetime. That is the reason why a good data transmission speed is so important. It also

needs a safe protocol to ensure that data will not be lost in communication, unless a few

wrong bits in the received chromosome can be considered as another form of mutation.

4.3.5 Sensor Module

 In the sensor module, each analogue signal from the sensor is converted into

two bits by the signal conversion block (S/C block) and selected to be connected to the

navigation control in the central control module. Figure 4.29 shows how each sensor is

selected according to two genes in the chromosome. If these two control bits are “0”, then

the 2-bit signal from the S/C block is connected to the sensor output. The figure illustrates

If (C1=0 and C1=0)
 Output0 = Bit0
 Output1 = Bit1
Else
 Output0 = 0
 Output1 = 0

Sensor n
S/C

Block
Bit0

0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0

Chromosome

C1 C2

 Sensor n
Enable

Bit1
Output0
Output1Pulses

Neuron
Input
Lines

Figure 4.29 – Illustration of how each sensor reading is converted into a 2-bit
signal by the analogue to digital block (S/C block) and selected to be
connected to the neuron inputs.

 93

how “having a sensor enabled” is a recessive feature and illustrates the implementation of

the “dominance” strategy described in Section 4.2.3.

 Each sensor in the sensor module is connected to an S/C block and a sensor

enable block. The S/C block converts the signals coming from the sensors into a 2-bit

digital input to the sensor enable block. With two bits, this digital input can have four

levels (“00”, “01”, “10”, and “11”) representing the distance to the obstacle: “00” means no

obstacle; “01” means that the obstacle is far; “10” means the obstacle is at medium

distance; and “11” means that the obstacle is close to the robot. The sensor enable block is

implemented in software into the microprocessor. It has a simple algorithm that only

outputs the sensor reading (Bit0 and Bit1) if the control bits in the chromosome (C1 and

C2) are both equal to zero.

• Sensor Module requirements

 To allow the neural network to drive the robot safely through the obstacles

and the supervisor algorithm to evaluate when it is performing the right manoeuvre, the

sensors need to discriminate the obstacles with at least four levels of range. Figure 4.30

illustrates how the proximity sensors are displayed around the robot and shows three

consecutive curves representing the range of the sensors: far = 27cm; medium = 15cm; and

close = 6.5cm. The curves were measured for the minimum distance that a sensor could

detect the presence of a black pencil. That configuration was very efficient during

preliminary tests of robot navigation. All sensors but one are positioned in the front of the

robot. Considering that the robot will be moving when it is manoeuvring, there is no

situation where a robot can approach an obstacle without seeing it. One sensor is placed in

the back to allow the robot to detect when a faster robot approaches it from behind.

 Figure 4.31 shows the position of four round bumpers and their collision

sensors. Also shown in the figure is the position of four hypothetical collisions with the

obstacle in different positions. The placement of the sensors on the bumpers permits the

detection of a collision in 12 different positions. Each bumper is connected to the chassis

by two independent sensors. Consider now bumper 1. If the collision occurs in the middle

of the bumper (collision 1 in the figure), both sensors Cs1 and Cs8 will be activated. If the

collision occurs to the right of the bumper (collision 2 in the figure), only Cs8 will be

 94

27cm6.5cm 15cm

Figure 4.30 – Illustration of the position of the sensors in the robot periphery,
showing approximately the range of each sensor relative to the minimum
distance they can detect a white wall.

activated; if it occurs to the left, only Cs1 will be activated. Therefore, collision 1 is

detected by Cs1 and Cs8; collision 2 is detected by Cs8 only; collision 3 is detected by Cs7

only; and collision 4 is detected by Cs7 and Cs6. This is required to give the necessary

accuracy to the supervisor algorithm in detecting the position of a collision around the

robot. It can then calculate the appropriate manoeuvre and drive the robot away from the

obstacle, returning the control to the navigation control circuit afterwards.

 95

Cs1

Collision
Sensors:

Cs1 to Cs8

Cs2

Cs3

Cs4 Cs5

Cs6

Cs8

Righ
Motor

Left
Motor

C
ol

lis
io

n
1

Coll
isi

on
 2

Collision 4

Collision 3
Cs7

Bumper 1

B
um

pe
r 2

Bumper 3
B

um
pe

r 4

Figure 4.31 – The four round bumpers with collision sensors and the position
of four possible collisions with obstacles. Collision 1 is detected by Cs1 and
Cs8; collision 2 by Cs8 only; collision 3 by Cs7 only; and collision 4 by Cs7
and Cs6.

4.3.6 Motor Drive Module

 Controlled by the chromosome, the motor drive module is implemented

mostly in software by the microprocessor, including the pulse-width modulation signals

that control the motors (see Figure 4.32). The speed levels Fast, Medium, and Slow are

specified by ten bits in the chromosome, as described in Section 4.2.3.

 The command interpretation block has a set of predefined routines to drive

both motors that are selected by the command from the neural network. These routines are

sequences of commands containing speed levels, directions, and delays for both motors.

They are able to manoeuvre the robots according to predefined commands (e.g., S, FS, FM,

FF, TRS, TRL, TLS, and TLL considering the example of Figure 4.9).

• Motor Drive Module Requirements

 The pulse-width modulation is performed by three internal counters of the

microprocessor, controlled by interrupt sub-routines. The selected speed can be generated

 96

by controlling the width of a 12V pulse to the motor over a fixed period. It was observed

that low frequencies cause the motor to vibrate in low speeds, disturbing the proximity

sensor readings. Preliminary tests determined a minimum frequency of at least 1000 pulses

per second. This frequency is necessary for a smooth control of the motors for any speed

level.

 The robots must be able to control their speed with at least 32 levels

between zero and maximum speed. The faster the robots go, the more challenging

situations they are going to face during the generation time, making it easier to spot poorly-

adapted controllers. Considering the dimensions of the workspace and the relative size of

the robots, they should be able to move at 0.26m/s at least.

Medium SlowFast

Speed Control

Chromosome

1 1 0 0 1 1 1 0 0 0

Neural Network
Command

Command
Interpretation

Predefined
Maneuvers

Pulse width
Modulation

High Current
Drive 1

Motor 1

Speed

High Current
Drive 2

Motor 2

Speed

Computing System

Direction

Direction

Motor Drive Module

Figure 4.32 – The motor drive module. The speed levels Fast, Medium, and
Slow are specified by the chromosome. The command interpretation
block has a set of predefined routines to drive both motors. The
microprocessor implements most of this module, including the pulse-
width modulation signals that control the motors.

 97

4.3.7 Power Management

 The power requirements for an open-ended embedded evolutionary system

demands a constant delivery system. In most of the work with real robots, such as Brooks

in [Bro92], Jakobi in [Jak98b] and [Jak98a], Harvey in [Har97b], or Floreano and

Mondada’s experiments with Khepera robots [Flo98b], battery power does not usually last

for more than a couple of hours. To keep the robots going for longer evolutionary runs

many alternative power sources have been proposed. The most common is tethering the

robots directly to a power source, as in [Mon96]. Another solution is to provide recharge

stations and contacts in the robots that enable them to dock periodically. However, the

amount of time the robots must spend docked (that is, not performing the task) is usually a

considerable part of the process. If one robot stops to recharge its batteries, and therefore

preventing the station being used by another one, it cannot take part in evolution and may

force the others to stop and wait. A good solution used by Watson et al. [Wat99a] involves

the construction of a powered floor to feed the robots throughout contact points on the

underside of their bodies.

• Power Management System Requirements

 All the above-mentioned solutions consider a fixed rechargeable battery that

demands substantial technology. The developed solution is much simpler: it relies on an

exchangeable battery, and a strategy to protect memory and the state of the robot hardware

when it is replaced. The chosen batteries can sustain continuous operation of the robot for

eight hours or more, which are enough to perform the evolutionary runs of the experiments.

A monitoring circuit supervises the battery charge and will interrupt the operation of the

robot if it drops below a threshold. The program counter and all other internal variables are

preserved by a small fixed back-up battery, and the robot can resume its operation as soon

as the main battery is replaced. Replacing the battery is considerably faster than providing

power stations to recharge it, avoids tethers that may get tangled, and is considerably

simpler and easier to implement than a powered floor.

 98

5 ROBOT DESIGN

 This chapter describes how the developed evolutionary system is embedded

in the robots. It introduces the robot mechanics, the hardware and software developed to

implement the sensors, the control circuit, the motor drive circuit, and the communication

circuit of the robots. The software referred to in this chapter can be found in Appendix A,

and the schematic diagrams of the complete robot circuit and radio board, together with a

list of the used components, can be found in Appendix B.

 The robot was designed in three phases: the first prototype; the second

prototype; and the final robot. Figure 5.1 shows the first and the second prototypes. The

first prototype was developed on a wire-up protoboard, so that the necessary modifications

to the circuit could be easily rearranged. It can be seen in the figure that this design made

use of two circuit boards, arranged in two layers. The first layer contained the processor,

memory, and peripherals, and the second layer contained the sensors and motor drivers.

Figure 5.1 – The first (left) and the second (right) prototypes of the robot
development.

 99

Once a satisfactory performance was obtained, these two layers were combined into a

single printed circuit board (PCB) layout containing the complete robot circuit. This was

implemented in the second prototype, manufactured using a double-sided circuit board,

which served to evaluate this compact design before it was reassembled into an even

smaller final layout, which had the circuit board industrially manufactured.

5.1 The Chassis Design

 The motors have to have small dimensions because of the small size of the

robots. However, small motors do not have a very high-level of torque. Batteries of high

capacity will be required to power two electric motors and the printed circuit board for a

minimum of four hours without recharging. Therefore, because of the large weight of a

suitable sized battery pack, extra torque needed to be produced by a gearbox so that the

motors are able to move the robot at a reasonable speed. It is expected from the nature of

the proposed experiments that actual contact between robots will occur. Therefore, the

selected material must be able to support the robot weight and resist damage from contact

with other robots, obstacles, and walls. As many robots are necessary for the experiments,

simplicity of design and low cost are imperative. In that case, aluminium is the most

suitable material to build the robot chassis, since it offers the lightness and strength needed,

and is easily manipulated with the given resources of the mechanical workshop of the

University.

5.1.1 Shape and Size

 A rectangular robot provides a more useable shape in terms of mounting

components, but the likelihood of the robot being stuck would be greatly increased, since it

is not able to turn around within its perimeter, which can cause it to strike other robots and

the surrounding walls. A circular chassis is more advantageous for the robots because it is

less likely to be stuck in corners than a rectangular one. This design results in a robot that is

 100

highly manoeuvrable and able to turn around on its own centre of gravity and within its

own perimeter. There is a reduced chance of the act of turning causing the robot to strike a

wall or another robot. However, this results in a reduced usable space at the base. There is

a need for a low centre of gravity to reduce the risk of the robot turning over because of its

high mobility and fast directional changes. To provide a low centre of gravity, the heaviest

parts (e.g., the battery pack and motors) need to be mounted as low as possible, but this

leaves a lot of unusable space.

5.1.2 The Adopted Solution

 Despite the advantages in space, leading to a smaller and lighter chassis, the

rectangular base is more difficult to drive in tight, crowded spaces. As it can be inferred

from the proposed experiments, initially, the robots will not have a proper trained

controller, so that collisions are more likely to happen. When a collision is detected, the

simple rescue algorithm will turn and drive the robot away from the obstacles before

returning the control back to the main algorithm. This rescue program would be more

complicated to design for the rectangular base, strongly suggesting a round chassis that can

safely turn around its centre, leaving the robot facing back to the obstacles. However,

designing and manufacturing circular printed circuit boards could also prove more difficult

than the traditional rectangular ones. Therefore, as shown in Figure 5.2, the final solution

was obtained by using a square base surrounded by round bumpers that produced a circular

chassis.

 This decision allowed the drive mechanism to be achieved by a differential

steering system, consisting of two drive wheels and two non-pivoting casters. Each wheel

can be driven independently and steering is achieved by changing the speed of each wheel.

The castors are used to maintain balance. This solution is mechanically simple to

implement and easy to control and steer. The motors are required to have enough torque to

move the robot at 0.26m/s and to be small enough to fit into the chassis. The chosen motors

are 12V DC with a built-in gearbox. The drive ratio with this gearbox is 1:42, which gives

enough torque and drains a small current. The motors are connected to a set of plastic

wheels available from electronic suppliers with a replaceable rubber tyre.

 101

 The rechargeable batteries are mounted between the motors to keep a low

centre of gravity. If the battery charge runs low, these two 6V batteries can be exchanged

for other two fully charged ones. This allows the robot to keep moving while the extra pair

of batteries is charged. Figure 5.3 shows how the circular chassis was constructed using a

square base to accommodate the batteries and motors.

5.2 Computing System

 The computing system consists of the microprocessor, memory, and

peripheral support circuitry. These devices should provide the necessary environment to

allow a suitable autonomous motion for the robot and interfacing to other robots. The

computing system should offer the necessary hardware and software for the processing of

the infrared proximity sensors and should also provide the waveforms and direction signals

required for controlling the motor drive circuit. To drive the motors, the processor should

produce pulse width modulated (PWM) outputs. A means of sending and receiving

Figure 5.2 – Top view of the robot chassis showing the position of the motors
and wheels, the batteries, and the round bumpers.

 102

asynchronous serial data to communicate with other robots and the monitor PC is also

required from the computing system. The schematic diagram of the complete robot circuit

can be found in Appendix B, together with a list of the components used. Most of the

information presented here originated from the Motorola 68HC11 reference manual

[Mot96]. It provided vital information and technical data that allowed the design of the

robot computing system.

 The Electronics Laboratories of the University of Kent currently use the

Motorola 68HC11 microprocessor as the basis of their embedded designs. This is an

8-bit micro-controller that is very versatile and well-suited for embedded computer

systems. It has a limited instruction and register set; hence, the processing tasks able to be

undertaken are of limited scope. The 68HC11 was chosen for it is a low-cost well-known

microprocessor that could deliver the necessary functionality to support the operation of

other peripheral circuits, as well as providing the means for carrying out the main system

processing. The main functionality provided by the 68HC11 is: timing signals for the

infrared proximity sensing and processing of the responses of the sensors; power and

direction output signals to the motor drive circuits; and serial communications.

 As well as providing the means for interfacing the external circuitry, the

computing system contains the necessary circuits to support the operation of the processor

S4Motor 1Gear
Box Motor 2 Gear

Box

Battery 1

6V

Battery 2

6V

PCB
Mounting

Rods

Caster

20cm
13.7cm

4.9cm
2.6cm

4.2cm
5.1cm 4.4cm

2.55
cm

1.8
cm

Round
Bumpers

Caster

Figure 5.3 – Circular chassis construction and placement of the motors and
batteries.

 103

itself: power regulation; power supervision; and system clock generation. These circuits are

illustrated in the schematic diagram presented in Appendix B.

• Regulated Power Supply

 The processor and all the other circuits in the robot printed circuit board

require a 5V DC (150mA) power supply, plus a non-regulated 12V DC supply connected to

the output buffers that drive the motors. The 12V DC (named VCC2 in the schematic) is

provided by connecting together two 6V batteries on board the robot. The first battery also

supplies approximately 6V that is regulated via a 5V DC (500mA) low dropout voltage

regulator. This battery produces a variable voltage dependent on the current load.

Therefore, a low voltage dropout regulator such as the Maxim MAX603 can extend the

usage of the battery down to 5.3V. Other regulators typically need the supply to be at least

1.5V higher than its output. This chip supplies 5V DC (VCC1 in the schematic) to the robot

board.

• Power Supervision

 The 68HC11 needs 5V DC to operate properly and the system clock is

generated from the same supply. If the board voltage supply drops from 5V, then the state

of the processor and data in memory can become indeterminate. Therefore, the function of

the power supervisory circuit is to ensure that the processor is in a known state below this

voltage. The system external memory requires no management during the system reset and

low voltage conditions, since it makes use of a memory chip that incorporates a static

RAM to store the program and data, an internal 3V rechargeable lithium cell, and the

necessary management circuit. This chip alone provides control and a standby voltage that

allows the program to be retained during power off periods.

 The supervisor circuit also provides the ability to deselect memory

operations during low power conditions, so that the processor cannot write to the program

memory during periods of indeterminate conditions. The Motorola 68HC11 processor has

an active low reset line (RST) that can force the processor into reset state. The MAX691

device is used to provide the supervisory reset signal (/RST) necessary to control the

68HC11 reset and disable the external memory during reset and power-down events.

 104

• System Clock Circuit

 The system clock signal (E) is generated by the 68HC11 using an internal

oscillator circuit. The necessary 2MHz reference signal is generated from an 8MHz crystal

oscillator circuit connected to the processor EXTAL and XTAL pins.

• System Memory

 The 68HC11 reduces the complexity of on-board memory support circuitry,

since it provides internal chip select decoding to address the program and data memories.

The memory configuration has an 8-bit wide 64Kbyte memory that is shared by the

program and data. The program area starts at $1000 (“$” represents a number in

hexadecimal) and data can use all available memory from the end of the program to

$FDFF. The interrupt vectors occupy the area from $FF00 to $FFFF, and a small area for

program variables is left from $0000 to $0FFF as shown in Figure 5.4. The addresses

between $FE00 to $FEFF are reserved to be used by the port expansion chip, the VIA

(Versatile Interface Adapter).

 The battery backed-up RAM memory works as a pseudo ROM, providing a

non-volatile memory for storing the program. Instead of using a PROM or EEPROM to

provide the program memory, the battery backed-up RAM allows new programs to be

installed much faster by just downloading them via the serial port from the computer where

68HC11

RAM
64K x 8

$0000 to $0FFF

(Program Variables)

$1000 to "End Program"
(Program Memory)

"End Program" to $FDFF
(Data Memory)

$FE00 to $FEFF
(VIA I/O Ports)

$FF00 to $FFFF

(Interrupt Vectors)

Address:
[15:0]

Data:
[7:0]

Figure 5.4 – Configuration of the system memory.

 105

the software is developed and compiled. A problem arising from this approach is that there

is no protection against unintentional changes or corruption of the program memory via

stack overflow or other runtime failure. Therefore, extra care must be taken in

programming to avoid this problem.

• Serial Communication

 Serial communication is provided by the 68HC11 internal Serial

Communication Interface (SCI). It can be configured to eight data bit, no-parity, 1200

baud, CMOS voltage level. A wired RS232 serial link was made available by the use of a

cable containing a CMOS-RS232 conversion interface that can be attached to the IBM PC

COM ports and connected to the RXD and TXD pins available in the microprocessor. This

allows the downloading of the program software to the robots and permits runtime

debugging of program variables and data exchange via a specially designed terminal

program resident in the PC. This program was written in Borland C++ and provides a

virtual screen where the 68HC11 can output data. The program is called

VIRTUALSCREEN.CPP and is listed in Appendix A.

 The serial port is also connected to a peripheral AM radio that provides a

wireless link to the other robots and to the monitor computer. A DIP-switch defines if the

serial communication will come from the cable or the radio link. The radio circuit is

explained in Section 5.5.

• Discrete Input and Output Ports

 Discrete I/O is available via two different sources: from the 68HC11

specialised I/O ports that can be pin-configured as input or output; or from the peripheral

VIA that connects to the address and data busses. The 68HC24 is the device that works as a

port expansion, providing two extra I/O ports that can be read from or written to as data in

the memory. Each one of the pins has a control function and a corresponding I/O pin

mapping that can be selected by setting register values through runtime routines in the

program software.

 106

5.3 Motor Drive Circuit

 The most complex part of the motor drive system is the generation of the

PWM signals, which is provided by the 68HC11 Timer Processor Unit (TPU) interface.

The motor drive circuit constitutes a power driver that converts the low current CMOS

signals provided from the processor to high current 12V pulses. This circuit is required to

supply 12V to the motors and move the robot motors independently with proper speed and

direction, according to the logical inputs from the processor.

 The 68HC11 TPU interface can provide time-based functions by sequencing

together match and compare operations. Many pre-programmed functions are provided in

the TPU ROM mask, including PWM output, discrete I/O and input capture. As the drive

motors are DC voltage controlled, the pulse-width modulation waveforms generated by the

processor provide the necessary speed control by varying the average power of the signal.

The 68HC11 generates these signals by combining the real-time clock system with output

compare counters. The appropriate counters are set at the correct intervals during normal

processing to generate the desired waveforms. This introduces a degree of complexity to

the software design, since the main program is run in parallel with the waveform

generation.

 A push-pull driver is the main device of the motor drive circuit. The L239E

was chosen because it has the ability to drive the two motors in two different directions

separately. The L239E can output a maximum current of 1A that is more than enough to

drive the chosen DC motors, which drain an average current of 65mA at maximum speed.

The motor drive circuit operates by buffering two signals from the TPU interface in the

86HC11 chip for each motor. These signals control the speed and direction of the motors.

The variable speed of the motors is generated by using a pulse width modulated signal with

a period of 1.025ms to control the chip enable line of the L293E. The signal is switched on

in the beginning of the 1.025ms period and stays on until the corresponding counter

reaches the specified value t1. Then, it is switched off and stays like that until the next

period. The average power transferred to the motor is maximum when t1 = 1.025ms and the

signal is never switched off. With t1 = 0.5125ms, the transferred power is 50%, as

illustrated in Figure 5.5.

 107

5.4 Sensors Circuit

 The sensors enable the robot to interpret the external environment in two

ways: providing the distance between the robot and the obstacles and indicating where the

collisions have occurred. The infrared proximity sensors allow the robot to determine

object locations remotely and simple touch sensors in the bumpers can tell whether the

robot is in contact with an object and where the collisions occurred. The proximity sensors

can detect other robots, obstacles and walls without physical contact, so that they can be

avoided.

 Infrared sensors were chosen to implement the detection of obstacles

because they are a simple low-cost solution that can provide a fairly accurate distance

sensing. The standard infrared emitter-detector combinations were studied. They work by

continuously emitting IR light and detecting the intensity of the received energy to indicate

how far away the robot is from other objects. This method requires too much power, since

to allow a good range the eight infrared LEDs (light-emitting diodes) would drain more

current than the motors moving at full speed (180mA). Therefore, a more economic

solution is to output a pulsed waveform of a known duration and then look at the detectors

to see if anything was received. If the detector is activated, it means that the waveform had

enough energy to reach an obstacle and bounce back to the robot. If nothing is received by

the detector, the power of the pulse is gradually increased until some detection is achieved

and the distance to the object will be proportional to the level of power in the emitter.

Figure 5.6 shows how the current through the emitter is gradually increased to vary the

energy of the output until an obstacle is detected.

Space

Mark

t1 = 0.5125ms

Time Period
1.025ms

PWM signal
50% power

Figure 5.5 – PWM signal with 50% power transferred to the controlled motor.

 108

 The necessary variation in the current that excites the IR emitters is obtained

by using transistors to connect different resistors in parallel to the emitters. With more than

two robots using infrared in the same area, there could be confusion about the source of the

detected infrared. This approach was expected to present problems when the robots emit

infrared at the same time, but this did not happen often and the robots could take again the

correct manoeuvre after one iteration with correct sensor readings. This approach uses far

less power than the previous solution, because the LEDs are only activated when the robot

is sensing the environment. As the LEDs are working for a very short duration, the actual

current that they can support is much higher than their nominal current and the average

current used in this process is very low (0.5mA). The disadvantage of this solution is that it

is more complex to implement in software, but this is a small price to pay when compared

to the amount of power saved. The simple touch sensors in the bumpers that determine

where the robot is in contact with objects are simple de-bounced microswitches mounted

between the bumpers and the chassis. They work normally in the open position, but are

closed when the bumpers are compressed.

5.5 Communication Circuit

 The communication circuit provides a link among the robots and between

the robots and the monitor PC. It enables the implementation of the embedded distributed

evolutionary system and allows the monitor computer to produce a data record of the

evolutionary experiment. The communication software developed specifically to deal with

Object

Current
through the

emitter

Emitter Detector

Reflected
IR Pulse

40mA

30mA

14mA

3.9mA

Distance to Object: Very
Close Medium FarClose

Pulse
Duration
0.141ms

Figure 5.6 – The current through the emitter is progressively increased to allow
the detection of obstacles with four ranges.

 109

the interference of noise suffered by the radio link can distinguish between valid and

corrupt data packets in real time. The baud rate of the radios of the robots and the PC was

set to 1200bps to match the baud rate of the AM radios used.

 The communication circuit consists of two AM radios, a transmitter and a

receiver, on board of all robots and a radio board specially made to be connected to the

serial port of the monitor PC. The chosen transmitter and receiver devices are the AMT21

and AMRW4, each connected to different antennas to avoid interference. These devices

comprise modulation, filtering, and amplification of the signals and their logic levels are

computed internally, where logic “0” is indicated by the presence of radio energy in the

specified frequency and “1” is indicated by the absence of energy. The transmitter radio is

connected to the TXD pin and the receiver to the RXD pin of the 68HC11 and a specific

routine was implemented to handle communication and deal with noise immunity.

 All radios on board the robots work at the same frequency: 418MHz.

Therefore, a communication protocol is necessary to avoid having more than two robots

emitting at the same time. Each experiment had different objectives and, therefore,

different communication protocols were developed. Figure 5.7 shows an example of one of

these protocols used by the robots to communicate and exchange data and messages. The

robot can be interrupted while executing the main program if a “U” is received by the

radio. This event transfers the control to the GETDATA subroutine. “get byte” is a

command that reads the serial port to get a byte. From this subroutine, if the received byte

is “X”, it goes to SKIP1 and waits for an “Y” to go to SKIP2 or a “V” to ABORT. In

SKIP2, it can be ordered to abort (“V”), end communication and go back to the main

program (“O”), transmit the stored data (“N”), or enter the RECEIVE routine (“Z”).

Receiving noise in both SKIP1 and SKIP2 will bring the robot back to GETDATA. After

transmitting data, the robot waits for the reply of the receiving robot and can be ordered to

transmit again if there was any problem in the received data (“N”) or to go back to the main

program if the transmission was OK (“O”). After receiving data, if the check sum

comparison is OK, it sends “O” to indicate the sender that the data was received without

problems. If noise is detected, it sends “N” and goes back to GETDATA to receive the next

transmission.

 A stand-alone radio board is connected to the monitor PC to allow it to

communicate with all the robots. It has a transmitter and a receiver radio connected to a

MAX233 chip that converts the CMOS signals (0V and +5V) to the RS232 voltage levels

 110

(-15V and +15V). These are then connected to the RX and TX lines in the PC serial ports

COM1 or COM2. Appendix B also includes the schematic diagram and a list of the

components of this radio board.

Main Program

get byte

GETDATA

get byte
U

C

End Program!

TRANSMIT

-- Send Stored Data

Send Us

Send X

Send Y

Send Z

Send Data

Send End of Data
(E7 FF FF)

Send W

Send Checksum

SKIP1

get byte

X

ABORT

-- Abort Listening!
V

SKIP2

get byte

Y

Noise

Noise

V

RECEPTIONOK

-- Confirm Data was
received OK

-- Continue Program

O

RECEIVE

Receive Data

Calculate Checksum

End of Data
(7E FF FF)

Get W

Get Checksum

Compare Checksum

SENDAGAIN

-- Date was not
Received OK

N

Z

SENDOK

Send Us

Send X

Send Y

Send O

NOTOK

Send Us

Send X

Send Y

Send N

Checksum
OK!

Checksum
Failed

SYNC1

get byte

SYNC2

get byte

X

SYNC3

get byte

Y

N

Z

Transmission Received OK, so go back to Main Program O
V

Noise

Time Out

Figure 5.7 – The communication protocol used by the robots.

 111

6 PRELIMINARY EXPERIMENTS

 This chapter reports experiments that tested the effects of different lifetimes

(the duration of each generation); determined the best sensor configurations; tested the

capacity of the evolutionary system to evolve the configuration of the sensors with different

mutation rates; and evaluated the evolution of an unstructured navigation control circuit

with a simple and a biasing fitness functions. All the experiments but the first one were

performed in environments of medium complexity, because a simple one does not provide

the necessary selection pressure to distinguish between similar configurations in short

lifetimes. In addition, in a complex environment, the robots tend to get too close to each

other and unfit robots collide too much into the fit ones, causing their fitness to drop even

though their configuration is well-adapted to the environment.

 This chapter also introduces the workspace where the experiments were run.

The workspace forms the environment where the robots operate and are evolved by the

developed evolutionary system, which trains the controllers to behave according to the

selected task: collision-free navigation in a constrained space with obstacles. It describes

how the workspace was arranged to support the experiments and collect data from the

evolving robots.

 The experiments described here are just a small portion of a greater number

of tests that were performed to provide the necessary insights that allowed the development

of the evolutionary system. The results presented are the most important ones, the ones that

evaluated new ideas that proved essential to the design. Many other experiments were run,

providing more complementary information to the development of the system. Although

most of these experiments are not described here for the simple reason of space, the

information they generated is always present in the discussions, comments, and

justifications described in this chapter. Therefore, this chapter shows only the most relevant

experiments, chosen for representing the typical case and, in specific situations, the ones

nearest to the average result. Appendix C contains the average results of many experiments

 112

that could not be included in the body of the thesis. For Chapter 6, it includes data related

to Section 6.3.

6.1 Environment Organisation

 To guarantee the random initialisation of all the variables involved in the

experiments, it is essential to make sure that the robots start an experimental run at a

different random position every time. This was made possible by using a positioning

program, written to generate a random position, orientation, and initial speed for all robots.

This program is called INITIALISE.CPP and can be found in Appendix A. Table 6.1

presents the resultant initialisation table produced by this program. Centre X, Y marks the

position of the centre of the robot from the left lower corner of the workspace in

centimetres. Orientation is the angle (between zero and 360o) between the robot and the

lower edge. Speed M1 and Speed M2 are the initial speeds for both motors of the robots (a

value between zero and 255 that is later normalised to the 32 speed levels of the robot

motors). If the position of the robot, which has 20cm diameter, overlaps the position of any

other robot or the edges of the environment, then the coordinates are automatically

discarded and calculated again.

 After the initial position and orientation is obtained, the robots are placed by

hand at their corresponding location. The dimensions of the environment were fixed

(250cm × 250cm) throughout all experiments, but the position and form of the obstacles

may vary. To make it possible, many round obstacles of various sizes were manufactured

together with a set of 1m-long wall blocks, which can be combined to form many different

configurations, as shown in Figure 4.19. Figure 6.1 shows some of the available forms.

Table 6.1 – Initial position and orientation of the robots in the environment.
Robot ID Centre X

(cm)
Centre Y

(cm)
Orientation
(0 to 360o)

Speed M1
(parameter)

Speed M2
(parameter)

Robot 1 190 208 85 10 21
Robot 2 112 145 70 223 118
Robot 3 141 47 352 56 3
Robot 4 166 179 87 61 144
Robot 5 13 19 318 187 47
Robot 6 194 122 60 112 193

 113

 Unlike the position of the robots, the configuration of the environment is not

determined randomly by a program. On the contrary, it was specified by the user when the

experiment was set up. Even though some of the user’s prejudices would always interfere,

it was set up as randomly as possible for each experiment. An automatic generator could

not be used because it is very difficult to achieve a valid layout, where the robots would not

be stuck in corners or small passages that would be seen as obstacles. The complexity of

the walls and the obstacle configuration, however, play an important role in how evolution

produces the controllers, so that selected experiments were performed just to evaluate this.

Yet, many experiments were performed with the environment configuration unchanged.

The reason for this was to concentrate effort on understanding the effects of other

important characteristics, such as the mutation rate, crossover strategy, or the selection

technique.

6.1.1 Data Monitoring

 The monitor computer keeps a complete data record of the robot

chromosome, fitness value, and other important parameters that change in every generation

Figure 6.1 – The different shapes of the obstacles and walls.

 114

for all experiments. This computer does not influence the evolutionary process and can

only be used to start or stop the robots, avoiding making the user run after the robots one

by one to switch them off! As the data exchanged among the robots varied from

experiment to experiment, so did the software running in the monitor computer, but it

basically listened and identified the transmitted data and created an ordered data store. So

there is practically a different program for each experiment. They are all named

EXPxx.CPP and are listed in Appendix A. Figure 6.2 shows a typical screenshot of the

monitor computer generated by the program EXP20.CPP.

Figure 6.2 – Data displayed on the screen of the monitor computer for one of
the experiments at generation 24.

 Data are obtained by the monitor computer and stored in a file called

GENE.TXT. Every experiment in Appendix A has its own data file with this name. Figure

6.3 shows an example of how a data file looks. Data are a sequence of hexadecimal codes,

 Experiment: 20 Software: GEN20.asm

 Parameters: Reward increases Fitness by +1 after 1 second
 Collision Penalty Decrement = -8
 Turning for more than 5 seconds Penalty = -10
 Mutation Rate = 1%
 Speed Level: Fixed -- (1111111111)
 Chromosome Size: 1050 bits

Generation: 0024
Fittest Robot: Robot 4 Fitness: 0059

Robot 1 Fitness: 0034 Sensors Enable: 10001000 Speed Levels: 1111111111
Robot 1 Chromosome (1st Block - 80 bits):
 01000100010001000100000000010000000101000100010100000000000101000100010110001110

Robot 2 Fitness: 0044 Sensors Enable: 10100000 Speed Levels: 1111111111
Robot 2 Chromosome (1st Block - 80 bits):
 01000100010101000101000100010001010101010001010101000001010101000000010111000100

Robot 3 Fitness: 0051 Sensors Enable: 00001100 Speed Levels: 1111111111
Robot 3 Chromosome (1st Block - 80 bits):
 00000000000000010000010100000100010100010100000100000000010100000100010111110011

Robot 4 Fitness: 0059 Sensors Enable: 10001100 Speed Levels: 1111111111
Robot 4 Chromosome (1st Block - 80 bits):
 00000000000001000100000101010000010101010000010000000101000101010001010110011000

Robot 5 Fitness: 0023 Sensors Enable: 10001000 Speed Levels: 1111111111
Robot 5 Chromosome (1st Block - 80 bits):
 00000000010001000100000100010000010101010000010100000001000101000000010100011110

Robot 6 Fitness: 0043 Sensors Enable: 00001000 Speed Levels: 1111111111
Robot 6 Chromosome (1st Block - 80 bits):
 00000000010001000100000100010000010101010000010100000001000101000000010100100100

 115

beginning with “Gxx” that specify the current generation, followed by “a” that marks the

beginning of the parameters of Robot 1 plus its chromosome, and so on. To save space, the

bits in the robot chromosomes are grouped eight by eight and stored as bytes in

hexadecimal.

G01a10700101010000010001010100000001000000010001010100000011110001000000010
010100000101010001010101000000000000010100000001000101010001010100010000010
00010101010001000000000101010000010000001000001000010100000101000100014AFA
8D27C014AFA8D27CD6BED87613DDB01F44A8EE8E09575000101000100042CFFFDFD

. . .

000100010000000100010100000100010000010100010000000010001000001010001000100
000100000001010110001010000000000B3C17FB32DB789E72CF4B7F3153FABC0986719
1597156463D6B8581F39720B55488038421100010100010001435D8BA2C13DB690235DA

Figure 6.3 – Data obtained by the monitor computer stored in GENE.TXT.

 Another program is then necessary to convert that information into a file that

can be opened by Microsoft Excel. This software is called GRAFxx.CPP and is also listed

in Appendix A for every experiment. It produces a file called GRAF.TXT. Figure 6.4

shows an example of the output generated by the program GRAF20.CPP. Data is displayed

in rows containing the generation (Gen), followed by the current fitness value of all robots

(R1 to R6), plus the average fitness (Av) and the fitness of the fittest robot (F). Then, the

information in this file can be displayed graphically.

 Gen: 1 R1= 3928 R2= 3449 R3= 3922 R4= 4377 R5= 3390 R6= 4005 Av= 3845 F= 4377
 Gen: 2 R1= 3671 R2= 4023 R3= 3525 R4= 3954 R5= 2806 R6= 3598 Av= 3596 F= 4023
 Gen: 3 R1= 3899 R2= 4047 R3= 3893 R4= 4028 R5= 2966 R6= 2778 Av= 3601 F= 4047
 Gen: 4 R1= 3870 R2= 3716 R3= 2861 R4= 4381 R5= 3824 R6= 2778 Av= 3571 F= 4381
 Gen: 5 R1= 3411 R2= 3716 R3= 2777 R4= 3791 R5= 3852 R6= 2777 Av= 3387 F= 3852

. . .

 Gen: 147 R1= 4329 R2= 4364 R3= 4359 R4= 4354 R5= 4333 R6= 4360 Av= 4349 F= 4364
 Gen: 148 R1= 4327 R2= 4327 R3= 4351 R4= 4097 R5= 4301 R6= 4327 Av= 4288 F= 4351

Figure 6.4 – Data converted into a file called GRAF.TXT, containing the
fitness of the robots for every generation.

 116

6.2 Experiment 1: The Influence of the Lifetime

 In this first experiment, the influence of the robot lifetime, or the duration of

a generation, is analysed. To differentiate between individuals with the same degree of

adaptation that produce similar fitness values, the duration of a generation needs to be

carefully specified to submit these individuals to the right selection pressure [Sim99]

[Wat99a]. A possible alternative is to increase the duration of the generations at the end of

the evolutionary experiment, to introduce more selection pressure when the robots start to

behave similarly. This experiment intends to perform a qualitative analysis of the effects of

the generation time on the evaluation of the robots.

• Aim of the Experiment

 This experiment aimed to find the correct duration for a generation and to

set reference standards to future experiments. To achieve this, the controller circuit was

fixed and robots with different sensor configurations were tested continuously for a long

period. Then, their fitness curves could be compared to indicate the optimal duration of a

generation that is able to inflict the correct selection pressure and discriminate between two

similar robots. During the evolutionary process, the robots were not allowed to reproduce

and did not suffer any kind of mutation. The initial control circuit and morphology were

preserved during the complete test.

• Experimental Setting

 To produce a fixed controller that could navigate the robot during the

experiment, the neural network that was implemented as the navigation control circuit of

the robots was trained to behave according to a hand-designed controller. This controller

operates according to the following algorithm:

 117

 - If (All Sensors=0) then Command = FF;

 P If (Sensor2=1) then Command = TRS1;

 r If (Sensor3=1) then Command = TRS1;

 i If (Sensor4=1) then Command = TRS1;

 o If (Sensor6=1) then Command = TLS1;

 r If (Sensor7=1) then Command = TLS1;

 i If (Sensor8=1) then Command = TLS1;

 t If (Sensor1=1) then Command = TRS2;

 y If (Sensor1=1 and Sensor4=1) then Command = TRS1;

 + If (Sensor1=1 and Sensor6=1) then Command = TLS1;

 In the experiment all sensors were set to operate at medium range, detecting

obstacles closer than 15cm (see Figure 4.30). Sensor S5 in the back of the robot has not

been connected to the neural network, so it does not matter if it is selected or not by the

sensor module. The sensor positions around the robot are presented in Figure 6.5.

 The neural network used four commands to control the motor drive module:

Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); and Turn Right

Short2 (TRS2). Front Fast means “move forward with maximum speed”. To turn left/right

short, the robot moves with reverse direction in one of its motors (with both motors at

maximum speed), causing a spin around its own axis. The difference between TRS1 and

TRS2 is that in the later, the robot keeps turning for 200ms, while the duration of the other

S1S2

S3

S4

S5

S6

 S7

S8

 Motor
Left Right

 Motor

30o
60o

90o

-30o
-60o

-90o

180o

0o

Figure 6.5 – Position of the sensors on the robot and their angle in relation to
the central line of the robot.

 118

three commands is just one iteration (10ms more or less). Using only four output

commands means that the neural network needs only two bits to encode them and four

classes of discriminators to work. The neural network architecture shown in Sections 3.2.5

and 4.1.1 is preserved and its configuration has four groups of seven neurons (m=4 and

n=7) with two inputs each (the neuron size is four bits). Figure 6.6 shows how this

configuration is connected to all seven sensors. Differently from other experiments, the

interconnections between sensors and neurons are fixed, not random. Each neuron has four

bits of memory to store its contents. The neural network has 28 neurons with a total

memory size of 112 bits. This would also be the size of the corresponding bit string in the

chromosome, if the neural network was to be evolved. The winner-takes-all block chooses

the command that has more active neurons and encodes it with two bits, before sending it

to the motor drive module. Other configurations are also possible, but this was the smallest

network amongst the tested ones that could learn, without saturating, the right command

for all possible 128 input combinations that the controller can face.

 The neural network was trained for all input possibilities that it can face: for

seven 1-bit sensors, it has 128 possibilities. For each input vector (0000000 to 1111111),

the current output of the hand-designed controller was calculated and “1” was written to all

neurons of the same class (the command output from the hand-designed controller) in the

position addressed by the input vector. When the last input vector was trained, the network

was able to respond exactly as the hand-designed controller. The contents of the neurons

were not modified again in the experiment.

 The speed of both motors was fixed at the maximum setting (Vmax = 32),

enabling the robots the move at 0.26m/s. As the controller configuration and speed levels

were fixed, the only feature that varied was the selection of the sensors. The sensor module

can enable or disable each sensor according to two bits stored in the chromosome. For each

robot tested, these bits were manually initialised so that different sensor configurations

could be tested in the same experiment.

 The experiments were run in two different environments: a simple one, with

just the outer walls; and a complex one, containing many round obstacles of different sizes.

Figure 6.7 shows the configuration of the simple environment and Figure 6.11 shows the

complex one. All experiments were run for 30 minutes, so that the results could be

compared.

 119

Neuron
Group 1
(Class FF)

S1

S2

S3

S4

S6

S7

S8

Li1

Lj1
N1,1 N2,1 N3,1 N4,1

Li2

Lj2
N1,2 N2,2 N3,2 N4,2

Li3

Lj3
N1,3 N2,3 N3,3 N4,3

Li4

Lj4
N1,4 N2,4 N3,4 N4,4

Li5

Lj5
N1,5 N2,5 N3,5 N4,5

Li6

Lj6
N1,6 N2,6 N3,6 N4,6

Li7

Lj7
N1,7 N2,7 N3,7 N4,7

Neuron
Group 2

(Class TLS1)

Neuron
Group 3

(Class TRS1)

Neuron
Group 4

(Class TRS2)

O1
Adder

/ / / /

O2
Adder

O3
Adder

O4
Adder

7777

Winner Takes All Block

Figure 6.6 – Configuration of the neural net with four groups of seven neurons.

 The data in these experiments were sampled by the program EXP01.CPP

and converted to a Microsoft Excel file by the program GRAF01.CPP, both written

specially for this experiment using the Borland C++ environment version 5.01. These

programs are listed in Appendix A.

 120

 The strategy for rewarding and punishing the robot fitness function for every

test in this experiment was:

 1- Start with 4096 points;

 2- Reward: increase fitness by 5 points every 3 seconds of forward
movement;

 3- Punishment: decrease fitness by 10 points every collision.

 Each robot is given 4096 points ($1000 in hexadecimal) at the beginning of

the test. According to the reward rule, the maximum that a robot can score if it does not

crash during the 30 minutes of the test is 7096 points. Therefore, it can be observed in the

following charts that even the best-adapted robots still collide sometimes.

 The robot sensors can be enabled by fixing their control bits in the

chromosome. In this way, the corresponding pair of bits in the chromosome is set to “11”

to disable the sensor, and “00” to enable it (see Section 4.3.5). The legend of the charts

indicates the colour of the curve of the robot that has the corresponding sensor(s) enabled.

For example, S1,S2 indicate that the sensors S1 and S2 are enabled, and all the others

disabled. The corresponding 16 bits in the chromosome are: 11-11-11-11-11-11-00-00

(observe that the order of the sensor control bits is: S8-S7-S6-S5-S4-S3-S2-S1). The

position of the sensors in the robot is indicated in Figure 6.5.

Figure 6.7 – Configuration of the simple environment for the experiments in
this section.

 121

6.2.1 Experiment 1.1: the Simple Environment

 To facilitate comparison of the curves in the tests with the simple and

complex environments, the robots with the same sensor configurations are represented by

the same colours. Even in this simple environment, where there are no obstacles, the

interaction among the robots was intense, causing many collisions [Set97]. This happened

because a fit robot, with the most important sensors enabled, for example, can be crashed

into by a “blind” robot, which has all sensors disabled. Therefore, the results would be

different if the robots were tested alone in the environment, but this will not be the case in

the developed evolutionary system, so the presence of other unfit robots is very important

for evolution and must be considered. Figure 6.7 shows the configuration of the simple

environment. Table 6.2 presents a summary of the settings for this experiment.

Table 6.2 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +5 points every 3s moving forward

–10 points each collision
Initial Fitness Value: 4096 points
Maximum Fitness Value: 7096 points
Generation Time: Population fixed at the first generation: 30 minutes
Mutation Rate: Not present
Speed Levels: Fixed at maximum speed (Vmax=32)
Sensors Enable: All sensors but S5 can be enabled independently

S5 is permanently disabled
Navigation Controller: Fixed Neural Network (m=4, n=7, neuron size=4 bits)
Software: EXP01.CPP and GRAF01.CPP (in Appendix A)

• Results

 Two tests were performed with the simple environment. In the first one,

Robot 1 had the sensors S1 and S4 enabled; Robot 2 had S1 enabled; Robot 3 had S1, S4

and S6; Robot 4 had S3; and Robot 5 had S1, S3 and S7 enabled. Robot 6 was not used in

the test. Figure 6.8 shows the fitness results from the first test.

 The second test was performed with all six robots. Robot 1 had sensors S1,

S2, and S8 enabled; Robot 2 had S4 and S6; Robot 3 had S3 and S7; Robot 4 had S2 and

S6; Robot 5 had S2 and S8; and Robot 6 had the sensors S2 and S7 enabled. Figure 6.9

shows the curves of the second test.

 122

• Discussion

 As expected, both charts showed that robots with two sensors collided less

than robots with just one of their sensors active. In the first test (Figure 6.8), the robots

with only S1 and S3 performed less fit than S1,S4,S6, S1,S4, and S1,S2,S7. Contrary to

expectation, S3 behaved better than S1 in this experiment. This has happened because S3

can actually pick some IR reflection from the front as well as from the left side of the

robot, and, in this way, protected the robot from colliding into a greater range of possible

obstacles.

 The robots with S1,S4,S6, and S1,S3,S7 were able to avoid most of the

obstacles with almost full cover of their surroundings. As expected, S1,S4 was not better

than S1,S4,S6 or S1,S3,S7, and the later was the best configuration in this test. This can be

explained by the fact that the sensors S3 and S7 with an angle of 60o are better in detecting

obstacles than S4 and S6, with an angle of 90o. Nevertheless, the robots with sensors

S1,S4,S6 and S1,S3,S7 had roughly the same behaviour, showing that the combination of

S4 and S6 is almost as effective as S3 and S7.

 Figure 6.8 also showed that having only two sensors is not a major problem

in a simple environment, since the robots can spot the walls in most situations with only

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time (minutes)

Fitness

S1,S4
S1
S1,S4,S6
S3
S1,S3,S7

Figure 6.8 – Experiment 1.1a: Comparison of five different sensor
configurations evaluated in the simple environment during 30 minutes. Both
controller and morphology are fixed during the experiment. The tested
configurations are: S1,S4; S1; S1,S4,S6; S3; and S1,S3,S7.

 123

one or two sensors. The major cause of collisions in this case was the approach of another

robot. This demonstrates the importance of using real robots rather than simulation, since

this sort of interaction would be difficult to model [Set97] [Jak98b].

 Figure 6.9 shows that robots that only have lateral sensors (S4 or S6) could

not sense obstacles in their front and hence gave bad performance. The figure suggests that

sensors in the front are more important than lateral ones. S3,S7 performed better than S4,S6

in the figure, since the robot had the ability to sense obstacles in the front as well as lateral

ones. S2,S7, S2,S8, and S2,S6 showed excellent performance, behaving roughly in the same

way until more or less 16 minutes and 30 seconds, when S2,S7 started to improve on the

others. This can be explained by the fact that robot S2,S7 was running out of battery and

moving slower than the other two. The other two robots had fully charged batteries and

were running faster than S2,S7. The battery charge is an important factor. If the robot is

moving faster, it will have less time to manoeuvre after spotting an obstacle and has a

greater chance of colliding. This was observed here for the first time and since then, all

robots in future experiments had their batteries equally charged at the start of the tests to

prevent this effect in their evaluation.

 Figure 6.9 shows that, against what was expected, the robot with sensors S1,

S2, and S8 active had the worst performance. This exemplifies how an evolutionary system

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time (minutes)

Fitness

S1,S2,S8
S4,S6
S3,S7
S2,S6
S2,S8
S2,S7

Figure 6.9 – Experiment 1.1b: Comparison of six different sensor
configurations evaluated in the simple environment during 30 minutes. Both
controller and morphology are fixed during the experiment. The tested
configurations are: S1,S2,S8; S4,S6; S3,S7; S2,S6; S2,S8; and S2,S7.

 124

can contribute to robot design, where the general idea would be fitting as many sensors as

possible to the robots. In this case, however, the experiment showed that there is a problem

with the S1,S2,S8 configuration and a conflict between sensors S1 and S8 was observed. It

only happens because of the way the controller was designed.

 There is an instruction (If (Sensor1=1) then Command = TR2) in the

algorithm of the hand-designed controller (see experimental settings) that orders the robot

to turn right if sensor S1 is activated. As S1 and S8 are close to each other, in the front of

the robot, sometimes in the corners both sensors can sense an object at the same time and

as sensor S1 would tell the robot to turn right, sensor S8, in the other hand, would make it

turn left with a conflicting command. Figure 6.10 shows when this interference can

happen. The infrared beam from sensor S8 can reflect back to the sensor (the regular

arrows in the figure), but can also be detected by another sensor, such as sensor S1 in the

figure. The same interference can happen between sensor S1 and sensor S2, but as both of

them turn the robot to the right, it does not generate a problem. As the command line of

sensor S1 has greater priority in the algorithm than the command line of sensor S8, if

sensor S1 detects interference, it will order the robot to turn right. Then, sensor S8 orders it

to turn left, only to be turned right again by another interference, causing the robot to

oscillate many times until it escapes that trap in the controller design. Every time an

evolutionary system is designing a robot controller for an environment where this problem

S2 S1 S8

Figure 6.10 – The reflected infrared beam (regular arrows) from one sensor
interferes (dotted arrow) with another.

 125

can happen, that configuration of sensors will have a lower fitness value, and will be

discarded as a good solution or a controller will be produced that can deal with this

situation.

6.2.2 Experiment 1.2: the Complex Environment

 The robots were also tested in a complex environment. Figure 6.11 shows

how the complex environment was obtained by including many round obstacles of different

sizes. The obstacles increase selection pressure because there are more collision

possibilities and the population needs to manoeuvre much more. This increases the

“temperature” of the system, since the population is much more agitated. Since the

selection pressure was increased by the addition of obstacles, less time is expected to

differentiate between fit and unfit sensor configurations. The same scale from the charts of

the simple environment was preserved to facilitate comparison between the performances

of the robot with the same sensor configuration. The same colours were also preserved

from the curves of the previous charts, allowing the robots using the same sensors to be

Figure 6.11 – Configuration of the complex environment for the experiments in
this section.

 126

displayed with the same colours. All robots that were tested for the simple environment

were also tested in the complex one. This experiment, though, tested some other

configurations as well. As only the configuration of the environment changed, the same

experimental settings presented in Table 6.2 can also be applied here.

• Results

 This section presents four tests with the complex environment. The first,

shown in Figure 6.12, presents the same sensor configurations of Figure 6.9. The second

test was performed with six robots. Two of them, Robot 2 using sensor S1 and Robot 5

using sensor S3, were tested before in the simple environment in Experiment 1.1a. Other

configurations were tested by Robot 1, which had all sensors disabled; Robot 3 using only

S4; Robot 4 using S6; and Robot 6, which had only sensor S7 enabled. Figure 6.13 shows

the curves of this second test.

 The third test was performed with five robots. Two of them, Robot 1 using

sensors S1, S3 and S7 and Robot 2 using sensors S1 and S4, were tested before in the

simple environment in Experiment 1.1a. Other configurations were tested by Robot 3

having sensors S1 and S3 enabled; Robot 4 using only S1 and S6; and Robot 1, which had

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time (minutes)

Fitness

S1,S2,S8
S4,S6
S3,S7
S2,S6
S2,S8
S2,S7

Figure 6.12 – Experiment 1.2a: Comparison of six different sensor
configurations of Experiment 1.1b now tested in a complex environment
during 30 minutes. Both controller and morphology are fixed during the
experiment. The tested configurations are: S1,S2,S8; S4,S6; S3,S7; S2,S6;
S2,S8; and S2,S7.

 127

the sensors S1 and S7 enabled. Figure 6.14 shows the curves of the third test. The fourth

test in Figure 6.15 shows the performances of five different sensor configurations that are

combinations of sensor S1 with some other sensors.

• Discussion

 Figure 6.12 shows a greater selection pressure than the one experienced by

the robots in Experiment 1.1b. It indicates that S1,S2,S8 and S4,S6 were still the worst

configurations, colliding even more in this more complex environment. S2,S7 was still the

best one, proving the power of the frontal sensors in spotting the obstacles in the way of the

robot.

 Generally, all performances were degraded by the inclusion of more

obstacles in the way of the robots. S2,S8 repeated a good performance, but S2,S6 dropped

to fourth place, behind S3,S7. This happens probably because of S6 deficiency in detecting

the obstacles that approach the robot, if compared to S7. This showed once more that a

more forward placement of the sensors, such as S3 and S7, or even as S2 and S8, is better

than a more lateral one, such as S4 and S6.

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time (minutes)

Fitness

All off
S1
S4
S6
S3
S7

Figure 6.13 – Experiment 1.2b: Comparison of six different sensor
configurations evaluated in the complex environment during 30 minutes.
Both controller and morphology are fixed during the experiment. The tested
configurations are: All off; S1; S4; S6; S3; and S7. The configurations S1 and
S3 were tested before in Experiment 1.1a.

 128

 Figure 6.13 compared single sensor solutions to a “blind” robot, which had

all its sensors disabled. Robot 1, using S1, and Robot 2, using S3, were evaluated before in

the simple environment of Experiment 1.1a (see Figure 6.8). S3 showed roughly the same

performance even with the addition of more obstacles, but S1 performed better. Actually,

S1 performance in this experiment was more consistent with its sensing capability. It

showed that a frontal sensor is more important than a lateral one when the environment is

full of obstacles, and its bad performance in Experiment 1.1a was probably because of its

fully charged battery, which made it travel faster.

 Figure 6.14 shows three similar configurations differing only by the

presence of sensors S3 or S7: S1,S7; S1,S3; and S1,S3,S7. The robot that had three sensors

activated, understandably, had better performance than S1,S7 and S1,S3, which had roughly

the same fitness value, indicating that a robot with a right sensor has the same probability

of success as a robot with the corresponding left sensor. The same can be said of S1,S4 and

S1,S6 that had similar performances, with S1,S4 colliding much more than in the previous

experiment in the simple environment.

 Figure 6.15 shows a tight competition of three sensor configurations:

S7,S6,S4,S3,S2,S1; S7,S6,S3,S1; and S7,S3,S2,S1. This once more illustrated the

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time (minutes)

Fitness
S1,S3,S7
S1,S4
S1,S3
S1,S6
S1,S7

Figure 6.14 – Experiment 1.2c: Comparison of five different sensor
configurations evaluated in the complex environment during 30 minutes.
Both controller and morphology are fixed during the experiment. The tested
configurations are: S1,S3,S7; S1,S4; S1,S3; S1,S6; and S1,S7. The
configurations S1,S3,S7 and S1,S4 were tested before in Experiment 1.1a.

 129

importance of S7 and S3 angled 60o in both sides of the robot. S7 and S3 showed again

superior to S6 and S4, which form a 90o angle with the robot central line. The S6,S4,S3,S1

curve started to show a lower performance after three minutes, suggesting that a shorter

generation time would not be enough to make any distinction between these two groups of

sensors. The sensor configuration S4,S3,S2,S1 was very powerful, but not as much as the

others. Its curve started to differ from the others in the first minutes of the experiment,

suggesting that a short lifetime would be enough to differentiate among these simple sensor

combinations and richer ones, containing at least one sensor in the front, and one at each

side of the robot.

6.2.3 Discussion of the Experimental Results

 Evolution can be used to determine the best sensor configuration for the

population of robots, since it was possible to differentiate between fit and unfit sensor

configurations in the experiments. It was shown that the robots with just a few well-placed

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time (minutes)

Fitness

S7,S6,S4,S3,S2,S1
S7,S6,S3,S1
S6,S4,S3,S1
S7,S3,S2,S1
S4,S3,S2,S1

Figure 6.15 – Experiment 1.2d: Comparison of five different sensor
configurations evaluated in the complex environment during 30 minutes.
Both controller and morphology are fixed during the experiment. The tested
configurations are: S7,S6,S4,S3,S2,S1; S7,S6,S3,S1; S6,S4,S3,S1;
S7,S3,S2,S1; and S4,S3,S2,S1.

 130

sensors performed better than the ones with conflicting, badly-placed sensors. As fit sensor

configurations had very similar curves according to the selected fitness function, it was

observed that this function could not discriminate between some of the best configurations,

even after 30 minutes of evaluation. The implication of this is that using these settings, the

optimal solution may never be found by the evolutionary technique with this fitness

evaluation function. However, an optimal solution may not even exist for this problem,

since even different battery charges can influence the performance of some solutions more

than the configuration of their sensors. Small fitness differences (e.g., less than 100 points)

after 30 minutes must be regarded as the same performance.

 The aim of this experiment was to judge the amount of time that can safely

discriminate between a good and a bad performance. It was observed that a generation that

lasts at least one minute is enough to differentiate between fit and unfit sensor

configurations. However, five or ten minutes may be necessary to choose the best among

similar good solutions. In this case, an evaluation strategy that considers the gradual

increase of the duration of the generations towards the end of the evolutionary experiment

seems very attractive. This permits a better evaluation of the fitness of the solutions, where

the robots must navigate for many minutes until the best performances can be selected.

 This experiment showed so far that there might not be an optimal solution to

the best sensor configuration. The scores of the best sensor configurations were very close

and if a short generation time is applied, the noise of a real embedded evolutionary system

will probably obscure these scores, making it very difficult, if not impossible, for evolution

to find a definitive solution. What can be expected, however, is an evolutionary process

that will converge to a group of best solutions, containing at least three sensors, one frontal,

and two lateral ones. A short lifetime, and even a much longer one, will not apply the

necessary selection pressure to differentiate among them. If mutation is active, the final

result will probably be a population where all these best solutions coexist and keep

reappearing in the population every now and then.

 131

6.3 Experiment 2: Evolving the Sensor Configuration

 In this experiment, an embedded evolutionary system was allowed for the

first time to evolve the morphology of a robot population. To date, no other author has

attempted this using a fully embedded evolutionary controller [Pol00]. Evolution could

manipulate the specific genes in the robot chromosome that define the sensor

configuration: the first eight pairs of bits. By evaluation, selection, and recombination,

evolution was expected to be able to select the best sensor configuration to navigate the

robots according to a small variation of the hand-designed controller described in

Experiment 1. This hand-designed controller operated according to the following

algorithm:

 Left = Right = 0;

 - If (Sensor4=1) then Left = Left + 1;

 P If (Sensor3=1) then Left = Left + 1;

 r If (Sensor2=1) then Left = Left + 1;

 i If (Sensor6=1) then Right = Right + 1;

 o If (Sensor7=1) then Right = Right + 1;

 r If (Sensor8=1) then Right = Right + 1;

 i If (Sensor1=1) then Command = TRS2;

 t If (Left > Right) then Command = TRS1;

 y If (Left = Right) then Command = FF;

 If (Left < Right) then Command = TLS1;

 + If (Sensor1=1 and Sensor4=1) then Command = TRS1;

 If (Sensor1=1 and Sensor6=1) then Command = TLS1;

 The Left and Right variables were created to prevent the robot from turning

left when more left sensors are detecting obstacles than the right sensors, as it was

happening in the previous hand-designed controller from Experiment 1. This did not

happen in this controller, since the robot will turn to the side where fewer sensors are

detecting obstacles.

 In this experiment, all sensors could be enabled by their controlling pair of

bits in the chromosome. It will be recalled that both controlling bits need to be “0” to

enable the corresponding sensor. Any other combination (e.g., “01”, “10”, and “11”)

 132

disables it. Therefore, to select sensors S1 and S2 only, the corresponding 16 bits must be

for example 01-11-10-10-11-01-00-00. Observe that the first pair of bits in the

chromosome controls sensor S8, followed by S7, S6, S5, S4, S3, S2, and S1. The phenotype

with only sensors S1 and S2 enabled has many corresponding genotypes. As three

combinations of both control bits disable each one of the other six sensors (e.g., “01”, “10”,

and “11”), this phenotype can be produced by 36 or 729 genotypes. This genetic system is

presenting some neutrality [Ler76] and the reason for this is that the sensors have a higher

probability (75%) of being disabled than enabled. This helps co-evolving the sensor

configuration and the controller, since once a sensor is enabled it gives more time for the

controller to learn how to use it before another sensor appears, forcing the controller

configuration to adapt again [Shi00].

• Aim of the Experiment

 This experiment aimed to test if the embedded evolutionary controller

described in Chapter 4 was able to evolve part of the robot morphology: the sensor

configuration. To achieve this, the controller circuit was fixed by training the neural

network, the same architecture used in the previous experiment, to behave according to the

hand-designed controller described above. The neural network was shown in Figure 6.6

and was trained as described in Experiment 1. It used the same four commands to control

the motor drive module: Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1

(TRS1); and Turn Right Short2 (TRS2).

• Experimental Setting

 A population of robots with different sensor configurations was evaluated in

30-second generations. The robots were allowed to reproduce and mutate, but only with the

first 16 bits that enable the sensors. The initial control circuit was preserved during the

complete experiment.

 The chosen selection strategy for this evolutionary experiment was:

!" Select the robot with the highest fitness value in the generation to breed

with all other robots and survive to the next generation.

 133

 This strategy means that the robot with the highest fitness is selected, and

will send its chromosome to the other five robots. Each one of the remaining five robots

then combines its own chromosome with the one received from the best robot to produce a

resultant chromosome. Next, the bits of this resultant chromosome are randomly selected to

be mutated (logically inverted) according to the selected mutation rate. Then, the remaining

five robots reconfigure themselves with the mutated chromosomes and the robots continue

in the next generation. This tries to make sure that in the next generation the best fitness

will be at least similar to the present one, since, at least, the surviving best robot has the

same chances of repeating its good performance.

 In the crossover phase, where the two chromosomes are combined to form a

resultant offspring, each bit is randomly chosen from the corresponding location in the

chromosome of the parents. Then, in the mutation phase, a random number r is generated

between zero and 100 for each bit in the chromosome, and the bit will be flipped (from “0”

to “1”, or “1” to “0”) each time the r is smaller than the mutation rate.

 Sensor S5 in the back of the robots has not been connected to the neural

network, so it does not matter if it is enabled or not by the sensor module. In this

experiment, all sensors have only one bit of precision and they were set to work at medium

range (see Figure 4.30). The velocity of the motors in this experiment was again set to the

maximum speed.

 The selected fitness function, for every test in this experiment was:

 1- Start with 4096 points;

 2- Reward: increase fitness by 5 points every 1 second of forward
movement;

 3- Punishment: decrease fitness by 10 points every collision.

 The maximum that a robot can score if it does not crash during the 30

seconds of the generation is 4246 points. Figure 6.16 shows the environment where this

experiment was run. It was built with medium complexity, containing a few round

obstacles of different sizes.

 This experiment selected the best possible combinations of the eight sensors

S1, S2, S3, S4, S5, S6, S7, and S8. The number of possible combinations of the eight

sensors is: 28 = 256 combinations. It is a relatively small search space. Hence, fast

convergence was expected, since many combinations present very similar good

performances (as demonstrated in Experiment 1) with fitness values near to the maximum

 134

score. For all four tests in this experiment, the population was initialised with all sensors

disabled (i.e., with “10-01-10-01-10-01-10-01” written to the chromosomes of all robots).

“10-01-10-01-10-01-10-01” was chosen instead of “11-11-11-11-11-11-11-11” to include

more variety in the chromosomes (i.e., a chromosome containing different combinations of

“0” and “1” has more variety of genes than one with all bits set to “1” or “0”, because it can

produce more different combinations). Therefore, it is easier to produce a pair of zeros,

enabling the sensor. The system would have to rely entirely on mutation to produce zeros,

if the combination “11-11-11-11-11-11-11-11” had been chosen. Table 6.3 presents a

summary of the settings for this experiment.

Table 6.3 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +5 points every 1s moving forward

–10 points each collision
Initial Fitness Value: 4096 points
Maximum Fitness Value: 4246 points
Generation Time: 30 seconds
Mutation Rate: 0%, 5%, 10%, 20%, and 40%
Speed Levels: Fixed at maximum speed (Vmax=32)
Sensors Enable: All sensors can be enabled independently
Navigation Controller: Fixed Neural Network (m=4, n=7, neur. size=4 bits)
Initial Sensor Configuration: “10-01-10-01-10-01-10-01”
Initial Speed Configuration: “1111111111”
Initial Controller Configuration: Fixed from trained neurons.
Software: EXP07.CPP and GRAF07.CPP (listed in Appendix A)

Figure 6.16 – Configuration of the environment used in this experiment.

 135

• Results

 This experiment shows three charts representing three different evolutionary

experiments, run in the same environment with six robots and different mutation rates: 0%,

5%, 10%, 20%, and 40%. To facilitate comparisons, all five evolutionary experiments run

for 25 generations. Figure 6.17 shows the first evolutionary experiment with mutation rate

of 5%. A good solution with a high fitness value was found by evolution much faster than

expected. After the first two or three generations, a solution that scored at least 90% of the

total possible points was found in all four evolutionary runs. The fitness values of the

population dispersed more as the mutation rate increased.

 Figure 6.17 shows that Robot 4 was the best robot in this experiment at the

end of the second generation, and was selected to breed with all other robots. It was

preserved to the third generation with the same sensor configuration, but could not repeat

the same good performance. It is a good example of how much noise and interactions with

other robots and different obstacles can influence the performance of the same robot, when

it is tested again for the same period [Set97]. Robot 6, in the same figure, from generation

3900

3950

4000

4050

4100

4150

4200

4250

0 5 10 15 20 25
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6

Figure 6.17 – Experiment 2.1: Evolution of the sensor configuration in an
environment of medium complexity, mutation rate of 5%, sexual
reproduction, and generation time of 30s. The controller and speed levels are
fixed during the experiment. Here, Robotn is the fitness of Robot n in the
generation.

 136

5 to 6, and 6 to 7, was selected as the best robot. This robot had a better sensor

configuration, and was able to repeat the same good performance twice.

 During the experiments, the most important factor that interfered with the

performance of the system was the stochastic noise arising from the interactions of real

physical systems. The encountered noise in the experiments was:

1- The infrared signals reflected by the walls in every direction (e.g., two point

reflection from one emitter in two walls and back to another sensor receiver);

2- The dust on the floor can make the wheels slide differently, sometimes turning the

robot differently than expected – this generates problems in performing

programmed high-level actions, since a slide or two during the manoeuvre may

take the robot away from the expected final position;

3- Although exhaustively refined, the sensors are still affected by environment

conditions (such as intensity of illumination, colour of the walls, texture of the

obstacles and floor, etc);

4- The inertia of motors and body, which vary with the robot speed causing

difficulties to perform the expected turning routines.

 In the next experiment, shown in Figure 6.18, the mutation rate was fixed at

0%, so that it was possible to analyse how much noise and interactions with other robots

and obstacles can influence the performance of the robots [Set97]. All conditions from

Experiment 2.1 were preserved with the exception of the new mutation rate and that

instead of initialising the population with all sensors disabled, the robots now were

randomly initialised. This was necessary because since mutation was set to 0%, the

population relied only in crossover to produce new individuals. To do this, random bits

were written to the 16 bits related to selecting the sensor configuration. As the population

worked with a limited variety of genotype, the smaller phenotype range resulted in fast

convergence.

 Figure 6.19 shows a summary of the performance of the five mutation rates

of 0%, 5%, 10%, 20%, and 40%, overlapping two curves for each mutation, one displaying

the average fitness of all robots, and the other displaying the fitness of the best robot in

each generation. This last curve was obtained by plotting the fitness of the winner robot,

the one selected to reproduce with all the others, for every generation. Five colours were

 137

used, one for each mutation rate. Although the same colour was used to display the curves

of the average fitness and the best robot, there is no possibility of mistaking them, since the

best robot curve (m%Best, in the chart) is well above the average curve (m%Average, in the

chart) for all five experiments. By the indicated mutation rate (m%), it is possible to

identify to which chart the curves belong. Higher mutation rates introduce variation in the

population and force the individual fitness to search the fitness landscape for other local

optima. With these rates, the population was expected to present very different fitness

values in each generation, even late in the evolutionary experiment.

• Discussion

 Figure 6.18 shows that the population fitness still oscillates even without

mutation. This represents all the noise in the system together with the interactions among

the robots and among the robots and different obstacles for every generation. It generates a

high degree of uncertainty in the process that would be difficult to simulate, highlighting

once more the importance of employing a real physical system in evolutionary

computation.

3900

3950

4000

4050

4100

4150

4200

4250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6

Figure 6.18 – Experiment 2.2: Evolution of the sensor configuration in an
environment of medium complexity, mutation rate of 0%, sexual
reproduction, and generation time of 30s. The controller and speed levels are
fixed during the experiment. Here, Robotn is the fitness of Robot n in the
generation.

 138

 For the experiment with 0% mutation, the random values that initialised the

population were: 0,0,S6,0,0S3,S2,S1; S8,0,S6,S5,S4,S3,S2,0; S8,S7,0,0,S4,S3,0,S1;

S8,S7,0,S5,S4,S3,0,0; S8,S7,S6,0,S4,0,S2,S1; and S8,S7,S6,S5,S4,0,S2,0. Sensor S5 is not

connected to the neural network, so it did not matter if it was enabled or not. It is important

to observe that initialised in this way, the population had the potential to generate any

combination of the sensors. The system converged to S8,0,S6,0,S4,S3,S2,0 in generation

16, so that all members of the population held this configuration to the end of the process.

Therefore, the different performances of the same configuration from generation 17 on

showed the influence of uncertainty on the robots. This experiment showed high fitness

values right from the beginning of the process (generations 1 and 2). This happened

because the randomly initialised configurations gave better performances than the robots

with all sensors disabled from the experiments with non-zero mutations.

 As predicted by Experiment 1, there was no optimal solution, since the best

robot place was occupied by a series of different candidates with different sensor

configurations, almost in every generation until the end of the experiment. Robots 6 and 4

were the best ones in the chart of Figure 6.17, repeating consistent performances all the

3900

3950

4000

4050

4100

4150

4200

4250

0 5 10 15 20 25
Generation

Fitness

5%Average
5%Best
10%Average
10%Best
20%Average
20%Best
40%Average
40%Best
0%Average
0%Best

Figure 6.19 – Experiment 2.3: Comparison of five mutation rates (0%, 5%,
10%, 20%, and 40%) for the evolution of the sensor configuration in an
environment of medium complexity, with sexual reproduction, and
generation time of 30s. Here, Average is the average fitness of all robots in
the generation and Best is the fitness of the best robot in the generation for
the respective mutation rate.

 139

way until the last generation. The experiment with 10% mutation, in Figure 6.19, showed a

slightly more dispersed population according to the fitness value, but the system behaviour

was stable again, producing a group of well-adapted robots right after the fifth generation.

Again, the best robot place was occupied by different sensor configurations during the

process.

 The experiments with 20% and 40% mutation, show a very disperse

population, but the fitness of the best robot is nevertheless as high as in the previous charts.

This demonstrated that preserving the best robot, allowing it to survive to the next

generation, was a good idea, which could keep the fitness of at least the best robot high

during the whole process. A high mutation tends to degrade substantially the average

performance, so the best robots that are selected to survive and do not suffer mutation have

more chances of dominating the population, being selected as the best robot most of the

time.

 From the comparison of the average results shown in Figure 6.19, it is

possible to observe that the lower mutation rates of 0% and 5% had the best averages

(displayed in pink and red in the chart), the ones nearest to the best robot curve. As

mutation increased, the average fitness reduced and the corresponding curves became more

distant from the best robot fitness. Therefore, the distance between the average fitness

curve and the best robot fitness curve can tell how dispersed the population was, or give an

idea of the mutation rate used.

 It can be observed in Figure 6.19 how the 0% mutation curves started with

high fitness in the first generations, while the others climbed from much lower values. The

rise of the average curves showed how the population got progressively better as the

generations passed and evolution gradually tuned their sensor configurations.

6.3.1 Discussion of the Experimental Results

 It can be concluded by the performed experiments that the implemented

evolutionary system can produce a better population out of evaluation, selection, and

 140

recombination. It was able to evolve the sensor configuration of the robots in real time, in a

physical environment with real robots. The aim of this experiment was therefore satisfied.

 From the total search space of 28 sensor combinations, the evolutionary

system was not able to find an optimal solution, but many efficient solutions containing at

least three sensors, one in the front and two lateral ones in each side of the robot, were

produced. The evolutionary system could not choose one amongst these solutions, which

were alternately selected as the winner as the system tried to converge in the end of the

process. This fact was predicted by Experiment 1, where it was shown that it was very

difficult to differentiate the good solutions and establish a winner even in relatively long

generation times of ten minutes or more.

 This experiment established a relationship between mutation rate and the

distance between the average fitness and the best fitness curves. It demonstrated that a

higher mutation rate increases this distance, although some of this distance is due to noise

and the interactions among the robots and obstacles, as it can be seen in Figure 6.18. It was

shown that this uncertainty might never allow these two curves to meet in a real physical

environment such as the one used for development.

6.4 Experiment 3: Evolving an Unstructured Controller

 In this experiment, the embedded evolutionary system attempts to evolve a

completely unstructured control circuit (i.e., a controller that has an unconstrained logic

circuit, which can produce any binary function of its inputs). The eight sensors were

permanently enabled and the speed of the motors was fixed at maximum speed. Therefore,

the navigation control circuit was the only one under evolutionary control. This experiment

did not use a structured, modular neural network (which can produce limited functionality,

since only the contents of the neurons can be modified) to implement the navigation

control circuit as shown in the previous experiments. Instead, it attempted to evolve an

unstructured, undefined architecture, which was called the black box [Sim94] [Bot96]

[Sim96].

 141

 Evolving unstructured architectures for robot control has been attempted

before by Thompson in [Tho94c] [Tho96a] [Tho96c], where he evolved a dynamic state

machine to drive a small mobile robot and in [Tho96b], where he tried to evolve an FPGA

connected directly to the motors to produce a pulse modulated signal. Both attempts

employed simulation, and one real robot to evaluate the solutions. To date, no work has

been reported where the evolution of an unstructured controller has been attempted with a

real robot population in real time. Therefore, this experiment provides the first results

obtained from the evolution of an unstructured control architecture by an embedded

evolutionary system.

 In this experiment, all sensors have only one bit of precision and they were

set to work at medium range. Differently from the previous experiments, sensor S5 in the

Encoding of the
Commands:

 000 -- FF
 001 -- TRS1
 010 -- TLS1
 011 -- TRS2
 100 -- TLS2
 101 -- TRL
 110 -- TLL
 111 -- FF (not used)

Sensor
Module

Black
Box

S1

1 bitS2

1 bitS3
1 bit

S4 1 bit

S5 1 bit

S6
1 bit

S7

1 bit

S8

1 bit

3-bit
Output

Motor
Drive

Module

Figure 6.20 – The Black Box controller connected to eight sensors with 1-bit
resolution. It produces a 3-bit signal to command the motor drive module
according to the encoded commands. “111” is not used and is interpreted as
FF by the motor drive module.

 142

back of the robots has been connected to the black box controller, and this time it can be

used as any other sensor by the evolvable controller.

 The controller used seven commands to control the motor drive module:

Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); Turn Right Short2

(TRS2); Turn Left Short2 (TLS2); Turns Right Long (TRL); and Turn Left Long (TLL).

These first four commands were explained in Experiment 1. In TRL and TLL, the robot

turns right/left by breaking one wheel and turning around it with the other one in maximum

speed in a wide arch of one wheel span of diameter. Figure 6.20 shows how the black box

is connected to the sensors and the motor drive module.

 The concept of the black box controller started when Simões et al. published

a strategy of implementing a neural network in VHDL (VHSIC Hardware Description

Language) (VHSIC – Very High Speed Integrated Circuit) by converting the neuron

behaviours into lookup tables [Sim94] [Sim96]. Then, the mnemonics of each neuron were

converted into VHDL language. To achieve this, after the neural network was trained, each

one of its 8-input neurons was stimulated with all possible combinations of the input

vector, from “00000000” to “11111111”. Then, each output for all input possibilities was

written to a lookup table, representing the neuron combinational circuit. Next, these tables

were used to convert the neuron behaviours into the VHDL symbols.

 The same strategy used to implement the circuit of the neurons in [Sim96]

as lookup tables is applied here to implement the navigation control circuit. The controller

was represented by a black box that can generate any binary logic function of its eight

binary inputs. Which logic circuit is actually used inside the black box to implement this

logic function does not matter in this case, since only its behaviour is relevant to the

problem. To adapt this strategy to be used as the navigation control circuit of the robot, it

should be able to produce a 3-bit output.

 Figure 6.21 shows how three lookup tables can be used to implement the

black box circuit. Using three 256-bit memories to store the information of the three

lookup tables is just one way to implement the black box circuit. The 8-bit signal from the

sensors forms the address to the memories that output the corresponding content (1 bit).

The outputs of the three memories form the 3-bit command that controls the motors.

 Another way to implement the black box circuit is to use a 256-byte

memory, which has enough space to store eight lookup tables of eight inputs. Figure 6.22

shows how this solution works. The 8-bit signal from the sensors is directly connected to

 143

the address lines of the memory. The output of the black box controller is a byte that has

eight bits that can store the contents of eight lookup tables. In the figure, b0, b1, and b2 are

used to form the 3-bit command that controls the motors. The other bits are ignored, but

they can be used in the future to give other parameters to the robots, such as speed levels

for both motors. The five spare bits (b3 to b7) can be used to define the 32 levels of the

robot speed (25 = 32).

 Considering that the robot computing system already has a 64Kbyte

memory, the natural way to implement the black box controller is by using the robot RAM

memory to store the contents of the lookup tables. Since the robot microprocessor can

access only one byte at a time of the memory, only the first three bits of this byte are used

to form the command to the motors; the remaining bits are ignored. This strategy resulted

in a powerful and fast controller, since only a single step or command line of the C++

language is necessary to implement the whole controller: Command = Memory[Sensors].

Considering that Sensors is a 1-byte long variable containing the sensor readings (8 bits)

converted to an integer that address the memory array. Memory[256] is an array of 256

bytes that stores the contents of the lookup tables, and Command is the variable that holds

the memory content for that address. In the robots, the black box was implemented using

Black Box

256-bit Lookup
Table

256-bit Lookup
Table

256-bit Lookup
Table

1 bit

1 bit

1 bit

3-bit Command8 bits
8

bi
ts

 fr
om

 th
e

Se
ns

or
s

8 bits

8 bits

Figure 6.21 – The black box containing three 256-bit lookup tables that form
the 3-bit command to the motor drive module.

 144

the microprocessor (68HC11) assembler code. The corresponding part of this algorithm is

shown below:

; Addressing Black Box in Memory according to the Sensor Readings

 ldab sensors ; b receives content of variable sensors

 ldx #$8000 ; x receives Base Address

 abx ; Add b to x

 ldaa 0,X ; Retrieve the Data from memory

 anda #%00000111 ; Filter the first 3 bits containing the Command

 staa command ; Store the result to variable command

 In this program, the variable sensors is a single byte that holds the sensor

readings. Each bit of the byte corresponds to one sensor and is set to “0” if the sensor does

not detect any obstacle, or “1”, if an obstacle is being detected. The base address $8000 in

hexadecimal is the address in memory of the first byte of the 256 locations of the black box

memory. The variable sensors is directly added to it to point to any one of the 256 bytes

stored in memory. The variable command is one byte that stores the command that

corresponds to the sensor readings. These simple six lines of assembler code illustrate how

Black Box

Memory
(256-bytes)

Address
8

bi
ts

 fr
om

 th
e

Se
ns

or
s

8 bit

1 bit
3-bit Command

1 bit
1 bit

b0,b1,b2,b3,b4,b5,b6,b7

1 Byte

Figure 6.22 – The Black Box controller implemented using a 256-byte memory.
Three bits from the output form the 3-bit command to the motor drive
module.

 145

fast the part of the robot software corresponding to the navigation control circuit works.

The complete assembler program is called EVOLUTION.ASM and is listed in Appendix

A. When compared to the 87 lines of assembler code that implement the hand-designed

controller described in Experiment 2, the simpler black box strategy is at least 100 times

faster. The assembler program that contains the hand-designed controller is called

HANDCONTROL.ASM and is also listed in Appendix A.

 In this experiment, instead of using the black box memory to implement a

previously trained neural network or any other circuit as the previous work that inspired it,

evolution was allowed to manipulate the memory contents directly, until a navigation

control circuit emerged. Therefore, every byte of the memory was ordered in the

chromosome to form a 2048-bit string. Crossover and mutation can affect each one of these

bits as a normal binary chromosome. After these operations are completed, the 2048 bits in

the chromosome are grouped again into 256 bytes and stored in the black box memory.

Only the first three bits in the byte (b0, b1, and b2) are relevant for this experiment, and the

other ones (b3 to b7) are ignored by the robot. Therefore, from the 2048 bits corresponding

to the eight lookup tables, only 768, which correspond to the first three tables (b0, b1, and

b2) are relevant to evolution. Hence, this is the size of the genotype of the robots, and

considering that any one of them can produce a different phenotype (i.e., there is no

neutrality in this case), the current search space is considerably large: 2768 = 1.55×10231.

• Aim of the Experiment

 This experiment aimed to test if the embedded evolutionary controller

developed in Chapter 4 was able to evolve the navigation control circuit until the collision-

free navigation behaviour emerges, while having the robot morphology (the sensor

configuration and motor speeds) fixed. To achieve this, the sensor configuration was fixed

with all sensors enabled and the velocity of both motors was fixed at maximum speed. The

navigation control circuit is composed of only 256 bytes in the robot RAM memory and

evolution is allowed to manipulate any bit of these bytes. The robots were allowed to

reproduce and suffer mutation, but only with the 2048 bits in the chromosome that

correspond to the navigation control circuit. The initial morphology remained fixed during

the complete experiment.

 146

• Experimental Setting

 A hand-designed controller was developed as a reference to compare the

results of the evolutionary system. It is a variation of the previously described ones, which

includes the new commands for the motor drive module. In this experiment, the hand-

designed controller operated according to the following algorithm:

 Left = Right = 0;

 If (Sensor4=1) then Left = Left + 1;

 - If (Sensor3=1) then Left = Left + 1;

 If (Sensor2=1) then Left = Left + 1;

 P If (Sensor6=1) then Right = Right + 1;

 r If (Sensor7=1) then Right = Right + 1;

 i If (Sensor8=1) then Right = Right + 1;

 o If (Sensor1=1) then Command = TRS2;

 r If (Left > Right) then Command = TRS1;

 i If (Left = Right) then Command = FF;

 t If (Left < Right) then Command = TLS1;

 y If (Sensor1=1 and Sensor4=1) then Command = TRS2;

 If (Sensor1=1 and Sensor6=1) then Command = TLS2;

 + If (Sensor4=1 and All other Sensors=0) then Command = TRL;

 If (Sensor6=1 and All other Sensors=0) then Command = TLL;

 The black box controller can be trained to behave as the hand-designed

controller by stimulating it with all possible combinations of the input vector (from

“00000000” to “11111111”). Then, for each possible input, the output of the hand-

designed controller is written in the corresponding addressed position in the black box

memory. To do so, the 3-bit output of the hand-designed controller was converted to a byte

by adding five zeros: byte equals to “00000” plus the 3-bit output from the hand-designed

controller. Therefore, the black box is able to behave exactly as any controller that has

eight binary inputs and produces up to eight binary outputs.

 The selection, crossover and mutation strategies used here were explained in

Experiment 2. This experiment was run in the same environment with medium complexity

used by Experiment 2 (shown in Figure 6.16). In some tests in this experiment, the

configuration of the controller of the robots was randomly initialised, but others started

 147

with a population trained according to the hand-designed controller described above. As

explained before, simulations were done for a range of values and examples were selected

out for a matter of presentation. Therefore, the mutation rate of 3% was chosen for this

experiment because it produced the best results with the proposed settings (Appendix C

contains the average results of many experiments that could not be included in the body of

the thesis). Table 6.4 presents a summary of the settings for this experiment.

Table 6.4 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: To be defined in the experiments
Initial Fitness Value: 4096 points
Maximum Fitness Value: 4696 points
Generation Time: 60 seconds
Mutation Rate: 3%
Speed Levels: Fixed at maximum speed (Vmax=32)
Sensors Enable: Fixed with all enabled
Navigation Controller: Evolving Black box with 256 bytes
Initial Sensor Configuration: “00-00-00-00-00-00-00-00”
Initial Speed Configuration: “1111111111”
Initial Controller Configuration: Random and as the hand-designed controller
Software: To be defined in the experiments

6.4.1 Experiment 3.1: Evolving with a Simple Fitness Function

 This experiment used a very simple fitness function in an attempt to prevent

biasing evolution to any preconceived idea of an ideal controller. The selected fitness

function for this test was:

 1- Start with 4096 points;

 2- Reward: increase fitness by 10 points every 1 second without
collision;

 3- Punishment: decrease fitness by 30 points for every time
command is not FF for more than 15 seconds;

 4- Punishment: decrease fitness by 10 points for every collision if
command = FF, TLL, or TRL.

 Rule 2 changed from Experiment 2 and constantly rewards the robot with

five points for every second of the generation time. This attempted to solve a problem

 148

where a robot that turned frequently was making fewer points, since the fitness function

rewarded only the FF command. Rule 3 was introduced to prevent evolution from

producing a solution that keeps turning around itself and never collided. This rule punishes

the robots that keep turning for more than 15 seconds, encouraging them to move forward.

Rule 4 was modified to prevent punishing the robots that are turning around themselves

and are crashed by another robot. If a robot is executing any command but FF, TLL, or TRL

its centre is not moving, so the collision cannot be its fault. The results in this experiment

were acquired by the program EXP08.CPP and were converted by the program

GRAF08.CPP, both listed in Appendix A.

• Results

 Figure 6.23 shows results from an evolutionary experiment run in a medium

complexity environment with six robots and a mutation rate of 3%. This experiment used a

simple fitness function that did not bias evolution towards a preconceived solution. The

chart displays the fitness of the six robots and the average fitness of the population

(PopAv).

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 10 20 30 40 50 60 70
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

Figure 6.23 – Experiment 3.1a: Evolution of the black box controller using a
simple fitness function in an environment of medium complexity, mutation
rate of 3%, sexual reproduction, and generation time of 60s. The population
was randomly initialised. Here, Robotn is the fitness of Robot n and PopAv is
the average fitness of all robots in the generation.

 149

 The experiment in Figure 6.24 was performed to investigate if the robot

population, once initialised with a well-trained controller, could hold this configuration or

would degenerate. The robots were initialised with a previously trained black box, which

was taught to behave exactly as the above described hand-designed controller. The

population was then allowed to mate and mutate with the same parameters of the previous

evolutionary experiment to determine if it would ever get to such a good solution if the

experiment was allowed to continue for more generations. The results presented in this

figure can be compared to the ones obtained from the evolution of a randomly initialised

population in Figure 6.23.

• Discussion

 Figure 6.23 showed that the evolutionary system succeeded in evolving the

population towards the expected behaviour, producing solutions that practically did not

collide after 35 generations. It was observed in this experiment that one could not rely only

on the fitness of a robot to know how well-adapted it is. A simple solution can be lucky

enough to start its lifetime in a safe part of the environment, away from obstacles and other

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

1 3 5 7 9 11 13 15 17 19
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

Figure 6.24 – Experiment 3.1b: Evolution of the black box controller using a
simple fitness function in an environment of medium complexity, mutation
rate of 3%, sexual reproduction, and generation time of 60s. The population
was initialised as the hand-designed controller. Here, Robotn is the fitness of
Robot n and PopAv is the average fitness of all robots in the generation.

 150

robots, which would produce a very high performance. This was observed in some robots

during the evolutionary experiment (e.g., Robot 2 that scored 4644 in generation 10, or

Robot 1 that scored 4621 in generation 8). Therefore, the human judgement was the best

way to evaluate the abilities of the robots and the performance of the evolutionary system.

 In Experiment 3.1a in Figure 6.23, all sensors were enabled from the

beginning of the evolutionary experiment. The controller had information from all the

sensors and needed to learn what to do with it. Based on observation, some robots learned

how to use the frontal sensor, S1, which gave them an advantage early on in the process.

This was the case for Robot 2 that could avoid obstacles detected by S1 from generation 8.

Robot 2 quickly became the best robot and throughout the crossover operation transferred

to Robot 5 the ability of using S1. Robots 2 and 5 dominated the population until

generation 23, where they were overtaken by Robot 3 and Robot 4. Robot 3 learned how to

use S1, S4, and S7 from generation 29, and was able to avoid most of the obstacles very

well thereafter. From generation 47 on, all robots acquired the necessary skills to employ at

least three sensors and the average performance was much better. From generation 50,

Robot 2 was well-adapted to the environment, and could use S1, S2, S4, S6, and S7 to

avoid collisions with most of the obstacles and other robots.

 The major observed problem was the instability of the system, where there

was no guarantee that a good solution, such as Robot 2 in generation 50, would be selected

as the best robot until it is outperformed by better robots. The population performance

dropped when a robot with a poorly-adapted controller (Robot 1) was lucky enough to be

selected as the best robot and spread its bad genes through the population. Robot 1 had a

poorly-adapted controller that made it move forward each time S6 detected an obstacle,

independently of having something in its way. The average performance dropped, but after

a few generations, the fitness of the population recovered.

 The average of the population fitness is a good parameter to determine if the

system is converging to the desired behaviour. The population performance oscillated, but

kept improving through the evolutionary experiment. With such a large search space

(1.55×10231), a perfect robot that can deal with all sensors should take a very long time to

obtain with this evolutionary approach. Nevertheless, the system succeeded in producing an

even population of robots that can successfully avoid the obstacles in most of the situations

faced and produces a fitness near to the maximum performance (4696).

 151

 Figure 6.24 shows how the system behaves after the population has been

initialised with a black box trained according to the hand-designed controller. The aim of

this test was to show that if such a good solution happen to be produced by evolution, it

would be preserved in the process. If the evolutionary experiment cannot keep such a

solution, it is unlikely that it will ever be produced by evolution under these circumstances.

Unfortunately, the figure showed that the evolutionary system, as set in this experiment,

could not keep a good solution for more than ten generations and the performance of the

system degenerated. Although it was possible to recover and continue to improve

performance after the loss of the hand-designed controller genes, this test indicated that it is

unlikely that such a good solution will be produced by the process as it was configured for

this experiment. Maybe a more biasing fitness function can produce a better result.

6.4.2 Experiment 3.2: Evolving a Biasing Fitness Function

 This experiment intended to use a more biasing fitness function than the one

presented in Experiment 3.1. It investigated whether a biased evolution could produce a

better solution (such as the hand-designed controller) for the collision-free navigation task.

 A new fitness function was designed taking in consideration the information

of the infrared sensors to reward or punish the robots. This function rewards the robot

when the command is FF and there are no obstacles around the robot. It also rewards it if

the robot detects an obstacle on one side and turns to the other side. The robot is punished

if it turns against the obstacle. To make it easier to use the sensor information, the variables

Left and Right were used again as in the hand-designed controller. As it was described

before, Left is increased by one each time one of the sensors S2, S3, and S4 detect an

obstacle and Right is increased by one each time S8, S7, and S6 detect an obstacle. The

selected fitness function, for this test was:

 1- Start with 4096 points;

 2- Reward: increase fitness by 10 points every 1 second if All
Sensors=0 and command=FF;

 3- Reward: increase fitness by 10 points if Left > Right and
command=TRS1, TRS2, TRL;

 152

 4- Reward: increase fitness by 10 points if Left < Right and
command=TLS1, TLS2, TLL;

 5- Punishment: decrease fitness by 10 points if Left < Right and
command=TRS1, TRS2, TRL;

 6- Punishment: decrease fitness by 10 points if Left > Right and
command=TLS1, TLS2, TLL;

 7- Punishment: decrease fitness by 20 points for each collision if
command = FF, TLL, or TRL.

 This fitness function is biasing because it takes consideration of not only

what the evolving controller is doing, but also how it does it. It practically tells the

controller how it should control the robot, limiting the possible solutions arising from the

evolutionary process. The results in this experiment were acquired by the program

EXP10.CPP and converted by the program GRAF10.CPP, both listed in Appendix A.

• Results

 The system was allowed to evolve for a long period (more than three hours),

to show if solutions as good as the hand-designed controller could be produced. Figure

6.25 shows a chart representing the evolutionary experiments in the medium complexity

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

Figure 6.25 – Experiment 3.2a: Evolution of the black box controller using a
biasing fitness function in an environment of medium complexity, mutation
rate of 3%, sexual reproduction, and generation time of 60s. The population
was randomly initialised. Here, Robotn is the fitness of Robot n and PopAv is
the average fitness of all robots in the generation.

 153

environment. It ran for 190 generations with a biasing fitness function and 3% mutation.

The same test shown in Figure 6.24 was repeated here. It is shown in Figure 6.26 and

examined whether the robot population, once initialised with a well-trained controller, such

as the hand-designed controller, could hold this configuration or would degenerate.

• Discussion

 Once more, the system succeeded in producing efficient solutions to the

collision-free navigation task. This time, however, the biasing fitness function could itself

almost drive the robot. One may ask why the designer should bother in applying evolution

if almost the complete controller has to be specified in the fitness function. It was still valid

as an experiment to see how close to a more refined solution, such as the hand-designed

controller, the evolutionary system could get by means of a more biasing fitness function.

Nevertheless, rule 7 in the fitness function included a new dimension to biasing the

solution towards a preconceived controller. This rule punishes the robots for each collision,

so that it is still being evaluated. Therefore, if evolution reaches the targeted controller and

it still does not guarantee collision-free behaviour, it will keep modifying it until a better

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

Figure 6.26 – Experiment 3.2b: Evolution of the black box controller using a
biasing fitness function in an environment of medium complexity, mutation
rate of 3%, sexual reproduction, and generation time of 60s. The population
was initialised as the hand-designed controller. Here, Robotn is the fitness of
Robot n and PopAv is the average fitness of all robots in the generation.

 154

solution is found. The targeted controller is actually just a guideline to help evolution to

reach a better solution faster.

 Despite the fact that good solutions were in fact produced early on in the

evolutionary experiments, the system still lacked stability as in Experiment 3.1. Robot 2

was a good example of an efficient solution that learned how to use the front sensor as

soon as generation 20, but could keep this configuration for only five generations. This was

due to it finding itself in a crowded area of the environment where it repeatedly collided

with three other robots. It can be seen in Figure 6.25 that until these instability problems

are solved, the system will still oscillate, while good solutions continue to be replaced by

worse, but luckier ones. A final optimal solution could not be found in 190 generations and

more than three hours of evolution. The process resulted in a group of competing efficient

configurations that used at least three sensors, one in the front and two lateral ones on both

sides of the robot. From generation 100 on, these solutions were alternately selected as the

best robot.

 The evolutionary experiment shown in Figure 6.26 could not keep a good

solution for long when it had all members of the population replaced by a copy of the hand-

designed controller. After 11 generations, Robot 6 mutated in an unfit configuration but

was lucky enough to be selected as the father of the next generation and the average

performance of the population degraded. It was a good sign that the population could

recover after ten generations, where Robots 2, 3, and 4 combined their genetic information

to produce once more a good solution that dominated the population until generation 27.

Then, an unfit Robot 2 managed to score high enough to be selected to mate with all the

other robots twice, erasing some important genetic information from Robot 3, and the

performance of the population degraded once more between generations 30 and 40.

6.4.3 Experiment 3.3: Evolving a Strongly Biasing Function

 This experiment examined the effects of punishment by collision on the

stability of the evolutionary system. Rule 7 was erased from the fitness function in an

attempt to take chance out of the system. In fact, without punishing the robots each time

 155

they collide, a fully trained robot (e.g., one that behaves similarly to the black box) is

expected to have always the same score, in spite of where it is placed in the environment.

This is since its collisions, or more importantly the collisions it suffers from other robots,

will not decrease its fitness. However, a chance factor still exists since an unfit robot (e.g.,

one that has only part of its controller well-developed) will be favoured if it faces obstacles

from the side with which its controller can deal. This may seem a useless application of

evolution, since its only benefit is training the black box controller to behave according to a

preconceived solution. Nevertheless, these experiments are important because they help to

evaluate the evolutionary system performance. The new fitness function was obtained by

deleting rule 7 from the fitness function shown in Experiment 3.2. The software used for

this experiment were EXP09.CPP and GRAF09.CPP. Both programs are listed in

Appendix A.

• Results

 Figure 6.27 represents the evolutionary experiments in the medium

complexity environment, running for 89 generations with six robots, a strongly biasing

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 10 20 30 40 50 60 70 80 90
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

Figure 6.27 – Experiment 3.3a: Evolution of the black box controller using a
strongly biasing fitness function in an environment of medium complexity,
mutation rate of 3%, sexual reproduction, and generation time of 60s. The
population was randomly initialised. Here, Robotn is the fitness of Robot n
and PopAv is the average fitness of all robots in the generation.

 156

fitness function, and a mutation rate of 3%. The experiment shown in Figure 6.28

examined whether the robot population, once initialised with a well-trained hand-designed

controller, could hold this configuration or would degenerate.

• Discussion

 The experiment shown in Figure 6.27 presented fitness curves that differ

from the ones in Experiments 3.1 and 3.2. The fitness values of the robots varied much less

than in the previous experiments, since the collisions were not taken into account. The

population performance was more stable as well. However, the average fitness of the

population still oscillates. Therefore, some other mechanisms must be contributing to this

instability. This will be further investigated in Chapter 7.

 Figure 6.28 showed that even without counting collisions, the robot

population could not keep a well-adapted solution. It can be observed that all six robots had

similar performances in generation 1. This indicates, as expected, that if a robot is well-

adapted, it will present similar performances if tested in the environment for the same time.

The figure also showed that the resulting average of the population fitness, around 4600

points, was close to the one obtained with 89 generations in Figure 6.27, demonstrating

that the system succeeded in producing an efficient solution very close to the hand-

designed controller.

6.4.4 Discussion of the Experimental Results

 The results so far demonstrated that the developed evolutionary system

works and can evolve the navigation control circuit of the robots. The search space for a

solution in this experiment was considerably large: 2768 = 1.55×10231. Even so, the

evolutionary system was able to produce an acceptable solution that could drive the robots

with very few collisions. It still could not produce, however, a solution as good as the

hand-designed controller, even when biased.

 157

 By biasing evolution with a complex fitness function, some of the noise and

interactions among the robots have less influence in the fitness evaluation, helping the

system to converge faster [Set97]. However, as it could not achieve a solution as good as

the hand-designed controller, it is clear that there was some other factor making the system

oscillate and degrading performance. Even though it was shown that the population could

recover after such degradations, it prevented evolution from producing a better solution.

 The presented experiments showed that even a biased evolution could not

prevent a lucky unfit robot from being selected as the best robot, spreading its bad genes

throughout the rest of the population and causing the average performance to drop. There

must be a way to prevent this from happening so often in the evolutionary experiment. The

next experiment will try to explore other strategies for selecting the individuals that

provide more stability to the system.

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

1 6 11
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

Figure 6.28 – Experiment 3.3b: Evolution of the black box controller using a
strongly biasing fitness function in an environment of medium complexity,
mutation rate of 3%, sexual reproduction, and generation time of 60s. The
population was initialised as the hand-designed controller. Here, Robotn is
the fitness of Robot n and PopAv is the average fitness of all robots in the
generation.

 158

6.5 Experiment 4: Inheritance

 This experiment developed a different selection strategy for evolutionary

systems that was defined as Inheritance Strategy. From now on, the robots will be selected

to breed based on not only their performance in the current generation, but also on their

fitness in the previous generations. Therefore, the robots inherit part of the points scored by

their predecessors. By considering the average fitness scored by the robot in the previous

generations, this strategy attempts to reduce the effect of chance, that can produce bad

performances if the robot is “unlucky”. This experiment tested this new approach, and

evaluated if it could solve the instability problem pointed out by Experiment 3.

• Aim of the Experiment

 The aim of this experiment is to develop and test a novel selection strategy

involving inherited scores. It evaluated whether this new strategy could solve the problems

with instability presented by the previous selection strategy, where a lucky unfit robot can

be selected as the best robot instead of better ones that by chance started in a more crowded

area of the environment.

• Experimental Setting

 Apart from a different selection strategy, this experiment was set exactly as

Experiment 3. It was run in the same environment used by the previous experiment, which

is illustrated in Figure 6.16. It used the same biasing fitness function presented there with

tests containing rule 7 and without it (this rule punishes the robot fitness each time it

collides). The chosen selection strategy for this evolutionary experiment was:

!" The score used to select the robot was the average of the robot fitness in

the last three generations (i.e., inheriting the scores of its previous two

generations). The robot with the best average survives, and breeds with

all other robots.

 159

 This approach favours the robots with the highest average, which are the

ones that have performed well for the last three generations. If in the current generation one

lucky unfit robot happens to achieve the highest score, it is still unlikely that it will have

the best average score and will not be selected to mate. This was an attempt to improve the

stability of the system and reduce the effect of noise and interactions among robots and

obstacles. In some tests in this experiment, the configuration of the controller of the robots

was randomly initialised, but others start with a population trained according to the hand-

designed controller described in Experiment 3. Table 6.5 presents a summary of the

settings for this experiment.

Table 6.5 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: To be defined in the experiments
Initial Fitness Value: 4096 points
Maximum Fitness Value: 4696 points
Generation Time: 60 seconds
Mutation Rate: 3%
Speed Levels: Fixed at maximum speed (Vmax=32)
Sensors Enable: Fixed with all enabled
Navigation Controller: Evolving Black box with 256 bytes
Initial Sensor Configuration: “00-00-00-00-00-00-00-00”
Initial Speed Configuration: “1111111111”
Initial Controller Configuration: Random and as a hand-designed controller
Software: EXP13.CPP and GRAF13.CPP (listed in Appendix A)

6.5.1 Experiment 4.1: Inheritance and a Biasing Fitness Function

 This experiment applied the inheritance strategy to an evolutionary system

using a biasing fitness function, the same one described in Experiment 3.2. The charts

display the fitness of the six robots in the current generation as well as the average fitness

value (AvRn) scored by each robot in the current and the previous two generations. For

each robot:

 AvRn = (FitnessRnG0 + FitnessRnG-1 + FitnessRnG-2)/3

 160

 In the equation above, n is the number of the robot; FitnessRnG0 is the

fitness of the Robot n in the current generation; FitnessRnG-1 is the fitness scored by Robot

n in the previous generation; and FitnessRnG-2 is the fitness scored by Robot n two

generations before.

• Results

 Figure 6.29 shows the first test of the new selection strategy where the

population was initialised as the hand-designed controller. The experiment did not succeed.

It could not keep the good performance of the initial population. By analysing the

information in the figure, it was concluded that it did not work well because it did not

protect a fit robot in the current generation that scored more than the best robot (the one

with the highest average). The current selection strategy would mistake it for a lucky unfit

robot and would not protect it from breeding with the best robot and mutating. This can

destroy the precious good genes of this robot and evolution will lose this better

performance. This fact can be observed in the figure, where, for example, Robot 4 was a

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

1 6 11 16 21 26 31 36 41 46
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
AvR1
AvR2
AvR3
AvR4
AvR5
AvR6

Figure 6.29 – Experiment 4.1a: First test of the evolution of the black box
controller using inheritance selection and a biasing fitness function in an
environment of medium complexity, mutation rate of 3%, sexual
reproduction, and generation time of 60s. The population was initialised
as the hand-designed controller. Here, Robotn is the fitness of Robot n
in the generation and AvRn is the average fitness scored by robot n in the
current and the previous two generations.

 161

potentially better solution that performed better than Robot 2 in generation 12, but was not

protected and mated with Robot 2, which was potentially worse. After mating and

mutating, Robot 4 could not perform as well and this possible better individual was

discarded by the process. Therefore, this strategy needs to be modified to protect the robots

that score more than the average of the best robot. A modified selection strategy is

described below:

!" The score used to select the robot is the average of the robot fitness in

the last three generations (i.e., inheriting the scores of its previous two

generations). The robot with the best average survives, but only breeds

with the robots with the fitness in the present generation lower than its

own fitness.

 This approach protects new robots that are actually better than the one with

the highest average, but need to be evaluated for more generations to be selected by their

average. If one of these protected robots has a better configuration, it will probably repeat

its good performance, and within one or two generations its average fitness may be the

highest and the robot will be chosen to reproduce. If the protected robot is in fact a lucky

unfit one, it may not repeat its good performance and, if so, will be allowed to breed in the

next generation. Figure 6.30 shows another test with the updated selection strategy.

• Discussion

 The new selection strategy presented in Figure 6.30 succeeded in improving

system stability. The fitness of the population dispersed mostly because of mutation, but

the performance of the best robot did not degrade as much as in the previous attempts. It

now protects the potentially better configurations, as happened with Robot 2 in generation

53. It outperformed Robot 6 and was given the chance to repeat its better performance, and

did just that in generation 54, when its average became finally higher than Robot 6 and it

was selected as the best robot of the generation, breeding with all the other robots. In the

next experiment, presented in Figure 6.31, this new selection strategy is applied to evolve a

randomly initialised population.

 162

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
AvR1
AvR2
AvR3
AvR4
AvR5
AvR6

Figure 6.31 – Experiment 4.1c: Evolution of the black box controller using
inheritance selection and a biasing fitness function in an environment of
medium complexity, mutation rate of 3%, sexual reproduction, and
generation time of 60s. The population was randomly initialised. Here,
Robotn is the fitness of Robot n in the generation and AvRn is the average
fitness scored by robot n in the current and the previous two generations.

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
AvR1
AvR2
AvR3
AvR4
AvR5
AvR6

Figure 6.30 – Experiment 4.1b: Evolution of the black box controller using a
corrected inheritance selection and a biasing fitness function in an
environment of medium complexity, mutation rate of 3%, sexual
reproduction, and generation time of 60s. The population was initialised as
the hand-designed controller. Here, Robotn is the fitness of Robot n in the
generation and AvRn is the average fitness scored by robot n in the current
and the previous two generations.

 163

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Generation

Fitness

Average
BestRob

Figure 6.32 – Summary of Experiment 4.1c: Summary showing the average
fitness (Average) of all robots and the fitness of the best robot (BestRob) in
the generation.

 Figure 6.32 shows that the system still suffered from instability. Evolution

was able to produce efficient solutions and converged faster than in Experiment 3, but the

population performance still oscillated despite the general upward trend. The interactions

among the robots still made them collide [Set97].

6.5.2 Experiment 4.2: Inheritance and a Strongly Biasing Function

 The next test intended to analyse if a strongly biasing fitness function

together with the new inheritance selection can produce a more stable evolution. This is

obtained by cutting rule 7 from the fitness function, as explained in Experiment 3.3. This

experiment uses the same settings presented in Table 6.5.

 164

• Results

 The results presented by Figure 6.33 and Figure 6.34 show the behaviour of

the robot population when initialised with a random and a hand-designed controller, using

a strongly biasing fitness function.

• Discussion

 It can be seen in Figure 6.33 that without punishing the robots for their

collisions, the system is much more stable. The population performance did not degrade

and the system did not oscillate much during the whole process. Evolution kept improving

the population performance with a good rate and seemed to be converging towards an

optimal solution. The question now is how long it would take to get there. The next test

investigated what would happen when the population was initialised with a hand-designed

controller. The results of this new test are shown in Figure 6.34.

 Figure 6.34 shows that even now the evolutionary system could not prevent

the population performance from degrading. This figure showed that in 50 generations, the

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

Figure 6.33 – Experiment 4.2a: Evolution of the black box controller using
inheritance selection and a strongly biasing fitness function in an
environment of medium complexity, mutation rate of 3%, sexual
reproduction, and generation time of 60s. The population was randomly
initialised. Here, Robotn is the fitness of Robot n and PopAv is the average
fitness of all robots in the generation.

 165

population performance degraded to a level similar to the one where the experiment of

Figure 6.33 stopped, showing that it is unlikely that it will improve the population much

more than this level.

6.5.3 Discussion of the Experimental Results

 This experiment showed that the new inheritance selection helped to

improve system performance, but did not completely solve the instability problem. The

system does not seem to be able to produce an optimal solution to the collision-free

navigation task. The experiments demonstrated that even using a strongly biasing fitness

function, evolution still can take a considerable amount of time to achieve a solution as

good as the hand-designed controller and may not even be able to get there.

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

1 6 11 16 21 26 31 36 41 46
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

Figure 6.34 – Experiment 4.2b: Evolution of the black box controller using
inheritance selection and a strongly biasing fitness function in an
environment of medium complexity, mutation rate of 3%, sexual
reproduction, and generation time of 60s. The population was initialised with
a hand-designed controller. Here, Robotn is the fitness of Robot n and PopAv
is the average fitness of all robots in the generation.

 166

 The suggested inheritance selection is a powerful strategy to prevent much

of the chance factor from affecting the system. It succeeded in preventing most of the unfit

individuals being mistaken as the best robot and protected the better robots from being

erased by reproduction, giving them a chance to survive and repeat their better

performance, until their average performance overcame the one of the current best robot.

 The evolutionary system needs to be evaluated more extensively to show the

optimal parameters that can tune it to work at its maximum capacity. A simulator can

provide fast long-term evolution that can exhaustively test the capacity of the system.

Simulation can be an important tool to help finding the best mutation rates, selection

strategies, and crossover parameters. Simulation can also provide an ideal environment,

without noise and where the interactions among the robots can be carefully specified. It can

take complexity away from the system, allowing the correct tuning of some important

parameters. The next chapter will analyse the developed evolutionary system in simulation.

 167

7 SIMULATED EXPERIMENTS

 To provide a more comprehensive analysis of the evolutionary system in an

ideal environment, where the interactions among the robots can be treated individually, a

simulator was designed to take away the complexity of the physical robotic system. It was

not an attempt to reproduce a detailed experimental environment. It was actually an attempt

to discard all these details and concentrate on how the evaluation, selection, and crossover

operators work. This is different to the normal use of simulation in evolution, where the

real evaluation process is abstracted and reproduced in a computational environment. This

simulator generated a completely different evaluation process. Instead of trying to

reproduce how the performances of the robots are evaluated in the real environment, this

simulator only compares the response of the evolving controller to a certain input to the

response of a targeted hand-designed controller to the same input. Every time the two

responses coincide, the evolving controller scores one point. This is clearly the strongest

way to bias the fitness function. It tries to direct evolution towards a specific solution,

rewarding more the solutions as they get closer to it. All the other phases of the

evolutionary system were carefully reproduced in the simulator. The selection, crossover,

and mutation operators are still the same algorithms used in the robots

 This chapter presents the experiments that made use of this simulator to

produce data much faster than using real robots. A simulator was applicable for two

reasons: it can test the performance of the evolutionary system in the long-term; and it

provides an ideal environment, without noise and where the interactions among the robots

can be carefully specified. Simulated evolution can also take much of the complexity of the

system away and provide important insights on the specification of mutation rates,

selection strategies, crossover parameters, and population size.

 It is acknowledged that there is no substitute for experimenting with real

robots and simulation is not included as a permanent phase of the evolutionary system.

Therefore, this chapter does not attempt to use simulation to train the robots in a computer

program before transferring them to the real environment. Simulation is only applied to

 168

abstract complexity from the robots and the environment, to allow different characteristics

of the system to be analysed individually and provide understanding of the complex

evolutionary system. This study, it is hoped, may indicate better configurations and genetic

operators to be applied later to the evolution of real robots with an improved system.

Appendix C contains the average results of many experiments that could not be included in

the body of the thesis. For Chapter 7, it includes data related to Sections 7.2, 7.3, 7.4, 7.5,

7.6, and 7.7.

7.1 The Simulator

 The simulator was written in Borland C++ and different versions of the

main routine were used for each experiment. The corresponding programs are all listed in

Appendix A and will be referred to when each experiment is introduced. Figure 7.1

overviews how the simulator works.

Fitness Evaluation

"0,0,0,0,0,0,0,0"
to

"1,1,1,1,1,1,1,1"

 3-bit Command

Si
m

ul
at

ed
 In

pu
t V

ec
to

r

8 bits

8 bits

 3

-bit Command

Increment
Fitness if both
Commands are

the same

Hand-designed
Controller

Evolving
Controller

Crossover
and

Mutation

Select
Best Robot

Fitness
Evaluation

Initialise
Population

New
Population

Figure 7.1 – General view of the evaluation phase of the simulator.

 169

 The sensor configuration for all the experiments in this chapter fixed all the

16 control bits of the eight sensors to “00-00-00-00-00-00-00-00”, enabling every sensor

permanently. All sensors have only one bit of precision. In the evaluation phase, the

simulator works by generating all the possible input combinations, which are the simulated

sensor readings from “0,0,0,0,0,0,0,0” to “1,1,1,1,1,1,1,1”. Both the evolving controller and

the hand-designed controller input signals are stimulated with the same 256 possible

combinations of the sensor states (“0” means the sensor is not detecting anything and “1”

means it is detecting an obstacle). Each time both controller outputs coincide, the fitness of

the simulated robot is increased by one. This means that the maximum score that a robot

can make if it behaves exactly as the hand-designed controller is 256 points.

 After the evaluation phase, the robots are selected to breed according to the

inheritance selection strategy described and evaluated in Section 6.5. The inheritance

selection rule is reproduced below:

!" The score used to select the robot is the average of the robot fitness in

the last three generations (i.e., inheriting the scores of its previous two

generations). The robot with the best average survives, and breeds only

with the robots with fitness in the present generation lower than its own

fitness.

 All the experiments in this chapter use this selection strategy, which

considers not only the performance of the robots in the current generation, but also the

score of their predecessors. Using the above criteria, only one robot is selected to be the

best robot, the one that supplies its chromosome to be combined with the other robots to

form the next generation. Robots are protected if they have a score higher than the score of

the best robot. All other robots will combine their chromosomes with the best robot and

reconfigure afterwards with the resultant genes. The best robot and the protected ones do

not change and survive to the next generations. The crossover phase combines the two

chromosomes from the parent robots to form a resultant offspring; each bit is randomly

chosen from the corresponding location in the chromosome of the parents. Then, in the

mutation phase, a random number is generated between zero and 100 for each bit in the

chromosome, and the bit will be flipped (from “0” to “1”, or “1” to “0”) each time the

generated random number is smaller than the mutation rate. Different forms of mutation

 170

and crossover will also be tried in the experiments in this chapter and they will be

explained each time.

7.2 Experiment S1: Simulated Evolution

 This experiment is intended to provide an estimative of how long it would

take for the real evolution of Section 6.5.1 to produce a solution similar to the hand-

designed controller. It tried to provide understanding on why the experiment reported in

that section was taking so long to evolve the robots. It was also carried out with different

mutation rates, to provide a comparison of the effects of mutation in the system

performance and indicate the most effective mutations.

 The evolving controller is the black box look-up table described in Section

6.4 that consists of 256 bytes of memory (see also Figure 6.22). The commands that it can

produce are encoded in the first three bits of the byte. These commands are: Front Fast

(FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); Turn Right Short2 (TRS2); Turn

Left Short2 (TLS2); Turns Right Long (TRL); and Turn Left Long (TLL). These commands

were explained before in Section 6.4. Table 7.1 shows how these commands are encoded

with three bits.

Table 7.1 – Encoding of the Black Box Commands.

Command Encoding
FF 0,0,0

TLS1 0,0,1
TRS1 0,1,0
TRS2 0,1,1
TLS2 1,0,0
TRL 1,0,1
TLL 1,1,0

Not used, interpreted as FF 1,1,1

• Aim of the Experiment

 The aim of this experiment is to run a simulated evolution for as long as

30,000 generations to see how close the hand-designed controller could become to the

evolving controller. It also evaluated the simulator to see if it can be used to train a

programmable architecture, such as the black box controller, to behave exactly as a targeted

 171

circuit, the hand-designed controller. Both the evolving controller and the targeted circuit

can be other architectures. This simulator can be used to train a neural network, for

example, to behave as a PID controller or a fuzzy logic system. Virtually anything that can

be programmed can be trained using the same principle if both circuits can be described in

Borland C++ language.

• Experimental Setting

 In these experiments, the hand-designed controller operated according to the

following algorithm:

 Left = Right = 0;

 If (Sensor4=1) then Left = Left + 1;

 - If (Sensor3=1) then Left = Left + 1;

 If (Sensor2=1) then Left = Left + 1;

 P If (Sensor6=1) then Right = Right + 1;

 r If (Sensor7=1) then Right = Right + 1;

 i If (Sensor8=1) then Right = Right + 1;

 o If (Sensor1=1) then Command = TRS2;

 r If (Left > Right) then Command = TRS1;

 i If (Left = Right) then Command = FF;

 t If (Left < Right) then Command = TLS1;

 y If (Sensor1=1 and Sensor4=1) then Command = TRS2;

 If (Sensor1=1 and Sensor6=1) then Command = TLS2;

 + If (Sensor4=1 and All other Sensors=0) then Command = TRL;

 If (Sensor6=1 and All other Sensors=0) then Command = TLL;

 These experiments used a biasing fitness function that directs evolution to

produce a solution that behaves like the hand-designed controller. This fitness function

works according to the following rules:

 1- Start with 4100 points;

 2- Reward: increase fitness by 1 point every time the outputs from
both controllers are the same;

 3- Each robot is evaluated 256 times to test all possible input
combinations;

 172

 The fitness functions used in simulation were directly imported from the

robot software and preserved the original parameters. This means that they still start with

4100 points, even though the robot score cannot decrease in the simulator, but this

facilitates comparison of the results to the ones obtained with real experiments, since they

have similar scales. The maximum that a robot can score if it responds to all 256 input

combinations exactly as the hand-designed controller is 4356 points. The 2048 bits of the

chromosome are randomly initialised before the simulated evolution starts. Table 7.2

presents a summary of the settings for this experiment.

Table 7.2 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +1 point each time both outputs are the same
Initial Fitness Value: 4100 points
Maximum Fitness Value: 4356 points
Generation Time: Simulated evolution
Mutation Rate: 0.0%, 0.1%, 0.5%, 1%, 3%, 10%, 20%, 50%, 80%
Selection Strategy: Inheritance
Crossover Strategy: Sexual
Speed Levels: Simulated evolution
Sensors Enable: Fixed with all enabled
Navigation Controller: Evolving Black box with 256 bytes
Initial Sensor Configuration: “00-00-00-00-00-00-00-00”
Initial Speed Configuration: Simulated evolution
Initial Controller Configuration: Random.
Software: SIM01.CPP and GRAFSIM01.CPP (listed in Appendix A)

• Results

 The chart shown in Figure 7.2 presents a comparison of three evolutionary

experiments simulated for 30,000 generations with a population of 6, 50, and 100 robots.

For these tests, the robots were initialised with a random black box controller and went on

evolving with mutation rates of 0.1% and 0.5%. The simulator showed that the closer

evolution gets to the optimal solution, the longer it takes to improve the solutions. This

happens because evolving a black box look-up memory involves searching in a search

space of size 2768. This made the problem intractable by the evolutionary system, since

30,000 generations of one minute each would last almost 21 days of non-stop evolution and

so far would not solve the problem.

 173

4100
4120
4140
4160
4180
4200
4220
4240
4260
4280
4300
4320
4340
4360

0 5000 10000 15000 20000 25000 30000
Simulated Generations

Fitness

Av6RobMr0.1%
Best6RobMr0.1%
Av6RobMr0.5%
Best6RobMr0.5%
Best100RobMr0.1%
Best100RobMr0.5%

Figure 7.2 – Experiment S1.1: Simulated evolution of the black box controller
using inheritance selection, and sexual reproduction for two different
mutation rates: 0.1% and 0.5%. Here, AvnRobMrm% and BestnRobMrm%
are the average fitness of all the robots and the fitness of the best robot in the
generation for the tests with n robots and mutation rate of m%.

 The experiments shown in Figure 7.2 were simulated for 30,000 generations

and gave much insight into the way the evolutionary system works. They demonstrated

why the real evolution presented in Section 6.5 was taking so long in producing a solution

like the hand-designed controller: this is not so easy to find. It can be seen in the figure that

even after 30,000 generations in an idealised virtual environment, where the robot

evaluation does not suffer the effects of noise and interactions among robots, evolution still

did not get close to the optimal solution. For a population of six robots, the maximum

fitness after 10,000 generations was 4317 points for 0.1% mutation and 4302 points for

0.5%, still far from the fitness of the optimal solution, which is 4356 points. After running

the program for a further 20,000 generations, 0.1% mutation only increased one point,

resulting in 4318 points. The 0.5% mutation curve increased only 11 points. Even when the

number of robots in the population was increased to 100, the system still could not reach to

maximum score in 30000 generations. This shows that the long time necessary for the

system to evolve is probably a consequence of the large search space.

 Evolution gets slower when the population converges because when

mutation modifies genes in a chromosome that has more than 50% of good genes, the

chance of changing a good gene to a bad one is greater than changing a bad gene to a good

 174

one. When the chromosome has 99% of good genes, the chance of having a positive

mutation is only 1%. Figure 7.3 shows a comparison of the previous curves in the first

4500 generations. For a small population of six robots, in the long term, a 0.1% mutation is

better than 0.5%, which helped to evolve faster in the beginning of the process, until

generation 810, when 160 genes in the chromosome, from a total of 256, were already

correct. Then, a higher mutation had more chances to change good genes to bad ones and

0.1% mutation began to show a better performance. For larger populations, these effects

are less prominent. Both curves for 100 and 50 robots evolve quickly up to 4280 points,

when 100 robots start to make a greater difference.

 Although the current configuration of the system deals with a large search

space and was very slow in finding an optimal solution, it may still be useful to test the

effects of different mutation rates. The simulator is good for such a task because it is less

stochastic than the real world and the effects of mutation can be analysed individually. It is

actually only mutation and the randomly initialised population that cause its non-

determinism. Figure 7.4 shows a comparison of four small mutation rates: 0.1%; 0.5%;

1%; and 3%. Figure 7.5 shows a comparison of four higher mutation rates: 10%; 20%;

50%; and 80%.

4100
4120
4140
4160
4180
4200
4220
4240
4260
4280
4300
4320
4340
4360

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Simulated Generations

Fitness

Av6RobMr0.1%
Best6RobMr0.1%
Av6RobMr0.5%
Best6RobMr0.5%
Best50RobMr0.1%
Best50RobMr0.5%
Best100RobMr0.1%
Best100RobMr0.5%

Figure 7.3 – Experiment S1.2: First 4500 generations of Experiment S1.1,
showing more details of the simulated evolution of the black box controller
using inheritance selection, and sexual reproduction for two different
mutation rates: 0.1% and 0.5%. Here, AvnRobMrm% and BestnRobMrm%
are the average fitness of all the robots and the fitness of the best robot in the
generation for the tests with n robots and mutation rate of m%.

 175

 The last two figures show that with such a small population, after the first 20

generations or so the population relies only on mutation to increase its performance. Higher

mutations help evolving in the beginning of the process, when there are more bad than

good genes in the chromosome. It can be seen in Figure 7.4 that 3%, 1%, and 0.5%

mutation evolved faster than 0.1% in the beginning of the process, but as the genes in the

robot chromosomes became better, 0.1% mutation outperformed 1% and 3%. The best

mutation was 0.5%, which showed a good performance during the whole process. It can be

observed how the curves of the average fitness and the fitness of the best robot got more

distant from each other when mutation was increased, showing that higher mutations make

the population more disperse according to the fitness of the robots.

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

0 50 100 150 200 250 300
Simulated Generations

Fitness

Av0.1%
Best0.1%
Av0.5%
Best0.5%
Av1%
Best1%
Av3%
Best3%

Figure 7.4 – Experiment S1.3: Simulated evolution of the black box
controller using inheritance selection, and sexual reproduction for four
different mutation rates: 0.1%, 0.5%, 1%, and 3%. Here, Av is the
average fitness of all the robots and Best is the fitness of the best robot
in the generation.

 176

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

0 50 100 150 200 250 300
Simulated Generations

Fitness

Av10%
Best10%
Av20%
Best20%
Av50%
Best50%
Av80%
Best80%

Figure 7.5 – Experiment S1.4: Simulated evolution of the black box controller
using inheritance selection, and sexual reproduction for four different
mutation rates: 10%, 20%, 50%, and 80%. Here, Av is the average fitness of
all the robots and Best is the fitness of the best robot in the generation.

 The chart in Figure 7.5 shows that the same trend of small mutations is true

for higher rates: the higher the mutation rate, the faster the system evolves in the first

generations, but the slower it becomes in the end of the process. Higher mutations also

increase the distance between the curves of the average fitness and the fitness of the best

robot. Figure 7.6 shows that without mutation, the population relies only on its diversity to

increase performance and after the initial convergence in the first ten or 20 generations, the

population stopped evolving.

7.2.1 Discussion of the Experimental Results

 This experiment suggested that unstructured evolution generates a very large

search space that makes the problem intractable for the developed evolutionary system as it

is set. The black box controller, containing 2768 possibilities is just too complex to be

treated even by an ideal simulated environment, and seems practically impossible to be

evolved towards an optimal solution in a real environment. Even when the population is

 177

increased to 100 robots, the system still could not reach the maximum score. An

unstructured evolvable controller avoids the designer’s prejudices. It does not restrict the

possibilities that evolution needs to investigate, slowing down the evolutionary process.

 This experiment showed that for 300 generations with six robots, 0.5%

mutation was the most effective one, improving system performance considerably in

relation to other settings. Even though the system worked much better with the right

mutation level, after 300 generations the fitness of the best robot was just 4230 points, only

50.78% of the maximum score (4230 – 4100 = 130, which is 50.78% of the maximum

score: 4356 – 4100 = 256). The smaller the mutation, the higher the chance of changing

only bad genes when the chromosome has more good than bad ones.

 Concluding, this experiment showed two important things: choosing the

right mutation rate drastically improves the speed of the system; and the unstructured black

box controller makes evolution look for the optimal solution in a very large search space,

which slows down the process too much, making it almost intractable for the evolutionary

system in a physical environment. Another possibility of obtaining a better operation

without increasing the population and preserving the large search space of an unstructured

4140

4155

4170

4185

4200

4215

4230

0 2 4 6 8 10 12 14 16 18 20
Simulated Generations

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6

Figure 7.6 – Experiment S1.5: Simulated evolution of the black box controller
of the six robots using inheritance selection, sexual reproduction, and
mutation rate of 0.0%. Here, Robotn is the fitness of Robot n in the
generation.

 178

controller is to change how the system works, with new selection, mutation, or crossover

strategies. The following experiments explore these possibilities.

7.3 Experiment S2: Asexual Reproduction

 This experiment used exactly the same settings as the previous experiment,

with the exception of the crossover strategy. This experiment makes use of a simple

strategy that uses inheritance to select the fittest robot, allows it to survive, and

reconfigures all the others with a small variation of the fittest robot chromosome. This is a

form of asexual reproduction, where the robots do not cross over their chromosomes. The

selection operator has not changed from the previous experiment. The only operation that

was modified was the crossover of the genes. The combined inheritance-asexual

reproduction operator is defined below:

!" The score used to select the robot is the average of the robot fitness in

the last three generations. The robot with the best average survives, and

the robots with the fitness in the present generation lower than the

fitness of the best robot overwrite their chromosome with a copy of the

chromosome of the best robot, and then suffer mutation in a few genes.

• Aim of the Experiment

 The aim of this experiment is to determine if the combined inheritance-

asexual reproduction operator is more efficient than the one used in the previous

experiment. This experiment explored an attempt to make the evolution search faster for a

solution amongst the large number of possibilities of an unstructured controller such as the

black box.

• Experimental Setting

 This experiment used the same settings of Experiment S1 with a different

selection-crossover strategy. Table 7.3 presents a summary of the settings for this

experiment.

 179

Table 7.3 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +1 point each time both outputs are the same
Initial Fitness Value: 4100 points
Maximum Fitness Value: 4356 points
Generation Time: Simulated evolution
Mutation Rate: 0.1%, 0.5%, 1%, 10%
Selection Strategy: Inheritance
Crossover Strategy: Asexual
Speed Levels: Simulated evolution
Sensors Enable: Fixed with all enabled
Navigation Controller: Evolving Black box with 256 bytes
Initial Sensor Configuration: “00-00-00-00-00-00-00-00”
Initial Speed Configuration: Simulated evolution
Initial Controller Configuration: Random.
Software: SIM02.CPP and GRAFSIM02.CPP (listed in Appendix A)

• Results

 The experiment presented in Figure 7.7 shows the long-term evolution of the

robot population for 30,000 generations. In the figure, the new selection-crossover strategy

behaved better than the one used by the previous experiment, but was still very slow and

would take a long time to converge towards the optimal solution in a real experiment. It

still did not solve the problem. The figure shows a comparison between two mutation rates:

4100
4120
4140
4160
4180
4200
4220
4240
4260
4280
4300
4320
4340
4360

0 5000 10000 15000 20000 25000 30000
Simulated Generations

Fitness

Av0.1%
Best0.1%
Av0.5%
Best0.5%

Figure 7.7 – Experiment S2.1: Simulated evolution of the black box controller
using inheritance selection, and asexual reproduction for two different
mutation rates: 0.1%, and 0.5%. Here, Av is the average fitness of all the
robots and Best is the fitness of the best robot in the generation.

 180

0.1% and 0.5%. The most relevant point when comparing the information in this figure to

Figure 7.2 is that here, 0.1% mutation is not better than 0.5% in the long term, which is

contrary to the results of Experiment S1. An explanation for this is that in sexual

reproduction, evolution would employ mutation and crossover to manipulate the bits in the

chromosome. With asexual reproduction, only mutation can change the bits in the

chromosome. For each possible input, one byte of the black box look-up memory is

chosen. The first three bits in this byte form the command to the motors. The evolving

controller is evaluated by comparing this command with the one produced by the hand-

designed controller. If the black box is outputting the wrong command for a specific input,

FF for example, which is encoded by “0,0,0”, instead of TRL, encoded by “1,0,1”,

evolution cannot generate “1,0,1” from “0,0,0” by changing only one bit each generation.

With sexual reproduction, the robot can, for example, inherit “0,0,1” from the chromosome

of one of the parents and mutate the first “0” to “1”, producing the “1,0,1” combination and

the TRL command.

 Figure 7.8 shows a comparison among four different mutation rates (01%,

05%, 1%, and 10%) with the new inheritance selection and asexual reproduction operators.

This solution lacks the opportunity of exploring combinations of the population diversity,

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

4250

4260

0 50 100 150 200 250 300
Simulated Generations

Fitness

Av0.1%
Best0.1%
Av0.5%
Best0.5%
Av1%
Best1%
Av10%
Best10%

Figure 7.8 – Experiment S2.2: Simulated evolution of the black box
controller using inheritance selection, and asexual reproduction for four
different mutation rates: 0.1%, 0.5%, 1%, and 10%. Here, Av is the
average fitness of all the robots and Best is the fitness of the best robot
in the generation.

 181

but worked faster than the strategy chosen by Experiment S1. As it was observed in

Experiment S1, the curves with higher mutations evolved faster in the beginning, where

mutation operated on chromosomes predominated by bad genes. However, when the

population improved, lower rates showed the best performances, with 0.5% presenting the

best result for 300 generations.

 The experiment in Figure 7.9 shows a comparison between two selection-

crossover strategies: the inheritance selection plus sexual reproduction from Experiment S1

and inheritance selection with asexual reproduction from this experiment. It compares the

two best mutation rates from each strategy: 0.1% and 0.5%. Although sexual reproduction

worked faster in the beginning of the process, in the long term it was outperformed by

asexual reproduction. This can be explained by the ability of sexual reproduction to

combine the best genes of the robot population in the beginning of the process. Once the

initial diversity of the population was reduced by convergence and the population relied

only in mutation to evolve, asexual reproduction was the best strategy.

 Sexual reproduction applies mutation on a population of robots resultant

from the combination of the chromosome from the best robot and the chromosome from an

average robot. Therefore, after the population converges in the initial generations, mutation

is applied on a resultant chromosome that is potentially worse than the best robot. After the

original randomly initialised population has converged to similar configurations, asexual

reproduction behaved better because it applies mutation directly on copies of the best

chromosome.

7.3.1 Discussion of the Experimental Results

 The combined inheritance selection and asexual reproduction, in this

experiment, was a better strategy for the developed evolutionary system to evolve in the

long term. In this experiment, Sexual reproduction was better only in the beginning of the

process, when evolution can still work with the original diversity of the population.

 182

 In the long term, the best mutation rates are still the smaller ones in these

experiments. The best rate is the one that has the highest probability of changing only a few

bits of the chromosome each generation. In these experiments, the robot chromosome

contained 2048 bits, but only 768 were relevant to evolution, since only the first three bits

of the byte in the controller output contained the encoded command. The right mutation for

this case was the one able to modify only one or two of these 768 bits, because it can

produce all other six commands from the current one. For sexual reproduction, a mutation

rate of 0.5% has the probability of changing 3.84 bits each time, and is better early on in

the process. The mutation rate of 0.1% has the probability of changing 0.768 bits. Hence,

0.1% is the closest probability of changing only one bit and showed the best results, since

another bit or two can be changed by the crossover operation. For asexual reproduction,

only mutation manipulates the bits, so 0.4% or 0.5% produce better results.

 This solution, however, is still too slow to be applied to an unstructured

controller such as the developed black box controller in a real environment containing a

small population. To allow the developed evolutionary system to reach an optimal solution

with these setting, another possible way is to change the crossover operator, as the next

experiment will demonstrate.

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

4250

4260

0 50 100 150 200 250 300
Simulated Generations

Fitness
S2Av0.1%
S2Best0.1%
S2Av0.5%
S2Best0.5%
S1Av0.1%
S1Best0.1%
S1Av0.5%
S1Best0.5%

Figure 7.9 – Summary: Comparison between the results of Experiments S1.1
and S2.1 for the mutation rates of 0.1%, and 0.5%. The experiments tested
the simulated evolution of the black box controller using inheritance
selection for sexual and asexual reproduction. Here, Av is the average fitness
of all the robots and Best is the fitness of the best robot in the generation.

 183

7.4 Experiment S3: A Different Way to Evolve

 This experiment attempted to evolve the bits in the chromosome that specify

the controller behaviour in a different way that had not been attempted by any of the

previous experiments. Here, the bits in the chromosome are grouped in small portions.

From the analogy to nature, as every amino acid that forms the proteins is encoded by three

nucleotides [Ler76] [Cam99], the first three bits (b0, b1, and b2) in the byte that represent

the commands (this experiment is using the same settings of Experiment S1) are grouped

and treated as an entity. It can be seen from Table 7.1 that this encoding still presents some

neutrality, since the command FF can be coded by “0,0,0” and “1,1,1”. In this experiment,

when the robots mate, they do not exchange or mutate single bits in the chromosome, they

exchange the 3-bit entity that represents the commands. This developed technique was

called command exchanging.

 In this new strategy, the robots do not exchange bits in the crossover phase,

they exchange commands. In the mutation phase, the bits are not inverted one by one,

instead, the 3-bit entities that form the commands mutate together. In the crossover phase,

the resulting command in the chromosome (the 3-bit entity) is randomly chosen from one

of the parent chromosomes to occupy its corresponding position in the offspring

chromosome. Mutation generates a random number r between zero and 100 for each one of

the 256 commands (the 3-bit entity) and mutates it if r is smaller than the mutation rate. If

the command is to be mutated, it is substituted by another command chosen randomly to

occupy its position.

• Aim of the Experiment

 The aim of this experiment is to evaluate a new strategy to deal with the bits

in the robot chromosome. It tested how evolution performed in the long term, to indicate if

the optimal performance could be obtained using this new approach.

• Experimental Setting

 This experiment used the same settings of Experiment S1 and examined the

new strategy of manipulating the bits with the selection-crossover strategy from

 184

Experiment S1: inheritance with sexual reproduction. Table 7.4 presents a summary of the

settings for this experiment.

Table 7.4 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +1 point each time both outputs are the same
Initial Fitness Value: 4100 points
Maximum Fitness Value: 4356 points
Generation Time: Simulated evolution
Mutation Rate: 0.5%
Selection Strategy: Inheritance
Crossover Strategy: Sexual
Speed Levels: Simulated evolution
Sensors Enable: Fixed with all enabled
Navigation Controller: Evolving Black box with 256 bytes
Initial Sensor Configuration: “00-00-00-00-00-00-00-00”
Initial Speed Configuration: Simulated evolution
Initial Controller Configuration: Random.
Software: SIM04.CPP and GRAFSIM04.CPP (listed in Appendix A)

4100
4120
4140
4160
4180
4200
4220
4240
4260
4280
4300
4320
4340
4360

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Simulated Generations

Fitness

S3Av0.5%
S3Best0.5%
S1Av0.5%
S1Best0.5%

Figure 7.10 – Experiment S3: The results of Experiment S3 compared to
Experiment S1.1 for the mutation rate of 0.5%. The experiments tested
the simulated evolution of the black box controller using inheritance
selection and sexual reproduction with and without command
manipulation. Here, Av is the average fitness of all the robots and Best is
the fitness of the best robot in the generation.

 185

• Results

 Figure 7.10 compares two experiments with the same mutation rate (0.5%)

and sexual reproduction, but with the original strategy of bit-by-bit manipulation in the

chromosome assumed in Experiment S1, against the new approach, that manipulates the

commands directly. They started with the same performance until generation 330 from

where the new approach showed a much superior performance evolving the population all

the way to the optimal solution in 8500 generations.

7.4.1 Discussion of the Experimental Results

 This strategy of manipulating the whole command each time was much

faster and reached the optimal solution, being able to evolve the robot population all the

way from random to the hand-designed controller. The most interesting fact is that the

search space did not change. It is still the same large number of possibilities that seemed

impossible to overcome in the previous experiments. Before, evolution needed to find the

right position for 768 bits in the chromosome, and this imposed a search space of 2768 that

equals to 1.55×10231 possibilities. Here, evolution needed to find the right command from a

set of eight for 256 positions in the chromosome corresponding to all possible input

combinations, and the imposed search space was 8256, which is also equal to 1.55×10231

possibilities. Therefore, the size of the search space did not change and is still very large.

 This strategy is the most effective until now. However, it is still very slow if

it is to be applied to the evolution of a real system, since it took 2500 generations to reach

90% of the maximum performance. This would correspond to more than 40 hours of

continuous evolution with a generation time of one minute. Therefore, there is still room

for improvement in this approach.

 186

7.5 Experiment S4: Disabling Back Mutation

 In the previous experiments, mutation was randomly choosing which bits in

the chromosome to change. This meant that any bit in the chromosome could mutate to a

different value and later mutate back to its original value. In the scope of this work, these

events were called back mutations [Ler76] [Cam99]. This fact was causing evolution to

waste time trying to find a good solution by testing some configurations that have been

tested before. Consider a chromosome that has 99% of its bits set to the correct ones. If any

bit can be changed by mutation, the chance of changing the bad ones is only 1%. This

means that 99% of the time, this strategy produces configurations that are potentially worse

than the current chromosome, and many generations are wasted in evaluating them.

 To prevent evolution from wasting time in evaluating configurations that

have been tested before, a new strategy that prevents back mutations is developed in this

experiment. It consists of marking each bit in the chromosome that suffered mutation and

only allowing the bits that are not marked to mutate. To achieve this, a binary array was

created in memory with the same size of the chromosome. It is initialised with zeros and

when one bit in the chromosome is mutated, “1” is written to the corresponding position in

the array. Only the bits in the chromosome that have zeros in the corresponding position in

the array are allowed to mutate. Once all bits have mutated, the array will be full of “1s”.

Then, the evolutionary system resets the array to “0s” and every bit in the chromosome will

be allowed to mutate again. This strategy was called back-mutation prevention.

 By preventing back mutations and mutating a single bit every generation,

this strategy forces evolution to evaluate the effect produced by each bit in the

chromosome. A problem that emerges from applying this strategy to an evolutionary

system that uses asexual reproduction is that by changing only one bit per generation,

mutation may not be able to produce all possible combinations of the bits in the

chromosome. As explained in Section 7.4, if two bits needed to be changed to produce the

correct command, changing one bit at a time will not increase performance and the change

will be discarded.

 This new strategy can be successfully applied to an evolutionary system that

uses asexual reproduction if it can manipulate directly the 3-bit entities that define the

 187

commands. Therefore, the same strategy for crossing over and mutating directly the

commands presented in Experiment S3 was applied here.

• Aim of the Experiment

 The aim of this experiment is to apply a new strategy that prevents back

mutation of the bits in the chromosome. It tested whether this strategy could be applied in

sexual and asexual reproduction and provided data to analyse which is the best solution for

evolving the robots in the long term.

• Experimental Setting

 This experiment used the same settings of Experiment S3 where the

evolutionary system is able to manipulate the commands in the chromosome directly. It

examined the new strategy of back-mutation prevention with both selection-crossover

strategies from Experiments S1 and S2: inheritance with sexual and asexual reproduction.

Table 7.5 presents a summary of the settings for this experiment.

Table 7.5 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +1 point each time both outputs are the same
Initial Fitness Value: 4100 points
Maximum Fitness Value: 4356 points
Generation Time: Simulated evolution
Mutation Rate: Only 1 command (3 bits) is modified in the chromosome each time
Back Mutation: Disabled
Selection Strategy: Inheritance
Crossover Strategy: Sexual and Asexual
Speed Levels: Simulated evolution
Sensors Enable: Fixed with all enabled
Navigation Controller: Evolving Black box with 256 bytes
Initial Sensor Configuration: “00-00-00-00-00-00-00-00”
Initial Speed Configuration: Simulated evolution
Initial Controller Configuration: Random.
Software: SIM05.CPP and GRAFSIM05.CPP (listed in Appendix A)

• Results

 Figure 7.11 compared the new back-mutation prevention strategy with

sexual and asexual reproduction when mutation was allowed to modify only one command

in the chromosome for each generation. The figure shows a considerable increase in

performance for both sexual and asexual reproduction. As demonstrated by the previous

 188

experiments, sexual reproduction worked better in the beginning of the process, but after

600 generations, asexual reproduction dominated, reaching the optimal solution in less than

2000 generations. Evolution with sexual reproduction was slower, but still efficient,

reaching the optimal performance in 3700 generations.

 The techniques developed so far succeeded in allowing the employment of

the evolutionary system to control such a small population of robots. Figure 7.12 shows the

effect in the performance of the system when the number of robots in the population is

increased up to 100 individuals. The experiment indicates that a good gain in performance

can be obtained by increasing the number of robots from 6 to 15. It can also be inferred

from the experiment that increasing the population to more than 35 robots does not bring

great improvements to the performance of the system until it reaches 90% of the maximum

score. After this, the gain in performance is so small that it is difficult to justify the cost of

doubling or tripling the number of robots.

4100
4120
4140
4160
4180
4200
4220
4240
4260
4280
4300
4320
4340
4360

0 500 1000 1500 2000 2500 3000 3500
Simulated Generations

Fitness

AsexualAv
AsexualBest
SexualAv
SexualBest

Figure 7.11 – Experiment S4.1: Simulated evolution of the new strategy of
back-mutation prevention for sexual and asexual reproduction. The
experiment tested the simulated evolution of the black box controller using
inheritance selection with command manipulation. Only one command (3
bits) is allowed to mutate each time. Here, Av is the average fitness of all the
robots and Best is the fitness of the best robot in the generation.

 189

7.5.1 Discussion of the Experimental Results

 Preventing back mutation was very efficient in speeding up the process of

finding a solution. Evolution was able to reach 90% of maximum performance in less than

950 generations for asexual reproduction and 1300 generations for sexual reproduction.

These results allow the evolution of a real system in 15 hours. The combined strategies of

preventing back mutations and manipulating the commands made viable the use of an

unstructured controller such as the developed black box.

 If the number of robots in the population is increased up to 35, the system

can present a very good performance, reaching 90% of maximum performance in about

500 generations. This is almost half of the time the six robots take to evolve to the same

point. Figure 7.12 demonstrates that building six or ten more robots would improve

considerably the performance of the system. More robots though will not bring an

important gain and would probably just generate more interference between the robots,

4100
4120
4140
4160
4180
4200
4220
4240
4260
4280
4300
4320
4340
4360

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Simulated Generations

Fitness

Pop100
Pop80
Pop60
Pop45
Pop35
Pop25
Pop15
Pop10
Pop8
Pop6

Figure 7.12 – Experiment S4.2: Simulated evolution of the strategy of back-
mutation prevention with asexual reproduction for different population sizes.
The experiment tested the simulated evolution of the black box controller
using inheritance selection with command manipulation. Only one command
(3 bits) is allowed to mutate each time. Here, Popn is the fitness of the best
robot in the generation for the test with a population of n robots.

 190

making the whole system slower. This experiment was intended to be a reference for future

work with larger populations.

 The strategy of back-mutation prevention tested in this experiment was very

efficient in looking for a solution in a considerably large search space of 1.55×10231

possibilities. It demonstrated the power of the developed evolutionary system for many

other applications of genetic algorithms, not only in robotics. The performance of the

system can be improved even more if the search space is reduced by using a neural network

to implement a structured evolving controller.

7.6 Experiment S5: The Neural Network Controller

 In this experiment, a neural network is used to implement the evolving

controller in order to impose some organization to evolution. It tried to propose a control

circuit that can be configured by fewer bits than the black box, but one that is still able to

drive the robot with a similar performance to the black box controller.

 In this experiment, a neural network was designed according to the same

architecture presented in Chapter 4. It has four groups of neurons (discriminators) with

seven 2-input neurons each. This neural network is able to send four commands to the

motor drive module: Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1);

and Turn Right Short2 (TRS2). These commands were explained before in Chapter 6,

Section 6.2. Only two bits are necessary for encoding these four commands. Table 7.6

shows how these commands were encoded with two bits.

Table 7.6 – Encoding of the Neural Network Commands.

Command Encoding
FF 0,0

TLS1 0,1
TRS1 1,0
TRS2 1,1

 191

 The evolving neural network controller is evaluated in the same way as the

black box controller, according to the strategy presented in Figure 7.1 and explained in

Section 7.1. The sensors work with 1-bit precision in the medium range. Sensor S5 is not

connected to the neural network, but still all possible 256 combinations of the eight sensors

are used to evaluate the evolving neural network. Therefore, only 128 configurations are

effectively relevant to evaluate the neural network. In the other 128 it will just repeat the

same score obtained for the first 128 ones. Hence the neural network will score twice for

the “x,x,x,0,x,x,x,x” and the “x,x,x,1,x,x,x,x” combinations. It was left this way because it

facilitates the comparison of the results, since it still gives the same maximum score to the

optimal solution: 4356 points. The evaluation proceeds by giving one point each time the

commands coincide.

 The optimal solution in this experiment is represented by a simplified hand-

designed controller similar to the one described in Section 6.3, which operates according to

the following algorithm:

 - Left = Right = 0;

 If (Sensor4=1) then Left = Left + 1;

 P If (Sensor3=1) then Left = Left + 1;

 r If (Sensor2=1) then Left = Left + 1;

 i If (Sensor6=1) then Right = Right + 1;

 o If (Sensor7=1) then Right = Right + 1;

 r If (Sensor8=1) then Right = Right + 1;

 i If (Sensor1=1) then Command = TRS2;

 t If (Left > Right) then Command = TRS1;

 y If (Left = Right) then Command = FF;

 If (Left < Right) then Command = TLS1;

 + If (Sensor1=1 and Sensor4=1) then Command = TRS1;

 If (Sensor1=1 and Sensor6=1) then Command = TLS1;

 In the evaluation phase of the simulated evolution, the neural network

controller is compared to the above hand-designed controller for all 256 possible input

combinations and each time the two outputs are the same, the robot scores one point. The

process of evaluation works similarly to the one shown in Figure 7.1, but with only two

bits in the output of both controllers encoding the four possible commands.

 192

• Aim of the Experiment

 The aim of this experiment is to evaluate the performance of the neural

network controller, determining if it can be evolved faster than the black box controller. It

tested whether the structured neural network controller can accelerate the evolution of the

system with four different mutation rates.

• Experimental Setting

 This experiment used the same evaluation strategy of Experiment S1 with

the same selection-crossover strategy: inheritance with sexual reproduction. Differently

from the last experiment, the neural network controller here was evolved without the

strategy that prevented back mutation from occurring and by manipulating the bits in the

chromosome, not the commands. This was necessary because the neural network does not

allow evolution to manipulate directly the 3-bit entities that define commands. Table 7.7

presents a summary of the settings for this experiment.

Table 7.7 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +1 point each time both outputs are the same
Initial Fitness Value: 4100 points
Maximum Fitness Value: 4356 points
Generation Time: Simulated evolution
Mutation Rate: 0.5%, 1%, 3%, 15%
Selection Strategy: Inheritance
Crossover Strategy: Sexual
Speed Levels: Simulated evolution
Sensors Enable: Fixed with all but S5 enabled
Navigation Controller: Evolving Neural Network (m=4, n=7, neuron size=4)
Initial Sensor Configuration: “00-00-00-11-00-00-00-00”
Initial Speed Configuration: Simulated evolution
Initial Controller Configuration: Random.
Software: SIMNEU01.CPP and GRAFNEU01.CPP (listed in Appendix A)

• Results

 The results shown in Figure 7.13 compared four different mutation rates:

0.5%, 1%, 3%, and 15%. The neural network controller evolved much faster than the black

box controller did, even without manipulating the commands directly or preventing back

mutations from occurring. It reached 90% of the best performance in the first 310

generations, dropping the estimated experiment time from 15 hours (the best performance

 193

obtained in Experiment S4) to 5.2 hours if the real robots are evolved with 1-minute

generations.

7.6.1 Discussion of the Experimental Results

 According to Figure 7.13, the higher mutation rates of 3% and 15%

produced better results in the beginning of the process, where there were more bad genes

than good ones in the chromosomes. Therefore, mutating a greater number of genes in

these chromosomes actually helped to evolve faster. Even then, the average fitness of the

population was already lower than that produced by a lower mutation such as 1%. The

mutation rate of 3% could reach 4320 points, which is 85.93% of the maximum result, in

less than 120 generations, outperforming 1% mutation. The mutation rate of 15% reached

4280 points, which is 70.31% of the maximum result, in less than 22 generations,

outperforming all other rates. Therefore, the correct mutation rate depends on what is the

desired behaviour of the system. If what is important is to converge quickly to a reasonable

4140

4160

4180

4200

4220

4240

4260

4280

4300

4320

4340

4360

0 100 200 300 400 500 600
Simulated Generations

Fitness

Av0.5%
Best0.5%
Av1%
Best1%
Av3%
Best3%
Av15%
Best15%

Figure 7.13 – Experiment S5: Simulated evolution of the neural controller
using inheritance selection and sexual reproduction for four different
mutation rates: 0.5%, 1%, 3%, and 15%. Here, Av is the average fitness of all
the robots and Best is the fitness of the best robot in the generation.

 194

solution, a higher mutation is the best option. If a more solid performance is expected, a

lower mutation rate should be chosen.

 The neural network has fewer configuration bits than the black box

controller does; four groups of seven neurons with four bits each, in a total of 112 bits. The

search space is considerably smaller than the black box one: 2112 = 5.19×1033 possibilities.

With 112 bits to adjust, 1% mutation performed better than 0.5%. As the relationship

between inputs and commands is intrinsic to the neural network generalisation, there is no

way to manipulate directly the commands, since it is not possible to identify which bits

encode each command inside the neural network. Therefore, the same strategy used in the

last experiment cannot be applied to increase the performance of the neural network.

7.7 Experiment S6: Predation

 As the direct manipulation of the commands cannot be applied to the neural

network controller, a different approach was developed to increase its performance. It was

called predation. In analogy to nature, the robot population can suffer regular attacks of a

“predator” that selects the worst (“weakest”) robot in the specified generation and destroys

(“kills”) it [Cam99], opening space in the population for the migration of new individuals,

what brings more genetic diversity to the group [Ler76]. To achieve this, every 20

generations, the robot with the smallest average fitness is selected and substituted by a

robot with a random configuration.

 It is important to give enough time to the population so that the attacked

robot can recover from the “attack” and its new genetic material can be incorporated in the

population. If the attacks occur in less than ten generations, the attacked robot will not have

time to recover and will be selected as the worst one in the next attack. The necessary time

for the attacked robot to recover depends on the complexity of the system.

 195

• Aim of the Experiment

 The aim of this experiment is to test the effects of the predation strategy on

the evolving robot population. It tested whether this new strategy could make the neural

network evolve faster. It also tested different mutation rates to indicate the one that

provided the best performance.

• Experimental Setting

 This experiment used the same evaluation strategy of Experiment S1 with

the same selection-crossover strategy: inheritance with sexual reproduction. The robots

controlled by the neural network suffered predation every 20 generations. Table 7.8

presents a summary of the settings for this experiment.

Table 7.8 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +1 point each time both outputs are the same
Initial Fitness Value: 4100 points
Maximum Fitness Value: 4356 points
Generation Time: Simulated evolution
Mutation Rate: 0.5%, 1%, 3%, 15%
Selection Strategy: Inheritance with Predation
Crossover Strategy: Sexual
Frequency of the Attacks: Every 20 generations
Speed Levels: Simulated evolution
Sensors Enable: Fixed with all but S5 enabled
Navigation Controller: Evolving Neural Network (m=4, n=7, neuron size=4)
Initial Sensor Configuration: “00-00-00-11-00-00-00-00”
Initial Speed Configuration: Simulated evolution
Initial Controller Configuration: Random.
Software: SIMNEU02.CPP and GRAFNEU02.CPP (listed in Appendix A)

• Results

 The results presented in Figure 7.14 show the effects of the attacks in the

robot population that evolved with 0.0% mutation. After the initial improvement resultant

from combining the population diversity, the system would stop evolving as shown by the

curve from Experiment S5. However, the new genetic material produced by the attacks

kept the population evolving up to 4300 points in 300 generations. It can be seen in the

figure that the attacks in generations 40, 60, and 120 created a random robot that, combined

with the best robot, produced a superior configuration that improved the population

 196

performance. If all robots converge to the same configuration, which would only happen if

mutation is 0.0%, the worst robot is by default Robot 6.

 It can be seen in Figure 7.15 that this strategy improved the system

performance if compared to Experiment S5. With the mutation rate of 1%, it reached 90%

of the maximum performance in 150 generations. A real system would then reach a good

performance in less than 2.5 hours. Once again, 0.5% mutation performed worse than 1%,

since it is not enough to modify at least one of the 112 genes every generation. The

mutation rate of 1% has a higher chance of modifying only one or two of the genes, and

behaved better in adjusting a chromosome that has most of its genes correct.

4140

4160

4180

4200

4220

4240

4260

4280

4300

4320

4340

4360

0 50 100 150 200 250 300
Simulated Generations

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
S5Best00%

Figure 7.14 – Experiment S6.1: Simulated evolution of the predation strategy
compared to evolution without predation. The experiments tested the
simulated evolution of the neural controller using inheritance selection,
sexual reproduction, and mutation rate of 0.0%. Here, Robotn is the fitness of
Robot n in the generation in the experiment with predation and S5Best00% is
the fitness of the best robot in the generation in the experiment without
predation (Experiment S5).

 197

7.7.1 Discussion of the Experimental Results

 The predation strategy presented in this experiment was able to improve the

performance of the evolutionary system. The purpose of predation in this experiment was

not to eliminate unfit (weak) robots, since the fitness of the random configurations used to

substitute the destroyed robot was often worse than the original one. Even though the

resulting random configuration was, after many attacks, worse than the destroyed robot, the

new genetic material that it contained, combined with the chromosome of the best robot,

produced in many occasions a better performance. Therefore, the purpose of predation in

this experiment was to bring more diversity to the population.

 The instant of the attacks can be identified in the figures by the drop of the

fitness of the attacked robot, occurring every 20 generations. This happened because the

resulting fitness of the attacked robot, which is reconfigured by a random chromosome, is

usually worse than the one that the original robot would produce. Therefore, the average

performance of the population usually drops after the attacks. Nevertheless, after a few

4140

4160

4180

4200

4220

4240

4260

4280

4300

4320

4340

4360

0 100 200 300 400 500 600
Simulated Generations

Fitness

Av0.5%
Best0.5%
Av1%
Best1%
Av3%
Best3%
Av15%
Best15%

Figure 7.15 – Experiment S6.2: Simulated evolution of the neural controller
using inheritance selection, sexual reproduction, and predation for four
different mutation rates: 0.5%, 1%, 3%, and 15%. Here, Av is the average
fitness of all the robots and Best is the fitness of the best robot in the
generation.

 198

generations, the new genetic material is filtered by the selection-crossover operators and

incorporated in the population, often increasing the average performance. By protecting the

best robot and allowing it to survive to the next generation, the maximum fitness of the

population did not change, and the chromosome resulting from the evolutionary process

until the current generation was always protected. In the ideal environment of simulation,

this chromosome is only overwritten when one of its descendants produces a better

performance. In the real world of physical robots, however, protecting this chromosome is

much more difficult, since the noise and interactions among the robots can make a lucky

unfit robot outperform the best one. It is therefore necessary to use all means to protect the

best configuration, and a selection strategy that considers even more than three generations

may help it.

 Predation is a powerful strategy to prevent the population from being stuck

in local optima, since it introduces new genetic material that may help the population to

crawl down the slope and explore new possibilities in the fitness landscape [Har93a].

Getting stuck in local optima is an intrinsic problem of most evolutionary systems

[Har97b], since it is very difficult, and sometimes impossible, to know, from the point of

view of the evolving individuals, if the population can be improved even more, or if the

optimal solution was actually achieved. With the developed predation strategy, the

population can depend on a steady supply of new genetic material to bring in more

diversity, even after it completely converged to a local optima [Hus95].

 This was the last experiment in simulation. The results obtained with the

help of the simulator were essential in providing useful data on the performance of the

system. The analysis of the obtained information provided vital insights on developing new

strategies that improved considerably the performance of the system. The simulator also

made possible the evaluation of different parameters such as different mutation rates,

reproduction and selection strategies, and evolvable controllers. The next chapter makes

use of the developed techniques, combining the best results to produce an evolutionary

system able to evolve not only the navigation controller, but also the sensor configuration

and robot speed, which form the morphology of the robot.

 199

8 EMBEDDED EVOLUTION

 This chapter incorporates the strategies developed and tested in the

preliminary experiments and in simulation (Chapters 6 and 7) to design a fully embedded

evolutionary system that is able to evolve not only the robot navigation control circuit, but

also the morphology of the robot: the configuration of the sensors and the speed levels of

the motors. It describes the implementation of two controllers: one is based on an

unstructured black box (see also Section 6.4); and the other on a neural network (see also

Section 7.6). Appendix C contains the average results of many experiments that could not

be included in the body of the thesis. For Chapter 8, it includes data related to Sections 8.1

and 8.2.

 All the experiments shown in this chapter were evolved in the environment

shown in Figure 8.1. It is an environment of medium complexity where the six robots could

interact with each other and the obstacles. The robot sensors were set to have only one bit

of precision and work in the medium range (15cm) (see Figure 4.30 and Figure 6.5). Sensor

Figure 8.1 – General view of the six robots in the environment of medium
complexity used in the experiments in this chapter.

 200

S5 in the back of the robots can be used by the black box controller but has not been

connected to the neural network controller. The position of the sensors around the robots is

under evolutionary control. In the experiments shown in this chapter, all sensors can be

selected by their controlling pair of bits.

8.1 Evolving with a Black Box Controller

 This experiment applies every strategy developed in the previous chapters

that can improve the performance of an evolving black box controller. This is an

unstructured, undefined architecture, which was described in Section 6.4 and was presented

in Figure 6.22.

 The controller used eight commands to control the motor drive module:

Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); Turn Right Short2

(TRS2); Turn Left Short2 (TLS2); Turns Right Long (TRL); Turn Left Long (TLL); and

Front Medium (FM). The first seven commands were explained before in Chapter 7 and in

the last one, the Front Medium command encoded by “111”, the robot moves forward with

Medium speed. The speed levels of the robot Fast and Medium, activated by the commands

FF and FM, are defined by ten bits stored in the robot chromosome as explained in Section

4.2.3 and illustrated in Table 4.4. The speed of the robots is not fixed at the maximum

speed as in the previous experiments and is now under evolutionary control. In this

experiment, to keep the robots moving all the time with a reasonable speed, the first five

bits that define the speed levels in the chromosome are fixed at “1”. These guarantee that

both speeds Fast and Medium will have at least five bits on, so the lower speed that the

robots can travel is 17 (from a total of 32 possible speeds) according to Table 4.4. The

maximum that Medium can be is 20 and Fast is 32.

 The eight commands are encoded by the first three bits (b0, b1, and b2) of the

byte stored in the black box memory, as explained in Section 6.4. The black box lookup

table is implemented using 256 bytes stored in the robot RAM memory. Every byte of the

memory is arranged in the chromosome to form a 2048-bit string and crossover and

mutation can affect each one of these bits. From the 2048 bits corresponding to the eight

lookup tables, only 768, which correspond to the first three tables (b0, b1, and b2) are

 201

relevant to evolution. This is the size of the genotype of the robots that correspond to the

navigation control circuit, and considering that any one of them can produce a different

phenotype (i.e., there is no neutrality in this case), the imposed search space is considerably

large: 2768 = 1.55×10231.

• Aim of the Experiment

 The aim of this experiment is to provide the first experimental proof of an

embedded evolutionary system that evolves an unstructured controller and the morphology

of the robot. The 16 bits that control the sensor configuration, plus five of the ten bits that

control the robot speed levels, and the 2048 bits of the black box are under evolutionary

control. The total number of bits controlled by evolution is 2069 plus 5 fixed ones.

• Experimental Setting

 A new hand-designed controller was developed as a reference to compare

the results obtained by the evolutionary system. It is a variation of the previously-described

ones, which includes the new command FM for the motor drive module. In this

experiment, the hand-designed controller operated according to the following algorithm:

 Left = Right = 0;

 - If (Sensor4=1) then Left = Left + 1;

 If (Sensor3=1) then Left = Left + 1;

 If (Sensor2=1) then Left = Left + 1;

 P If (Sensor6=1) then Right = Right + 1;

 r If (Sensor7=1) then Right = Right + 1;

 i If (Sensor8=1) then Right = Right + 1;

 o If (Sensor1=1) then Command = TRS2;

 r If (Left > Right) then Command = TRS1;

 i If (Left = Right) then Command = FM;

 t If (Left < Right) then Command = TLS1;

 y If (Sensor1=1 and Sensor4=1) then Command = TRS2;

 If (Sensor1=1 and Sensor6=1) then Command = TLS2;

 If (Sensor4=1 and All other Sensors=0) then Command = TRL;

 + If (Sensor6=1 and All other Sensors=0) then Command = TLL;

 If (All Sensors=0) then Command = FF;

 202

 This hand-designed algorithm behaves as the ones explained in Chapter 6,

but will only allow full speed (Fast) if all sensors are zero. If the robot detects obstacles in

both sides, but the variable Left is equal to Right, the robot proceeds with caution: Front

Medium. In this experiment, the first three bits (b0, b1, and b2) of the byte that represent the

commands are grouped and treated as an entity, as explained in Section 7.4. Table 8.1

shows how these commands are encoded with three bits in this experiment.

Table 8.1 – Encoding of the Black Box Commands.

Command Encoding
FF 0,0,0

TLS1 0,0,1
TRS1 0,1,0
TRS2 0,1,1
TLS2 1,0,0
TRL 1,0,1
TLL 1,1,0
FM 1,1,1

 This experiment uses the strategy of back-mutation prevention developed in

Section 7.5. A new inheritance selection that calculates the average fitness of the robots in

the last six generations was adopted in this experiment. This strategy also protected up to

two robots that score more than the fitness of the best robot, as explained in Section 6.5.

This experiment makes use of asexual reproduction. As it was explained in Section 7.3, the

robots do not cross over their chromosomes. The modified selection strategy is described

below:

!" The score used to select the robot is the average of the robot fitness in

the last six generations (i.e., inheriting the scores of its previous five

generations). The robot with the best average survives, but does not

breed with up to two robots with the fitness in the present generation

higher than its own fitness. The other robots overwrite their

chromosome with a copy of the chromosome of the best robot, and then

suffer mutation in the three bits that represent a command.

 Two charts in this chapter display the average fitness value (AvRn) scored by

each robot in the current and the previous five generations. For each robot:

 203

 AvRn = (FitnessRnG0 + FitnessRnG-1 + FitnessRnG-2 + FitnessRnG-3 +

 + FitnessRnG-4 + FitnessRnG-5)/6

 In the equation above, n is the number of the robot; FitnessRnG0 is the

fitness of the Robot n in the current generation; FitnessRnG-1 is the fitness scored by Robot

n in the previous generation; and so on until FitnessRnG-5, which is the fitness scored by

Robot n five generations before.

 This experiment used a fitness function designed to take into consideration

the information of the infrared sensors to reward or punish the robots. This function

rewards the robot when the command is FF or FM and there are no obstacles around the

robot. It also rewards it if the robot detects an obstacle in one side and turns to the other

side. The robot is punished if it turns towards the obstacle. This algorithm does not punish

the robot for colliding, only for making a bad manoeuvre. Table 8.2 presents a summary of

the settings for this experiment. The selected fitness function for this test was:

 1- Start with 4096 points;

 2- Reward: increase fitness by 10 points every 1 second if (All
Sensors=0 or Left=Right) and command=FF, FM;

 3- Reward: increase fitness by 10 points if Left > Right and
command=TRS1, TRS2, TRL;

 4- Reward: increase fitness by 10 points if Left < Right and
command=TLS1, TLS2, TLL;

 5- Punishment: decrease fitness by 10 points if Left < Right and
command=TRS1, TRS2, TRL;

 6- Punishment: decrease fitness by 10 points if Left > Right and
command=TLS1, TLS2, TLL;

• Results

 This experiment is described in three charts: Figure 8.2 shows the fitness

values of the six robots; Figure 8.3 shows the fitness of the best robot in the generation and

the average fitness of the population; and Figure 8.4 shows the average fitness of each

robot in the previous six generations that is used to select the best robot according to the

inheritance selection strategy.

 204

Table 8.2 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +10 points every 1s if all Sensors=0 or Left=Right and command=FF

or FM;
+10 points if Left > Right and command=TRS1, TRS2, TRL or Left <
Right and command=TLS1, TLS2, TLL
–10 points if Left < Right and command=TRS1, TRS2, TRL or Left >
Right and command=TLS1, TLS2, TLL

Initial Fitness Value: 4096 points
Maximum Fitness Value: 4696 points
Generation Time: 60 seconds
Mutation Rate: Only 1 command (3 bits) is modified in the chromosome each time
Back Mutation: Disabled
Selection Strategy: Inheritance (6 generations)
Crossover Strategy: Asexual
Frequency of the Attacks: Predation Disabled
Speed Levels: Fast and Medium with first 5 bits fixed and the others evolving
Sensors Enable: All sensors under evolutionary control
Navigation Controller: Evolving Black box with 256 bytes
Initial Sensor Configuration: Random
Initial Speed Configuration: Random
Initial Controller Configuration: Random.
Software: EXP15.CPP and GRAF15.CPP (listed in Appendix A)

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 20 40 60 80 100 120 140 160 180 200
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6

Figure 8.2 – Experiment E1: Evolution of the black box controller and
morphology using inheritance selection and a biasing fitness function in
an environment of medium complexity, with sexual reproduction,
command manipulation, back-mutation prevention, and generation time
of 60s. Only one command (3 bits) is allowed to mutate each time.
Here, Robotn is the fitness of Robot n in the generation.

 205

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 20 40 60 80 100 120 140 160 180 200
Generation

Fitness

Average
BestRob

Figure 8.3 – Summary of Experiment E1: Summary showing the average
fitness (Average) of all robots and the fitness of the best robot (BestRob) in
the generation.

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

0 20 40 60 80 100 120 140 160 180 200
Generation

Fitness

AvR1
AvR2
AvR3
AvR4
AvR5
AvR6

Figure 8.4 – Details of Experiment E1: More details of the experiment
showing the average fitness of each robot in the last six generations. Here,
AvRn is the average fitness scored by robot n in the current and the previous
five generations.

 206

8.1.1 Discussion of the Experimental Results

 The first chart shown in Figure 8.2 presents the behaviour of the six

evolving robots in 200 generations of 60 seconds. They evolved from a random controller

with random speed levels and sensor configuration to a group of competing efficient

solutions containing four or five sensors (S1,S3,S4,S6,S8; S3,S4,S6,S8; S2,S3,S4,S7), and a

controller that learned how to deal with them. Robot 5 started with four sensors enabled

(S3,S4,S6,S8), and was an efficient combination that was soon transferred to the other

robots in the first 20 generations. Next, their controllers had to adapt to work with small

variants from this configuration. This took more than 80 generations.

 The speed levels started at random values (“1111110011”), but were

controlled by the evolutionary system and soon both levels (Medium and Fast) dropped to

17. This was an emergent strategy used by evolution that made the robots travel slower in

the beginning of the process, when their controllers were not well-developed to deal with

all situations. Level Medium stayed at 17, varying very little during the process, but Fast

was progressively increased after generation 100, when the robots were better-adapted to

deal with a faster speed. Level Fast oscillated between 20 and 26 in the last 35 generations,

averaging 23. The resultant configuration for the bits that define the robot speed was

“1111101100”, which kept level Medium in the lower speed level (Medium = 17), but

increased level Fast to 23. The first five bits were fixed at “1” to prevent the robots from

going slower than 17, so evolution could control only the last five bits: “11111xxxxx”. The

Medium level is calculated by counting the number of ones in the first six of these

configuration bits and Fast is calculated by counting the ones in all of the bits and then

converting the count according to Table 4.4.

 The chart in Figure 8.3 shows that the population gradually converged to a

small set of efficient configurations combining morphology and control that could drive the

robots practically without colliding. The average fitness of the population oscillated in the

beginning of the process, but in the end it got very close to the curve of the fitness of the

best robot, since with asexual reproduction the population is a copy of the best robot that

suffered only one mutation. Therefore, all the robots in the end of the evolutionary

experiment had very similar behaviours, or at least the ability to produce similar

performances. The small differences that still persisted were a consequence of the influence

of noise and the interactions between the robots. As the generations passed, there were

 207

fewer poorly-adapted robots crashing into the good ones, so the average performance

increased.

 The chart shown in Figure 8.4 represents the average fitness of each robot in

the previous six generations and illustrates how the robots were selected to breed. The

increase in performance that happened around generation 105 was initiated by Robot 5,

which learned how to manoeuvre properly with four sensors enabled. It soon taught Robot

3, which began to dominate the population for 30 generations, since it had the best

combination of controller and morphology.

 The bits corresponding to the commands of the black box controller mutate

in units of three bits, corresponding to each command. However, the bits corresponding to

the sensor configurations and the speed of the robot mutate bit-by-bit, with only one bit

allowed to be changed each time. An interesting event was observed in this experiment:

after the population started to converge in the last 30 generations of the process, the sensor

configurations still varied into a small set of solutions with four or five sensors enabled,

but the controller configuration did not change much. In fact, it was able to perform the

same manoeuvres regardless of being attached to four or five sensors. This helped to

preserve a good performance while the sensor and speed configurations kept changing,

since the controller did not need to adapt again after the robot morphology changed.

 This experiment succeeded in showing that the embedded evolutionary

system was able to evolve a population of real robots controlled by an unstructured black

box and having their morphology manipulated by evolution. Together with the data

presented in Appendix C, it provided the first experimental proof of the embedded

evolution concept where both an unstructured controller and morphology were evolved.

The system was able to find efficient solutions in a considerably large search space of

1.987×10234 possibilities (eight possible commands to occupy the 256 possible outputs of

the black box controller make: 8256 × 28 sensor configurations × 5 possible speed levels).

 In this experiment, the final version of the evolving controller, obtained after

200 generations, did not behave exactly as the preconceived hand-designed controller when

connected to five sensors (S1, S3, S4, S6, and S8). It was, nevertheless, able to manoeuvre

the robots without colliding and produced a high performance. The system did not

converge to an optimal solution, because it was not necessary, since many configurations

obtained after 200 generations were able to produce the higher performance.

 208

8.2 Evolving with a Neural Network Controller

 This experiment shows for the first time an embedded evolutionary system

evolving a structured neural network controller together with the morphology of the robot.

Both the sensor configuration and the speed of the motors are under evolutionary control.

This experiment makes use of the most efficient mutation rate and the selection and

reproduction strategies that were developed in simulation. It also incorporates the

developed strategy of predation to increase the performance of the system as it was

demonstrated in Section 7.7.

 In this experiment, the robots were evolved in the environment of medium

complexity presented in Figure 8.1. The sensor configuration and motor speed are

controlled by evolution in the same way as explained before in Section 8.1. The main

difference between this experiment and the previous one is the use of a structured neural

network to implement the navigation control circuit.

• Aim of the Experiment

 The aim of this experiment is to provide the first experimental proof of an

embedded evolutionary system that evolves a structured neural network controller and the

morphology of the robot. The evolutionary system is able to manipulate the 16 bits that

control the sensor configuration, plus five of the ten bits that control the robot speed levels,

and the 112 bits that define the contents of the neurons of the neural network. The total

number of bits controlled by evolution is 133 plus 5 fixed ones. The neural network can

produce four different commands and is connected to seven sensors (S5 is controlled by

evolution, but is not connected to the neural network, so it is irrelevant if it is enabled or

not). The number of possible genotypes for the controller alone is 2112 = 5.19×1033.

However, because of the generalisation ability of the neural network, many of these

genotypes produce the same phenotype.

• Experimental Setting

 The neural network architecture was explained before in Section 4.1.1 and

its configuration is the same shown in Figure 6.6, which was described in Section 6.2. It

 209

has four groups of neurons (discriminators) with seven 2-input neurons, each neuron

containing four bits. The only difference is that instead of the command Turn Right Short2

(TRS2), the neuron group 4 is now representing the class of the command Front Medium

(FM). Therefore, the neural network controller provides four commands to drive the

motors: Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); and Front

Medium (FM). The commands are encoded by only two bits: FF – “00”; TLS1 – “01”;

TLS2 – “10”; and FM – “11”. These commands were explained before in Sections 6.2 and

8.1. Five of the ten bits in the chromosome that define the speed levels of the robot Fast

and Medium, activated by the commands FF and FM, are again under evolutionary control,

as explained before in Section 8.1. The first five bits that define the speed levels in the

chromosome are fixed to “1” to prevent the robots from moving too slowly.

 The neural network controller was evolved without the strategy that

prevented back mutation from occurring and by manipulating the bits in the chromosome,

not the commands. This was necessary because the neural network does not allow

evolution to manipulate directly the commands. An inheritance selection that calculates the

average fitness of the robots in the last six generations was adopted in this experiment. This

strategy also protected up to two robots that score more than the fitness of the best robot, as

explained in Sections 6.5 and 8.1. This experiment uses sexual reproduction as the

crossover operator, where the robot with the best average is selected to breed by combining

its chromosome with the ones of the robots that are not protected in the current generation.

The modified selection strategy is described below:

!" The score used to select the robot is the average of the robot fitness in

the last six generations (i.e., inheriting the scores of its previous five

generations). The robot with the best average survives, but does not

breed with up to two robots with the fitness in the present generation

higher than its own fitness. The other robots combine randomly their

chromosomes with the one of the best robot, and then suffer mutation.

 The mutation strategy generates a random number r between zero and 100

for each one of the 133 bits in the chromosome and flips it if r is smaller than the mutation

rate. This experiment uses a very simple fitness function in order to prevent biasing

evolution towards a pre-conceived solution. Rule 3 punishes the robots that keep turning

 210

for more than 15 seconds, encouraging them to move forward. The selected fitness function

for this experiment is:

 1- Start with 4096 points;

 2- Reward: increase fitness by 10 points every 1 second;

 3- Punishment: decrease fitness by 30 points for every time
command is not FF or FM for more than 15 seconds;

 4- Punishment: decrease fitness by 10 points for every collision if
command = FF or FM.

 In this experiment, the robot population suffered regular attacks (every ten

generations) of a “predator” that selected the robot with the smallest average fitness in the

specified generation and substituted it by a random one. Table 8.3 presents a summary of

the settings for this experiment.

Table 8.3 – Summary of the Experimental Settings

Parameter Definition
Fitness Function: +10 points every 1s

–30 points for turning for more than 15s
–10 points for colliding when command=FF, FM

Initial Fitness Value: 4096 points
Maximum Fitness Value: 4696 points
Generation Time: 60 seconds
Mutation Rate: 1%
Back Mutation: Enabled
Selection Strategy: Inheritance (6 generations)
Crossover Strategy: Sexual
Frequency of the Attacks: Every 10 generations
Speed Levels: Fast and Medium with first 5 bits fixed and the others evolving
Sensors Enable: All sensors under evolutionary control (S5 is not connected)
Navigation Controller: Evolving Neural Network (m=4, n=7, neuron size=4)
Initial Sensor Configuration: Random
Initial Speed Configuration: Random
Initial Controller Configuration: Random.
Software: EXP16.CPP and GRAF16.CPP (listed in Appendix A)

• Results

 As in the previous experiment shown in Section 8.1, the evolutionary

experiment here is also described in three charts: Figure 8.5 shows the fitness values of the

six evolving robots; Figure 8.6 shows the fitness of the best robot in the generation and the

average fitness of the population; and Figure 8.7 shows the average fitness of each robot in

the previous six generations.

 211

3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700

0 20 40 60 80 100 120 140 160 180 200
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6

Figure 8.5 – Experiment E2: Evolution of the neural controller and
morphology using inheritance selection and a simple fitness function in an
environment of medium complexity, with sexual reproduction, predation,
mutation rate of 1%, and generation time of 60s. Here, Robotn is the fitness
of Robot n in the generation.

3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700

0 20 40 60 80 100 120 140 160 180 200
Generation

Fitness

Average
BestRob

Figure 8.6 – Summary of Experiment E2: Summary of the experiment
showing the average fitness (Average) of all robots and the fitness of the
best robot (BestRob) in the generation.

 212

3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700

0 20 40 60 80 100 120 140 160 180 200
Generation

Fitness

AvR1
AvR2
AvR3
AvR4
AvR5
AvR6

Figure 8.7 – Details of Experiment E2: More details of the experiment
showing the average fitness of each robot in the last six generations. Here,
AvRn is the average fitness scored by robot n in the current and the previous
five generations.

8.2.1 Discussion of the Experimental Results

 Figure 8.5 shows a very distinct behaviour, since this experiment used a

non-biasing fitness function, many different solutions were produced and evaluated by

evolution. An interesting point is that maximum fitness was obtained from the first

generation. These happened because some robots produced in the first generations

developed a kind of wall following behaviour, where they tried to stay close to the walls or

obstacles, but keeping a safe distance, so they did not collide with them. This could

produce maximum fitness in some generations, but as it can be observed in the chart, one

robot could have very distinct performances with the same controller from one generation

to the other. They could avoid colliding into the walls, but suffered collision from other

robots, so that in some generations their performance dropped substantially. This

configuration nevertheless spread quickly through the population and a particular event

started to happen when two robots with this configuration started to walk around each

other, each considering its fellow robot a wall to be followed. They kept spinning around,

 213

crashing upon everything in their way. This was responsible for the drop in performance

near generation 13, which can be better observed in Figure 8.6. The population ended up

converging to this unstable solution, a local optima, and could reach a better configuration

only because of a predator attack that brought in new genetic material.

 The third attack of the predator, in generation 30, resulted in a robot that

could for the first time use one sensor in the front (S2) and produced a more steady

performance. This can be observed in Figure 8.7, where the average of the fitness of each

robot in the last six generations started to improve. This happened because, although this

configuration did not produce such high scores as the previous wall-following behaviour,

its average result was more consistent, and the average fitness of the population increased

considerably between generations 30 and 40.

 By generation 42, Robot 2, which was able to use properly S2 and S7, had

been selected as the best robot for six generations and started to improve the others. From

successive combinations with Robot 2, Robot 5 learned one more sensor, mastering S2, S4,

and S7, a very powerful combination. From generation 60 on, all robots learned to

manoeuvre properly according to at least three sensors, one in the front, and two lateral

ones. Robot 3, from generation 70, dominated a population where a small set of efficient

solutions competed to be selected as the best robot.

 In this experiment, both speed levels Fast and Medium varied from 17 to 20

through the whole experiment, indicating that a less biasing fitness function tends to be

more careful, preserving lower, but safer, speed levels. The system oscillated considerably

in the first 30 generations and convergence was only possible because of the inheritance

selection that calculated the average fitness of the previous six generations for each robot.

It can be seen in Figure 8.7 that in spite of all oscillations in the performances of the robots

in Figure 8.5, the average fitness of the robots in six generations shown in Figure 8.7

provided a better way of indicating the real capacity of the robots.

 This experiment illustrated the power of the developed predation strategy in

providing more diversity when the population was trapped in a local optima. The new

genetic material it supplied in the first thirty generations was essential to allow the

population to explore more widely the fitness landscape. The disadvantage of this strategy

is that it never allowed the average of the population fitness to reach the maximum score,

since a random robot was introduced every ten generations, causing a drop in the

performance of the population that can be easily identified in Figure 8.6.

 214

 The developed evolutionary system succeeded in evolving the real robots,

initialised with random controllers and morphologies, reaching efficient solutions after 200

generations of 60 seconds. This experiment, together with the data presented in Appendix

C (Section C.3.1) provided the first experimental proof of an embedded evolutionary

system that was able to evolve a structured neural network controller together with the

morphology of the robots in real time in the real world. It produced a satisfactory collision-

free behaviour after 200 generations.

 This experiment closes the last experimental chapter of this thesis. The

experiments reported in this work analysed of the developed evolutionary strategies and

their configuration parameters. These experiments demonstrated that the developed

evolutionary system is a very powerful approach to developing a self-adapting distributed

robot control system that enabled collision-free navigation behaviour in a population of six

autonomous mobile robots.

 215

9 CONCLUSION

 This final chapter shows how the most relevant aspects of the developed

work presented in this thesis can contribute to the state-of-the-art of evolutionary robotics

and artificial intelligence with important ideas, novel strategies, and inspiring discussions.

This chapter also reviews whether the obtained results achieved the proposed objectives. It

highlights the most relevant conclusions arising from the experiments carried out in the

specially built test environment and provides guidelines for the future exploration of the

developed techniques.

 This research work has been concerned with the development of a real-time

high-performance distributed evolutionary system embedded in a population of six

autonomous mobile robots, to be applied in producing collision-free navigation. To achieve

this goal, one objective has been to develop suitable genetic operators and methods of

embedding them into the robots. Furthermore, a robotic hardware system has been

designed that allows the developed strategies to be tested in real time using the physical

world as its best model [Bro91b].

 Chapters 2 and 3 presented an overview of recent work in the area of

evolutionary robotics together with a discussion of their limitations and drawbacks, which

led to breaches in the research field that were explored by this work. These chapters

showed that most of the work with evolutionary robotics has been done in simulation and

inspired the pursuit of a challenging goal: providing the means of implementing a physical

evolutionary system, where the population physically exists and artificially breeds,

combining their configuration material to produce the new generations.

 To achieve this goal, because of the dimensionality of the problem, the

project specification had to set limits to the applicability of the research and select a non-

complex task-behaviour, reducing the system complexity and consequently the application

of the obtained results. Nevertheless, a new concept emerged and was experimentally

proven for the first time: embedded evolutionary systems. It was also the first time that an

embedded evolutionary system was put to test in co-evolving the robot controller and

 216

morphology at the same time. Therefore, the major contribution of this work is in

developing basic research on embedded evolution, which is a new concept, proposing

novel techniques that enabled an evolutionary system to be applied to a group of real

autonomous mobile robots. This forms the basis of a technique that has very important

industrial applications. Evolutionary robotics is a research area in its infancy [Har97b]

[Bro00] [Pol00] [Tho00], which tests whether all newborn AI philosophies can grow up

into the real world, and scale up with increasing complexity.

9.1 Conclusions Arising From the Experimental Results

 It was noticed when comparing the results obtained with simulation

(Chapter 7) to the ones with real evolution (Chapter 8) that the fitness of the robots

improved faster in the experiments run in a real environment than the ones run in

simulation, in terms of the number of generations, despite all the noise and interaction

amongst the robots. The reason for this is that in a real environment the robots are

evaluated for only a few minutes and are subjected to fewer situations that test their ability

to manoeuvre properly. In the developed simulator, however, the response of the navigation

control circuit is always exhaustively tested against all possible situations that the robot can

face. This produced lower fitness values than the evaluations in real environments.

Sometimes, for example, as demonstrated in Section 8.2, a randomly initialised population

can produce the maximum fitness in the first generation of the experiment, if one of the

robots is “lucky” enough to face only the situations it can deal with during the generation.

 The importance of a long lifetime, the duration of a generation, was

observed: improper solutions may take, by chance, the place of more robust individuals if

they have been evaluated only for a short period. That happens because an unfit robot can

be “lucky” enough to start its life in an easy place in the workspace or in a position where it

can deal with the obstacles even when only part of its controller and sensors are well

adjusted. In a similar way, a fit robot may start in a very difficult and crowded position,

where its chances of collisions with other robots are greater. It may also happen, by chance,

that other unfit robots end up colliding many times with a fit one. A longer lifetime will

give more opportunities to differentiate between the fit and the unfit robots. The

 217

disadvantage of a longer lifetime is that it will take longer to evolve the population and

achieve an efficient solution. However, the benefits generated by a better evaluation can

speed up the evolutionary process and make the overall result faster than one using a

shorter lifetime.

 The previous work on the evolution of collision-free navigation was

reported mostly by Floreano and Mondada [Flo96a]. Their work employed physical

Khepera robots tethered to external computation provided by a workstation. They could

only achieve the desired behaviour after three days of non-stop evolution. During the

development of this work, Watson et al. also proposed an embedded evolutionary system

that used eight real robots [Wat99a]. Their robots were simpler than the ones used in this

work and they evolved only their navigation control circuits to drive the robots towards a

light source, a task of similar complexity to the chosen collision-free behaviour. They

achieved an efficient solution (compared to a hand-designed controller) in less than two

hours of evolution. After applying the understanding and insights produced in the real

experiments in Chapter 6 and in simulation in Chapter 7, the developed evolutionary

system could evolve the controller and morphology of the robots and achieve collision-free

behaviour in less than two hours. This good result could only be achieved after refining the

configuration of the system, which was taking days to evolve with the wrong parameters.

 Monitoring fitness from inside the robots is necessary in a distributed

embedded controller, but it generates problems on how to evaluate behaviours. The

monitor computer is just recording the evolutionary data and cannot be used to distinguish

between fit and unfit behaviours by evaluating distances from goals, contact with other

robots and obstacles, or the position of the robots. The fitness function needed to be

implemented from the point of view of the robot, using its own sensors (contact and

infrared proximity sensors). The fitness function has to be kept as simple as possible, to

avoid biasing evolution to produce a pre-conceived solution.

 The on-board fitness evaluation function required the use of a

microprocessor, since it is the simplest way of implementing such functionality. The

presence of a microprocessor also permitted high-level modularity of the controller and

facilitated its implementation using a neural network. Although biasing evolution, the high-

level modularity of the neural network permitted post-evolution analysis of the obtained

result, a better user interface, and particular fitness evaluation of the modules. Moreover,

and more importantly, it permitted the implementation of a considerably smaller

 218

chromosome to contain the configuration of the controller. An unstructured controller can

provide much more variety and has more chances of producing an unforeseen result, but it

is less organised and needs a longer configuration bit string. This increased drastically the

search space and slowed down the evolutionary process, reducing system performance.

 Real time evolution of an embedded hardware means that the evolutionary

controller must cope with the robot limited processing speed and small memory size.

Consequently, Boolean neural networks offered small, high-speed solutions. To minimise

the execution time of the controller, making it smaller and faster, the evolving neural

network, for every generation, can be converted to a look-up table and be implemented into

the robot RAM memory. This is achieved by taking the resulting chromosome, after the

mating process, and using it to configure the neural network. Then, the neural network is

simulated with every possible input and a corresponding output table is written. This output

table is then stored into the robot RAM memory and becomes the current controller that

drives the robot in the current generation. For each iteration, the sensor readings are

converted into an address to the memory and the returned data is converted into a

command to drive the robot. In this way, the operation of the complete neural network that

would take hundreds of lines of code to be implemented can be executed with one single

instruction that reads the command byte in the memory. It can make the controller work

hundreds of times faster. This strategy was used in some experiments and was very

efficient.

 Mutation in embedded evolution has a more important effect than in

simulated evolution, since the population in real systems is considerably smaller than in

simulated evolution. Therefore, crossover is limited by the small variety of genetic material

that it can combine to produce better individuals and, without mutation, the population

usually converge in a few generations and stop evolving. However, a high mutation rate

does not help to evolve faster. It did not prove to be a good strategy. Although it may help

in the beginning of the process to bring more variety into such a small population (e.g., six

robots), it slows down the process after the initial genetic material is combined and the

population converges to individuals that have more than half of their chromosome with the

right genes. Therefore, in the long term, it produces a very distinct population, where the

fittest individual is considerably distant from the average fitness of the population.

Generally, only the best robot that survives to the next generation and does not mutate is

well adapted to the environment. A relatively high mutation can still be used to accelerate

the initial search for a solution to a problem that, once an acceptable fitness is achieved,

 219

will be replicated into other robots that will work independently. A low mutation rate

makes the whole evolutionary experiment much faster. It produces a population with small

variation where the average fitness is almost as high as the fitness of the fittest individual.

A low mutation rate is very important if the robots are working as a team (e.g., combining

their strength to push heavy objects or even playing soccer) and a bad performance can

severely affect the overall operation.

 Evolution produces a solution that is good enough to solve the problem, but

not necessarily the expected one. It all depends on how the fitness evaluation function is

specified. It is important to use the simplest function possible to prevent biasing evolution,

limiting the possible solutions. Working from bottom-up, evolution generates what the

fitness function rewards. It can get very close to the solution achieved by working out the

problem from top-down, but probably never there. The main problem is how to specify the

reward and punishment functions, so that evolution can deal with the complexity of the

task. The best way encountered was by “trial and error”: rewarding particular responses and

watching to see what it can produce. Then, by gradually adding small sub-functions and

observing the overall result, the designer can keep the ones that improved the result.

Usually, the longer the process, the better the solution. With a poor fitness function, fitness

evaluation is not enough to determine a good solution (e.g., fitness can be high, but the

solution can be far from the expected one). The final result is probably more complex and

can take longer to achieve than the top-down design of a controller by hand. Nevertheless,

what can be achieved by applying an open-ended evolution is a self-adaptable controller,

which can continuously modify its internal configuration to coupe with a variable

environment. This is very difficult to be obtained with a traditional design, since all the

variability of the environment has to be foreseen.

 The experiments in Chapters 6, 7, and 8 demonstrated that evolution can

work in two ways: biased or non-biased. Biased evolution appears when the fitness

function rewards not only what the robot should do, but also how it is doing it. It happens

when sub-functions are rewarding the robots that behave in a similar way to an expected

solution foreseen in the problem (e.g., when they avoid the obstacles by turning in a

specific way). Non-biased evolution is the one that only rewards when the robot does what

it should do (or punishes when it does what it should not do). Non-biased evolution is an

interesting alternative to conventional top-down design, because it can produce unique,

unexpected solutions where the robots can actually tell the designer how they should be

designed (e.g., showing the best positions to place sensors, their best range and angle, the

 220

proper speed the robot should navigate, etc). It was observed that biased evolution is not

yet a better alternative to manual design, because if the designer foresees a good solution

for the problem, why cannot it be implemented right away? This approach can, though, be

used to program more efficient controllers (such as look up tables or neural networks) to

behave similarly to a complex solution developed in a modular top-down design.

Moreover, with the inclusion of extra sub-functions, a biased evolution can produce a

continuously adaptable system able to deal with variations of the environment.

 As the number and position of the sensors and the speed levels of the motors

are under evolutionary control, not only the control circuit is produced, but also the

physical characteristics of the robots can change into different configurations according to

the complexity of the environment. In addition, the designer can fix the number of sensors,

for example, and let evolution decide where they should be placed. The most successful

configurations according to the sensor positions that were observed in the experiments are:

a) Configuration 1 – One sensor in the front;

b) Configuration 2 – Two sensors, one in the front and a lateral one;

c) Configuration 3 – Three sensors, one in the front and one in each side of
the robot.

 It was observed that, in a simple environment containing few obstacles, all

three configurations coexist “peacefully”, because it does not present enough selection

pressure and the fitness of all three configurations are roughly the same after a small

lifetime (evaluation time). The longer the lifetime though, the greater the number of

opportunities to distinguish between a more efficient configuration and an ordinary one and

the robots with more sensors positioned in the right places are more likely to succeed.

When more obstacles are added and the environment becomes more complex, the

competition is tougher and the configurations with more resources gradually lead the less-

adapted ones to “extinction” from the population.

 Late in the evolutionary experiment, when the robots are well-adapted to the

environment and the task, refining the solutions takes progressively more time. The better a

solution is, the slower it takes to refine it. Many crossover strategies and mutation rates

were investigated to speed up the final refining process. The general strategy was to choose

the best robot and breed it with all the others. The best robot then survives to the next

 221

generation and all the other robots are replaced by their offspring. Another solution

developed for the mating phase is a strategy that does not cross over the genes at all. This

asexual reproduction technique consists in choosing the best robot, allowing it to survive

to the next generation, and replacing all the other robots with a copy of its chromosome

plus a small degree of mutation. This technique, although slower in the beginning of the

process, was the fastest overall evolution.

 Another technique was developed in order to provide new genetic material

for evolution to play with: every ten generations, the worst robot is selected and destroyed

(“killed” by a virtual “predator”), and has its chromosome replaced by a randomly

generated configuration. It models the natural world, where from time to time a predator

calls taking out weak members of the pack, preventing them spreading its genes and

opening space for new individuals to migrate, bringing more diversity to the group. This

was called “the predation strategy” and was shown to improve the overall performance of

the evolutionary process. After an “attack”, enough time must be given to allow the

population to recover and stabilise again. Otherwise, the “killed” robot that was replaced

by a random configuration would probably be the worst one again in the next attack, and

would be repeatedly destroyed. Therefore, the number of generations between the attacks

must be carefully chosen according to the complexity of the evolving controller. The

predation strategy brings in vital diversity that can prevent the population from being stuck

in local optima.

 Determining when the desired behaviour has been achieved on physical

robots is difficult and relies on a quantitative analysis based on human judgement and

experience. However, human observers can apply reasonable phenomenological

descriptions of the performance of the robots [Mat97c]. Typically, statistical analysis is not

significant as insufficient data are available. Because of the uncertainty and variability of

physical experiments, an average performance is difficult to establish as trials vary

significantly. Therefore, the conclusions provided in this work should be taken as

guidelines to future experimentation and applications of the developed techniques, instead

of an exhaustive study of all possible behaviours that such an evolutionary system can

produce. Although it was proven that the developed evolutionary system can produce

efficient solutions and unforeseen results, it cannot be affirmed that it will always behave

as described in the experiments. The analysis provided is only descriptive [Men92].

 222

9.2 Principal Achievements

 The main achievements of this work is the proposal of the new concept of

embedded evolution and the implementation of a novel and unique evolutionary system

that is decentralised, distributed, and fully embedded in a population of real autonomous

mobile robots, and is able to produce collision-free navigation by evolving not only the

robot controller, but also its morphology. It provided a genetic system where the population

exists in a real environment, where they exchange genetic material and reconfigure

themselves as new individuals to form the next generations. The evolutionary algorithm is

distributed amongst and embedded within the robot population. Most of the work to date

on evolutionary robotics has been done by serially evaluating candidate controllers through

simulation or on a single robot, so the importance of this research is in providing the means

of running genetic evolutions in parallel, in a real physical platform. As new robots cannot

be spontaneously created, the offspring are implemented by reconfiguring other robots of

the same population. The adaptive mechanism is distributed in the population and is

carried out autonomously.

 This work provided the first experimental proofs of an embedded

evolutionary system that can manipulate the robot control circuit and morphology. This

system was inspired by biology and can be applied to address questions in the natural world

and in artificial life, since it offers opportunities for conducting experiments that are

extremely complicated in traditional biology or not feasible at all, such as the

characterisation of the “evolvability” of ecological systems, modelling isolated

populations, or ecological monitoring tools. Hence, most of the strategies developed to

allow the implementation of such a system into real robots are also unique and relevant to

the scientific community in biology and electronics:

#"A real physical platform was developed where the population physically exists,

which allows genetic techniques to be tested in a real environment, and distinct

hardware and software were developed to allow the integration and distribution

of reproduction and other genetic operators into the autonomous mobile robots;

 223

#"Guidelines were provided to allow the implementation of the developed

evolutionary system in different robot platforms, so that the experiments can be

repeated by other researchers using their own robots;

#"Existing genetic algorithm techniques that had been used only in simulated

systems had been adapted and converted to be implemented within real physical

robots;

#"New genetic operations such as evaluation, selection, and mutation strategies

were developed, implemented within the embedded hardware and software of

the robots, and evaluated in real-time experiments;

#"An original solution was developed to accommodate both the robot navigation

controller and the distributed evolutionary system on board the robots; and a

unique communication protocol was also developed to allow the establishment

of a radio link that permitted the synchronisation and exchange of genetic

material during the mating phase of the evolutionary system;

#"Different ways of evolving real robots were investigated and relevant data

analysis was provided to guide future experiments and the application of the

developed techniques;

#"The developed Predation strategy proved a powerful concept that not only

improved the performance of the system but also prevented the population from

being stuck in local optima, by bringing in more diversity;

#"It was demonstrated that evolution can actually help in the traditional design of

robotic platforms, since it can suggest the best features a robot should

incorporate to develop specific tasks. Evolution was shown to be efficient in

testing and selecting the best sensor configurations, or speed levels for the

motors. It can give important clues to the designer of how the morphology of

the designed robot should be to achieve maximum performance and economy of

energy;

#"Finally, this work provided understanding on the implementation of real

evolutionary systems and inspiring insights that have great potential of

application in the area of automation.

 224

 The principal aim of this thesis has two major aspects. First, it has led to an

understanding of the applicability of an evolutionary system to evolve a population of

physical robots in real time. Second, the work has produced new evolutionary techniques

and genetic operators that can have immediate potential value to researchers working in

this area. Taken together, these two strands have contributed to an integrated study which,

it is hoped, will be of continuing value in the future development of techniques in

automation and cybernetics, since the embedded system can be applied to situations where

the agents must evolve while deployed “in the field” – an issue not usually approached by

evolutionary robotics.

 A strategy was developed to allow the direct application of the evolutionary

system in typical industrial control problems. For applications in optimisation and solution

searching in robotics, it is possible that there will be many experiments with poorly-

developed configurations. These can be discarded and their poor performance has no effect.

However, in industrial applications, if evolution is set free to “play” with the resources,

poorly developed controllers may damage the system or cause dangerous situations.

Therefore, this work developed a strategy to apply safely the evolutionary system to

industry by pre-training it to behave properly, using a traditional approach as a model. It

performs in simulation the initial evolutionary trial-and-error phase, and transfers the result

to be refined by evolution in the field. The simulator developed in Section 7.1 can be used

to train the black box controller developed in Section 6.4 or any other controller that can be

described algorithmically in C language, such as a neural network or fuzzy logic system, to

behave according to a traditional approach, such as a PID controller (Proportional-Integral-

Derivative controller).

 The illustration in Figure 9.1 describes how the developed system can be

adapted to be used in industrial control applications. To avoid damaging the controlled

device, the evolutionary controller can be pre-trained by applying a biased simulated

evolution to train it to behave according to the traditional approach to such control, as it

was described in Sections 6.2 and 7.1. After the training phase, the evolving controller can

safely actuate on the device and can be evolved by a supervisory evolutionary system to

achieve the appropriate settings specified by the user. The fitness can be calculated by

comparing the device settings to the current behaviour and giving a proportional score. If

something goes wrong, the supervisory system can reconnect the original controller to

prevent the device from being damaged until the evolutionary controller reaches a safe

level again.

 225

Application in controlling a real device

Traditional
Approach

Evolving
Controller

Evolutionary
System

Settings

Fitness

Resultant Behaviour

Mux Control

Controlled
Device

Behaviour

Settings

Training

Pre-training avoids mal-functioning

Traditional
Approach

Simulated
Inputs

Evolving
Controller

Output
Comparison

Training

Figure 9.1 – A pre-trained evolutionary controller connected to a real device.

9.3 Suggestions for Future Research

 To provide a practical focus to the work described in the thesis the

developed evolutionary system has been confined to the task-behaviour of collision-free

navigation. However, the methodology described here may be generalized to many other

applications, such as object fetching and collection, environment mapping, cleaning and

foraging; and some collective tasks as well, such as pushing heavy objects, task sharing,

team cooperation and competition.

 226

 An investigation of other genetic strategies such as species adaptation

genetic algorithms can improve the system performance in terms of accuracy and speed.

The implemented techniques have shown good performances, but if new approaches can

reduce the necessary time to achieve an efficient behaviour, longer lifetimes can be

employed, which can better evaluate the robot ability to perform the task.

 The gradual increase of the complexity of the evolved task-behaviours will

be a primary subject in future work. A limited robot population is constraining the possible

applications of the system. Therefore, more robots will be built, providing more diversity

that can be combined into collective tasks where cooperation and competitive behaviours

can emerge.

 The self-adapting distributed controller developed in this work can be

adapted to applications in situations where the designer cannot easily interfere and change

the configuration of the robots and also where the conditions of the environment where the

robots are going to work are difficult to foresee. Such applications are space exploration,

underwater search and rescue, and rescue robots for large-scale disasters such as fire, flood,

and earthquakes. The team (population) of robots can be pre-programmed and trained

according to a preconceived solution (as demonstrated in the experiments) and can

continuously adapt when deployed in the field to variations in the environment conditions,

without depending on the designer to modify their configuration. Different teams of robots

working in different environments that are distant from each other can learn or adapt to

different behaviours, according to their experiences. These isolated populations can still

communicate (via the internet, for example) and exchange the learned skills so that a team

of robots that has never faced a particular situation or disaster can be taught the proper

behaviour to deal with it from the experiences of another team. Such future work will

probably have to deal with new arising concepts such as a robotic common knowledge, or

culture, or even a robotic civilisation.

 227

References

[Ale66] Aleksander, I., Self-Adaptive Universal Logic Circuits. In IEE Electronic
Letters, v. 2, pp. 321-322, 1966.

[Ale84] Aleksander, I., Thomas, W. V., and Bowden, P. A., WISARD: a Radical Step
Forward in Image Recognition. In Sensor Review, v. 4, n. 3, pp. 120-124, 1984.

[Ale90] Aleksander, I. and Morton, H., An Introduction to Neural Computing.
Chapman and Hall (Ed.), London, UK, ISBN: 0412377802, 240p., 1990.

[Ang94a] Angeline, P. J., Saunders, G., and Pollack, J. B., An Evolutionary Algorithm
That Constructs Recurrent Networks. In IEEE Transactions on Neural Networks, v. 5,
n. 1, ISSN: 1045-9227, pp. 54-65, 1994.

[Ang94b] Angeline, P. J., Genetic Programming and Emergent Intelligence. In Advances
in Genetic Programming, Chapter 4, Kinnear, K. E. Jr. (Ed.), Publisher: MIT Press, pp.
75-98, 1994.

[Aus88] Austin, J., Grey Scale N Tuple Processing. Proceedings of the 4th International
Conference on Pattern Recognition (Lecture Notes in Computer Science, V. 301),
Cambridge, UK, Kittler, J. (Ed.), Publisher: Springer-Verlag, Berlin, Germany, pp.
110-120, 1988.

[Aus94] Austin, J., A Review of RAM-Based Neural Networks. Proceedings of the
Fourth International Conference on Microelectronics for Neural Networks and Fuzzy
Systems - MICRONEURO94, Publisher: IEEE Computer Society Press, pp. 58-66,
1994.

[Aus98] Austin, J., RAM-Based Neural Networks, a Short History. In RAM-Based
Neural Networks, Austin, J. (Ed.), York, UK, pp. 3-17, 1998.

[Bac91] Back, T., Hoffmeister, F., and Schwefel, H., A Survey of Evolution Strategies.
Proceedings of the Fourth International Conference on Genetic Algorithms, Belew, R.
and Booker, L. (Eds.), Publisher: Morgan Kaufmann, San Mateo, CA, USA, pp. 2-9,
1991.

[Ban93] Banzhaf, W., Genetic Programming for Pedestrians. Proceedings of the 5th
International Conference on Genetic Algorithms - ICGA-93, University of Illinois at
Urbana Champaign, Forrest, S. (Ed.), Publisher: Morgan Kaufmann, pp. 17-21, 1993.

[Ban94] Banzhaf, W., Genotype-Phenotype Mapping and Neutral Variation - A Case
Study in Genetic Programming. In Parallel Problem Solving From Nature - PPSN III,
Davidor, Y., Schwefel, H. P., and Manner, R. (Eds.), Publisher: Springer Verlag,
Berlin, Germany, pp. 322-332, 1994.

[Bar98] Barnett, L., Ruggedness and Neutrality: The NKP Family of Fitness
Landscapes. Proceedings of the Sixth International Conference on Artificial Life,
Adami, C., Belew, R., Kitano, H. et. al. (Eds.), Publisher: MIT Press, pp. 17-27, 1998.

 228

[Bed97] Bedau, M. A., Snyder, E., Brown, C. T., and Packard, N., A Comparison of
Evolutionary Activity in Artificial Evolving Systems and in the Biosphere. Proceedings
of the Fourth European Conference on Artificial Life, Husbands, P. and Harvey, I.
(Eds.), Publisher: MIT Press/Bradford Books, pp. 125-134, 1997.

[Bee91] Beer, R., Toward the Evolution of Dynamical Neural Networks for Minimally
Cognitive Behaviour. Proceedings of the Fourth International Conference on
Simulation of Adaptive Behaviour, Maes, P., Mataric, M., Meyer, J. A. et. al. (Eds.),
Publisher: MIT Press, Cambridge, MA, USA, pp. 421-429, 1991.

[Bla98] Blair, A., Sklar, E., and Funes, P., Co-Evolution, Determinism and Robustness.
In Simulated Evolution and Learning - Lecture Notes in Artificial Intelligence 1585,
McKay, B. et. al. (Eds.), Publisher: Springer-Verlag, Berlin, Germany, ISSN: 0302-
9743, pp. 389-396, 1998.

[Ble59] Bledsoe, W. and Browning, I., Pattern Recognition and Reading by Machine.
Proceedings of the Eastern Joint Computer Conference, Birmingham, UK, pp. 225-
232, 1959.

[Bli96] Blickle, T., Evolving Compact Solutions in Genetic Programming: A Case
Study. Proceedings of the International Conference on Evolutionary Computation:
Parallel Problem Solving From Nature IV, v. 1141 of LNCS, Voigt, H., Ebeling, W.,
Rechenberg, I. et. al. (Eds.), Publisher: Springer Verlag, Berlin, Germany, pp. 564-
573, 1996.

[Bot96] Botelho, S. C., Simoes, E. D. V., Uebel, L. F., and Barone, D. A. C., High
Speed Neural Control for Robot Navigation. Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Beijing, China, pp. 421-429, 1996.

[Bro00] Brooks, R. A., From Robot Dreams to Reality. In Nature, v. 406, n. 6799,
ISSN: 0028-0836, pp. 945-947, 2000.

[Bro91a] Brooks, R. A., Elephants Don't Play Chess. In Designing Autonomous Agents:
Theory and Practice From Biology to Engineering and Back, Publisher: MIT Press,
Cambridge, MA, USA, pp. 3-15, 1991.

[Bro91b] Brooks, R. A., Intelligence Without Reason. Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, Publisher: Morgan Kauffman,
San Mateo, CA, USA, pp. 569-95, 1991.

[Bro92] Brooks, R. A., Artificial Life and Real Robots. Proceedings of the First
European Conference on Artificial Life: Toward a Practice of Autonomous Systems,
Varela, F. J. and Bourgine, P. (Eds.), Publisher: MIT Press / Bradford Books,
Cambridge, MA, USA, pp. 3-10, 1992.

[Bul95] Bullock, S. G., Co-Evolutionary Design: Implications for Evolutionary
Robotics. Report ID: Cognitive Science Research Paper Serial No. CSRP 384, The
University of Sussex School of Cognitive and Computing Sciences, Falmer Brighton,
BN1 9QH, England, UK, 10p., 1995.

[Cal95] Calabretta, R., Nolfi, S., and Parisi, D., An Artificial Life Model for Predicting
the Tertiary Structure of Unknown Proteins That Emulates the Folding Process. In
Advances in Artificial Life - Lecture Notes in Artificial Intelligence, v. 929, Publisher:
Springer-Verlag, Berlin, Germany, pp. 862-875, 1995.

[Cam99] Campbell, N. A., Reece, J. B., and Mitchell, L. A., Biology. 1st ed., Publisher:
Addison Wesley Longman, California, USA, 1999.

 229

[Cha98] Chavas, J., Corne, C., Horvai, P., Kodjabachian, J., and Meyer, J. A.,
Incremental Evolution of Neural Controllers for Robust Obstacle-Avoidance in
Khepera. Proceedings of the First European Workshop on Evolutionary Robotics -
EvoRobot'98, Apr. 1998, Paris, France, Husbands, P. and Meyer, J. A. (Eds.),
Publisher: Springer Verlag, pp. 227-247, 1998.

[Chi93] Chiaberge, M., Del Corso, D., Gregoretti, F., and Reyneri, L. M., A Neural
Network Chip Using CPWM Modulation. In New Trends in Neural Computation
(From Proceedings of the International Workshop on Artificial Neural Networks -
IWANN93, June 1993, Sitges, Spain), Publisher: Springer-Verlag, pp. 420-425, 1993.

[Chi95] Chiaberge, M., Sologuren, M. E., and Reyneri, L. M., A Pulse Stream System
for Low-Power Neuro-Fuzzy Computation. In IEEE Transactions on Circuits and
Systems - Fundamental Theory and Applications, v. 42, n. 11, Publisher: IEEE Press,
New York, USA, ISSN: 1057-7122 , pp. 946-954, 1995.

[Chi96] Chiaberge, M., Sologuren, E. M., and Reyneri, L. M., A Low-Power Neuro-
Fuzzy Pulse Stream System. Proceedings of the Fifth International Conference on
Microelectronics for Neural Networks and Fuzzy Systems - MICRONEURO96, Feb.,
1996, Lausanne, Switzerland, Publisher: IEEE Computer Society Press, pp. 191-199,
1996.

[Cli92] Cliff, D., Harvey, I., and Husbands, P., Incremental Evolution of Neural
Network Architectures for Adaptive Behaviour. Report ID: Cognitive Science
Research Paper Serial No. CSRP 256, The University of Sussex School of Cognitive
and Computing Sciences, Falmer Brighton, BN1 9QH, England, UK, 15p., 1992.

[Cli94] Cliff, D., Harvey, I., and Husbands, P., General Visual Robot Controller
Networks Via Artificial Evolution. Report ID: Cognitive Science Research Paper Serial
No. CSRP 318, The University of Sussex School of Cognitive and Computing
Sciences, Falmer Brighton, BN1 9QH, England, UK, 11p., 1994.

[Cli96] Cliff, D. and Miller, G. F., Co-Evolution of Pursuit and Evasion II: Simulation
Methods and Results. Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior - SAB96: From Animals to Animats 4, Maes, P.,
Mataric, M., Meyer, J. A. et. al. (Eds.), Publisher: MIT Press, pp. 506-515, 1996.

[Cli97] Cliff, D., Harvey, I., and Husbands, P., Artificial Evolution of Visual Control
Systems for Robots. In From Living Eyes to Seeing Machines, Srinivisan, M. and
Venkatesh, S. (Eds.), Publisher: Oxford University Press, pp. 126-157, 1997.

[Dau98] Dautenhahn, K. and Nehaniv, C., Artificial Life and Natural Stories.
Proceedings of the Third International Symposium on Artificial Life and Robotics -
AROB III'98, v. 2, January 19-21, 1998, Beppu, Japan, pp. 435-439, 1998.

[Fic00] Ficici, S. G. and Pollack, J. B., Effects of Finite Populations on Evolutionary
Stable Strategies. Proceedings of the 2000 Genetic and Evolutionary Computation
Conference, Las Vegas, Nevada, USA, Whitley, L. D., Goldberg, D., Cantu-Paz, E. et.
al. (Eds.), Publisher: Morgan-Kaufmann, ISBN: 1-55860-708-0, pp. 927-934, 2000.

[Fic99] Ficici, S. G., Watson, R. A., and Pollack, J. B., Embodied Evolution: A
Response to Challenges in Evolutionary Robotics. Proceedings of the Eighth European
Workshop on Learning Robots, Wyatt, J. L. and Demiris, J. (Eds.), pp. 14-22, 1999.

[Fil92] Filho, E. C. D. B., Fairhurst, M. C., and Bisset, D. L., Analysis of Saturation
Problem in RAM-Based Neural Network. In Electronics Letters, v. 28, n. 4, pp. 345-
346, 1992.

 230

[Flo01] Floreano, D., Mondada, F., and Nolfi, S., Co-Evolution and Ontogenetic
Change in Competing Robots. In Advances in the Evolutionary Synthesis of Intelligent
Agents, Publisher: MIT Press, Cambridge, MA, USA, ISBN: 0-262-16201-6, 30p.,
2001.

[Flo94] Floreano, D. and Mondada, F., Automatic Creation of an Autonomous Agent:
Genetic Evolution of a Neural-Network Driven Robot. Proceedings of the 3rd
International Conference on Simulation of Adaptive Behavior - SAB'94, From
Animals to Animats 3, Cliff, D., Husbands, P., Meyer, J. A. et. al. (Eds.), Publisher:
MIT Press/Bradford Books, Cambridge, MA, USA, pp. 421-430, 1994.

[Flo96a] Floreano, D. and Mondada, F., Evolution of Homing Navigation in a Real
Mobile Robot. In IEEE Transactions on Systems, Man, and Cybernetics - Part B:
Cybernetics, v. 26, n. 3, pp. 396-407, 1996.

[Flo96b] Floreano, D. and Mondada, F., Evolution of Plastic Neurocontrollers for
Situated Agents. Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior, From Animals to Animats 4, Maes, P., Mataric, M., Meyer, J.-A.
et. al. (Eds.), Publisher: MIT Press/Bradford Book, Cambridge, MA, USA, pp. 402-
410, 1996.

[Flo96c] Floreano, D., Evolutionary Re-Adaptation of Neurocontrollers in Changing
Environments. Proceedings of the Conference on Intelligent Technologies, v. 2,
Kosice, Slovakia, Sincak, P. (Ed.), Publisher: Efa Press, 10p., 1996.

[Flo97a] Floreano, D. and Nolfi, S., Adaptive Behavior in Competing Co-Evolving
Species. Proceedings of the Fourth European Conference on Artificial Life, Husbands,
P. and Harvey, I. (Eds.), Publisher: MIT Press, Cambridge, MA, USA, pp. 378-387,
1997.

[Flo97b] Floreano, D., Reducing Human Design and Increasing Adaptability in
Evolutionary Robotics. In Evolutionary Robotics I, Gomi, T. (Ed.), Publisher: AAI
Books, Ontario, Canada, pp. 187-220, 1997.

[Flo98a] Floreano, D., Nolfi, S., and Mondada, F., Competitive Co-Evolutionary
Robotics: From Theory to Practice. Proceedings of the Fifth International Conference
on Simulation of Adaptive Behavior, Pfeifer, R. (Ed.), Publisher: MIT Press-Bradford
Books, Cambridge, MA, USA, pp. 515-524, 1998.

[Flo98b] Floreano, D. and Mondada, F., Hardware Solutions for Evolutionary Robotics.
Proceedings of the First European Workshop on Evolutionary Robotics, Husbands, P.
and Meyer, J.-A. (Eds.), Publisher: Springer Verlag, Berlin, Germany, pp. 137-151,
1998.

[Fun00a] Funes, P., Lapat, L., and Pollack, J. B., EvoCAD: Evolution-Assisted Design
(Poster Abstract). Proceedings of the Artificial Intelligence in Design, Key Centre of
Design Computing and Cognition, University of Sidney, Australia, pp. 21-24, 2000.

[Fun00b] Funes, P. and Pollack, J. B., Measuring Progress in Coevolutionary
Competition. Proceedings of the Sixth International Conference on the Simulation of
Adaptive Behavior: From Animals to Animats 6, Publisher: MIT Press, Meyer, J. et.
al. (EDs.), pp. 450-459, 2000.

[Fun98] Funes, P., Sklar, E., Juillé, H., and Pollack, J. B., Animal-Animat Coevolution:
Using the Animal Population As Fitness Function. Proceedings of the Fifth
International Conference on Simulation of Adaptive Behavior, From Animals to
Animats 5, Pfeifer, R. (Ed.), Publisher: MIT Press, pp. 525-533, 1998.

 231

[Fun99] Funes, P. and Pollack, J. B., Computer Evolution of Buildable Objects. In
Evolutionary Design by Computers, Bentley, P. (Ed.), Publisher: Morgan Kaufmann,
San Francisco, USA, pp. 387-403, 1999.

[Gar94a] Garis, H. D., CAM-BRAIN: The Genetic Programming of an Artificial Brain
Which Grows/Evolves at Electronic Speeds in a Cellular Automata Machine.
Proceedings of the 1st IEEE International Conference on Evolutionary Computation -
ICEC'94, v. 11, pp. 337-339, 1994.

[Gar94b] Garis, H. D., Evolution of an Artificial Brain Via Cellular Automata Based
GenNets. Proceedings of the International Symposium on Robotics and
Manufacturing, Maui, Hawaii, USA, 9p., 1994.

[Gar97] Garis, H. D., One Chip Evolvable Hardware : 1C-EHW. Proceedings of the
International Conference on Artificial Neural Networks and Genetic Algorithms,
Norwich, UK, 7p., 1997.

[Gra96] Grand, S., Cliff, D., and Malhotra, A., Creatures: Artificial Life Autonomous
Software Agents for Home Entertainment. Report ID: Cognitive Science Research
Paper Serial No. CSRP 434, The University of Sussex School of Cognitive and
Computing Sciences, Falmer Brighton, BN1 9QH, England, UK, 8p., 1996.

[Gru94] Gruau, F., Automatic Definitions of Modular Neural Networks. In Adaptive
Behavior, v. 3, n. 2, pp. 151-183, 1994.

[Har92] Harvey, I., Species Adaptation Genetics Algorithms: A Basis for a Continuing
SAGA. Proceedings of the First European Conference on Artificial Life: Toward a
Practice of Autonomous Systems, Varela, F. J. and Bourgine, P. (Eds.), Publisher:
MIT Press/Bradford Books, Cambridge, MA, USA, pp. 346-354, 1992.

[Har93a] Harvey, I., Evolutionary Robotics and SAGA: the Case for Hill Crawling and
Tournament Selection. In Artificial Life III, Langton, C. (Ed.), Publisher: Addison-
Wesley, pp. 299-326, 1993.

[Har93b] Harvey, I., Husbands, P., and Cliff, D., Genetic Convergence in a Species of
Evolved Robot Control Architectures. Report ID: Cognitive Science Research Paper
Serial No. CSRP 267, The University of Sussex School of Cognitive and Computing
Sciences, Falmer Brighton, BN1 9QH, England, UK, 14p., 1993.

[Har93c] Harvey, I., Husbands, P., and Cliff, D., Issues in Evolutionary Robotics. In
From Animals to Animats 2: Proceedings of the Second International Conference on
Simulation of Adaptive Behavior, Roitblat, Meyer, and Wilson (Eds.), Publisher: The
MIT Press/Bradford Book, Cambridge, MA, USA, pp. 364-373, 1993.

[Har94] Harvey, I., Husbands, P., and Cliff, D., Seeing the Light: Artificial Evolution,
Real Vision. Report ID: Cognitive Science Research Paper Serial No. CSRP 317, The
University of Sussex School of Cognitive and Computing Sciences, Falmer Brighton,
BN1 9QH, England, UK, 11p., 1994.

[Har96] Harvey, I. and Thompson, A., Through the Labyrinth Evolution Finds a Way: a
Silicon Ridge. Proceedings of the First International Conference on Evolvable
Systems: From Biology to Hardware - ICES96, Oct. 7-8, 1996, Tsukuba, Japan,
Higuchi, T. and Iwata, M. (Eds.), Publisher: Springer-Verlag LNCS, ISBN:
3540631739, pp. 406-422, 1996.

[Har97a] Harvey, I., Artificial Evolution for Real Problems. In Evolutionary Robotics,
Gomi, T. (Ed.), Publisher: AAI Books, Ontario, Canada, pp. 187-220, 1997.

 232

[Har97b] Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi, N., Evolutionary
Robotics: the Sussex Approach. In Robotics and Autonomous Systems, v. 20, pp. 205-
224, 1997.

[Har97c] Harvey, I., Is There Another New Factor in Evolution? In Evolutionary
Computation, v. 4, n. 3, pp. 311-327, 1997.

[Har97d] Harvey, I. and Bossomaier, T., Time Out of Joint: Attractors in Asynchronous
Random Boolean Networks. Proceedings of the Fourth European Conference on
Artificial Life, Husbands, P. and Harvey, I. (Eds.), Publisher: MIT Press, pp. 67-75,
1997.

[Hay95] Haynes, T., Sen, S., Schoenefeld, D., and Wainwright, R., Evolving Multiagent
Coordination Strategies With Genetic Programming. Report ID: Technical Report
UTULSA-MCS-95-04, The University of Tulsa, USA, 17p., 1995.

[Hem97] Hemelrijk, C. K., Cooperation Without Genes, Games Or Cognition.
Proceedings of the Fourth European Conference on Artificial Life - ECAL97,
Publisher: MIT Press, Cambridge, MA, USA, ISBN: 0-262-58157-4, pp. 511-520,
1997.

[Hig94] Higuchi, T., Iba, H., and Manderick, B., Evolvable Hardware. In Massively
Parallel Artificial Intelligence, Publisher: MIT Press, pp. 398-421, 1994.

[Hig96a] Higuchi, T., Iwata, M., Kajitani, I., Yamada, B., Manderick, B., Hirao, Y.,
Murakawa, M., Yoshizawa, S., and Furuya, T., Evolvable Hardware With Genetic
Learning. Proceedings of the IEEE International Symposium on Circuits and Systems -
ISCAS96, v. 4, pp. 29-32, 1996.

[Hig96b] Higuchi, T., Iwata, M., Kajitani, I., Murakawa, M., Yoshizawa, S., and Furuya,
T., Hardware Evolution at Gate and Function Levels. Proceedings of the Biologically
Inspired Autonomous Systems: Computation, Cognition and Action, Mar., 1996,
Durham, North Carolina, USA, 6p., 1996.

[Hol62] Holland, J. H., Outline for a Logical Theory of Adaptive Systems. In Journal of
the Association for Computing Machinery, v. 3, pp. 297-314, 1962.

[Hus93] Husbands, P., Harvey, I., and Cliff, D., Analysing Recurrent Dynamical
Networks Evolved for Robot Control. Report ID: Cognitive Science Research Paper
Serial No.CSRP 265, The University of Sussex School of Cognitive and Computing
Sciences, Falmer Brighton, BN1 9QH, England, UK, 13p., 1993.

[Hus95] Husbands, P., Harvey, I., and Cliff, D., Circle in the Round: State Space
Attractors for Evolved Sighted Robots. In Robotics and Autonomous Systems, v. 15, n.
1-2, pp. 83-106, 1995.

[Hus98] Husbands, P., Evolving Robot Behaviours With Diffusing Gas Networks.
Proceedings of the First European Workshop on Evolutionary Robotics - EvoRobot98,
Husbands, P. and Meyer, J. (Eds.), Publisher: Springer Verlag, pp. 123-136, 1998.

[Iba97] Iba, H., Iwata, M., and Higuchi, T., Gate-Level Evolvable Hardware:
Empirical Study and Application. In Evolutionary Algorithms in Engineering
Applications, Publisher: Springer-Verlag, pp. 259-276, 1997.

[Jak95] Jakobi, N., Husbands, P., and Harvey, I., Noise and the Reality Gap: The Use
of Simulation in Evolutionary Robotics. In Advances in Artificial Life: Proceedings of
the Third European Conference on Artificial Life - ECAL95, LNAI 929, Moran et. al.
(Eds.), Publisher: Springer Verlag, pp. 704-720, 1995.

 233

[Jak96] Jakobi, N., Facing The Facts: Necessary Requirements For The Artificial
Evolution of Complex Behaviour. Report ID: Cognitive Science Research Paper Serial
No. CSRP 422, The University of Sussex School of Cognitive and Computing
Sciences, Falmer Brighton, BN1 9QH, England, UK, 9p., 1996.

[Jak97a] Jakobi, N., Evolutionary Robotics and the Radical Envelope of Noise
Hypotesis. In Adaptive Behavior, v. 6, n. 1, pp. 131-174, 1997.

[Jak97b] Jakobi, N., Half-Backed, Ad Hoc, and Noisy: Minimal Simulations for
Evolutionary Robotics. Proceedings of the Fourth European Conference on Artificial
Life, Husbands, P. a. H. I. (Ed.), Publisher: MIT Press, pp. 348-357, 1997.

[Jak98a] Jakobi, N., Husbands, P., and Smith, T., Robot Space Exploration by Trial and
Error. Proceedings of the Third Annual Conference on Genetic Programming,
University of Wisconsin, Madison, Wisconsin, Koza, J., Banzhaf, W., Chellapilla, K.
et. al. (Eds.), Publisher: Morgan Kaufmann, pp. 807-815, 1998.

[Jak98b] Jakobi, N. and Quinn, M., Some Problems (and a Few Solutions) for Open-
Ended Evolutionary Robotics. Proceedings of the First European Workshop on
Evolutionary Robotics - EvoRobot98, Husbands, P. and Meyer, J.-A. (Eds.), Publisher:
Springer Verlag, 15p., 1998.

[Kan97] Kanada, Y., Web Pages That Reproduce Themselves By Javascript. In ACM
SIGPLAN Notices, v. 32, n. 11, ISSN: 0362-1340, pp. 49-56, 1997.

[Kep94] Kephart, J. O., A Biologically Inspired Immune System for Computers. In
Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis
and Simulation of Living Systems, Brooks, R. A. and Maes, P. (Eds.), Publisher: MIT
Press, Cambridge, MA, USA, pp. 130-139, 1994.

[Key97a] Keymeulen, D., Durantez, M., Konaka, K., Kuniyoshi, Y., and Higuchi, T., An
Evolutionary Robot Navigation System Using a Gate-Level Evolvable Hardware. In
Evolvable Systems: From Biology to Hardware, Lecture Notes in Computer Science
1259, Higuchi, Iwata, and Liu (Eds.), Publisher: Springer-Verlag, pp. 195-209, 1997.

[Key97b] Keymeulen, D., Konaka, K., Iwata, M., Kuniyoshi, Y., and Higuchi, T.,
Evolvable Reactive Execution System Using Reconfigurable Hardware: a Robot
Navigation System Case Study . In Working Notes of the American Association for
Artificial Intelligence (AAAI) Fall Symposium on Model-Directed Autonomous
Systems, Publisher: AAAI Press, 8p., 1997.

[Key97c] Keymeulen, D., Konaka, K., Iwata, M., Kuniyoshi, Y., and Higuchi, T., Off-
Line Evolution for a Robot Navigation System Based on a Gate-Level Evolvable
Hardware. Proceedings of the 4th European Conference on Artificial Life - ECAL97,
Jul. 28-31, Brighton, UK, Publisher: MIT Press/Bradford Books, Cambridge, MA,
USA, 11p., 1997.

[Key97d] Keymeulen, D., Konaka, K., Iwata, M., Kuniyoshi, Y., and Higuchi, T., Robot
Learning Using Gate-Level Evolvable Hardware. Proceedings of the Sixth European
Workshop on Learning Robots - EWLR-6, Brighton, UK, Birk, A. and Demiris, J.
(Eds.), Publisher: Springer Verlag, pp. 173-187, 1997.

[Key98] Keymeulen, D., Iwata, M., Konaka, K., Suzuki, R., Kuniyoshi, Y., and
Higuchi, T., Off-Line Model-Free and on-Line Model-Based Evolution for Tracking
Navigation Using Evolvable Hardware. Proceedings of the First European Workshop
on Evolutionary Robotics, Publisher: Springer Verlag, pp. 208-223, 1998.

 234

[Kni48] Knight, R. L., Dictionary of Genetics. 1st ed., Waltham (Ed.), Publisher: Mass.:
Chronica Botanica Company, 1948.

[Kod98] Kodjabachian, J. and Meyer, J. A., Evolution and Development of Modular
Control Architectures for 1-D Locomotion in Six-Legged Insects. In Connection
Science: Special Issue on BioRobotics, v. 10, n. 3-4, pp. 211-237, 1998.

[Koz92] Koza, J. R. and Rice, J., Automatic Programming of Robots Using Genetic
Programming. Proceedings of the National Conference on Artificial Intelligence of the
American Association for Artificial Intelligence - AAAI-92, Publisher: MIT Press,
Cambridge, MA, USA, pp. 194-201, 1992.

[Koz97] Koza, J. R., Bennett III, F. H., Hutchings, J. L., Bade, S. L., Keane, M. A., and
Andre, D., Rapidly Reconfigurable Field-Programmable Gate Arrays for Accelerating
Fitness Evaluation in Genetic Programming. Proceedings of the Genetic Programming
Conference: Late Breaking Papers, Stanford University, Stanford, CA, USA, Koza, J.
R. (Ed.), Publisher: Stanford University Bookstore, Stanford, CA, USA, pp. 121-131,
1997.

[Koz98] Koza, J. R., Genetic Programming. In Encyclopedia of Computer Science and
Technology, Williams, J. G. and Kent, A. (Eds.), Publisher: Marcel-Dekker, pp. 29-43,
1998.

[Lan96] Langdon, W. B., Data Structures and Genetic Programming. In Advances in
Genetic Programming 2, Chapter 20, Angeline, P. and Kinnear, K. E. Jr. (Eds.),
Publisher: MIT Press, Cambridge, MA, USA, ISBN: 0-262-01158-1, pp. 395-414,
1996.

[Lan97] Langdon, W. B. and Poli, R., Genetic Programming in Europe. Report ID:
Report of the EvoGP Working Group on Genetic Programming of the European
Network of Excellence in Evolutionary Computing, Centrum voor Wiskunde en
Informatica, Kruislaan, 413, NL-1098 SJ, Amsterdam, Holland, 18p., 1997.

[Lan89] Langton, C. G., Artificial Life. In Artificial Life, Santa Fe Institute Studies in
the Sciences of Complexity, Langton, C. G. (Ed.), Publisher: Addison-Wesley,
Redwood City, USA, pp. 1-44, 1989.

[Lay99a] Layzell, P., Inherent Qualities of Circuits Designed by Artificial Evolution: A
Preliminary Study of Populational Fault Tolerance. Proceedings of the First
NASA/DoD Workshop on Evolvable Hardware - EH99, Jul. 19 - 21, 1999, Jet
Propulsion Laboratory, California Institute of Technology, USA, Stoica, A.,
Keymeulen, D., and Lohn, J. (Eds.), Publisher: IEEE Computer Society Press, pp. 85-
86, 1999.

[Lay99b] Layzell, P., Reducing Hardware Evolution's Dependency on FPGAs.
Proceedings of the 7th International Conference on Microelectronics for Neural, Fuzzy
and Bio-Inspired Systems - MicroNeuro '99, Publisher: IEEE Computer Society Press,
pp. 171-178, 199.

[Ler76] Lerner, I. M. and Libby, W. J., Heredity, Evolution and Society. 2nd ed.,
Publisher: W.H.Freeman and Company, San Francisco, CA, USA, pp. 119-174, 1976.

[Lip00] Lipson, H. and Pollack, J. B., Automatic Design and Manufacture of Robotic
Lifeforms. In Nature, v. 406, pp. 974-978, 2000.

[Lud99] Ludermir, T., Carvalho, A., Brage, A., and Souto, M., Weightless Neural
Models: a Review of Current and Past Works. In Neural Computing Surveys, v. 2, pp.
41-61, 1999.

 235

[Lun97] Lund, H. H., Hallam, J., and Lee, W. P., Evolving Robot Morphology.
Proceedings of the IEEE Fourth International Conference on Evolutionary
Computation, Publisher: IEEE Press, 6p., 1997.

[Mat93] Mataric, M. J., Kin Recognition, Similarity, and Group Behavior. Proceedings
of the Fifteenth Annual Conference of the Cognitive Science Society, Boulder, CO,
USA, pp. 705-710, 1993.

[Mat94] Mataric, M. J., Learning to Behave Socially. In From Animals to Animats 3:
Proceedings of the Third International Conference on Simulation of Adaptive
Behavior - SAB-94, Meyer, J. A. et. al. (Eds.), pp. 453-462, 1994.

[Mat95] Mataric, M. J., Issues and Approaches in the Design of Collective Autonomous
Agents. In Robotics and Autonomous Systems, v. 16, n. 2-4, pp. 321-331, 1995.

[Mat96] Mataric, M. J., Challenges In Evolving Controllers for Physical Robots. In
Evolutional Robotics: Special Issue of Robotics and Autonomous Systems, v. 19, n. 1,
pp. 67-83, 1996.

[Mat97a] Mataric, M. J., Behaviour-Based Control: Examples From Navigation,
Learning, and Group Behaviour. In Journal of Experimental and Theoretical Artificial
Intelligence: Special Issue on Software Architectures for Physical Agents, v. 9, n. 2-3,
Hexmoor, Horswill, and Kortenkamp (Eds.), pp. 323-336, 1997.

[Mat97b] Mataric, M. J., Reinforcement Learning in the Multi-Robot Domain. In
Autonomous Robots, v. 4, n. 1, pp. 73-83, 1997.

[Mat97c] Mataric, M. J., Using Communication to Reduce Locality in Distributed Multi-
Agent Learning. Proceedings of the National Conference on Artificial Intelligence of
the American Association for Artificial Intelligence - AAAI-97, Providence, Rhode
Island, pp. 643-648, 1997.

[Mat98a] Mataric, M. J., Behavior-Based Robotics As a Tool for Synthesis of Artificial
Behavior and Analysis of Natural Behavior. In Trends in Cognitive Science, v. 2, n. 3,
pp. 82-87, 1998.

[Mat98b] Mataric, M. J., Reducing Locality Through Communication in Distributed
Multi-Agent Learning. In Journal of Experimental and Theoretical Artificial
Intelligence: Special Issue on Learning in Distributed Artificial Intelligence Systems,
v. 10, n. 3, Weiss, G. (Ed.), pp. 357-369, 1998.

[May96] Mayley, G., Landscapes, Learning Costs and Genetic Assimilation. In
Evolutionary Computation: Special Issue on Evolution, Learning, and Instinct: 100
Years of the Baldwin Effect, v. 4, n. 3, Turney, P., Whitley, D., and Anderson, R.
(Eds.), pp. 213-234, 1996.

[Maz98] Mazoyer, J. and Rapaport, I., Inducing an Order on Cellular Automata by a
Grouping Operation. In Lecture Notes in Computer Science: STACS '98, v. 1373 , pp.
116-127, 1998.

[Mee96] Meeden, L. A., An Incremental Approach to Developing Intelligent Neural
Network Controllers for Robots. In IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics, v. 26, n. 3, pp. 474-485, 1996.

[Men92] Mendenhall, W. and Sincich, T., Statistics for Engineering and the Sciences.
3rd ed., Dellen and Macmillan (Eds.), 1992.

[Mey97] Meyer, J. A., From Natural to Artificial Life: Biomimetic Mechanisms in
Animat Design. In Robotics and Autonomous Systems, v. 22, pp. 3-21, 1997.

 236

[Mic97] Michaud, F. and Mataric, M. J., Behavior Evaluation and Learning From an
Internal Point of View. Proceedings of the Florida AI Research Symosium - FLAIRS-
97 - Special Session ROBOLEARN-97: Evaluating Robot Learning, May 11-14, 1997,
Daytona Beach, FL, USA, 10p., 1997.

[Mic95] Michel, O., An Artificial Life Approach for the Synthesis of Autonomous
Agents. Proceedings of the European Conference on Artificial Evolution, Alliot, J.,
Lutton, E., Ronald, E. et. al. (Eds.), Publisher: Springer-Verlag, pp. 220-231, 1995.

[Mig95] Miglino, O., Lund, H. H., and Nolfi, S., Evolving Mobile Robots in Simulated
and Real Environments. In Artificial Life, v. 2, pp. 417-434, 1995.

[Mil94] Millery, F. and Cliff, D., Co-Evolution of Pursuit and Evasion I: Biological
and Game-Theoretic Foundations. Report ID: Technical Report CSRP311, The
University of Sussex School of Cognitive and Computing Sciences, Falmer Brighton,
BN1 9QH, England, UK, 40p., 1994.

[Mit95] Mitchell, M., Genetic Algorithms and Artificial Life. In Artificial Life- An
Overview, Langton, C. G. (Ed.), Publisher: MIT Press, pp. 267-289, 1995.

[Mon93] Mondada, F. and Franzi, E., Biologically Inspired Mobile Robot Control
Algorithms. Proceedings of the NFP-PNR 23 - Symposium on Artificial Intelligence
and Robotics of the Swiss National Research Program - NFP, Oct. 22, 1993, Zurich,
Switzerland, pp. 47-60, 1993.

[Mon95] Mondada, F. and Floreano, D., Evolution of Neural Control Structures: Some
Experiments on Mobile Robots. In Robotics and Autonomous Systems, v. 16, pp. 183-
195, 1995.

[Mon96] Mondada, F. and Floreano, D., Evolution and Mobile Autonomous Robotics. In
Towards Evolvable Hardware, Sanchez, E. and Tommasini, M. (Eds.), Publisher:
Springer Verlag, Berlin, Germany, pp. 221-249, 1996.

[Mor96] Moriarty, D. E. and Miikkulainen, R., Evolving Obstacle Avoidance Behavior
in a Robot Arm. Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior - SAB96: From Animals to Animats, Maes, P., Mataric, M.,
Meyer, J.-A. et. al. (Eds.), Publisher: MIT Press, Cambridge, MA, USA, pp. 468-475,
1996.

[Mot96] Motorola Products, MC68HC11A8 HCMOS Single-Chip Microcontroller. In
MC68HC11A8 Technical Data, Publisher: MOTOROLA, INC., 150p., 1996.

[Neb96] Nebel, B., Artificial Intelligence: A Computational Perspective. In Principals of
Knowledge Representation, Studies in Logic, Language and Information, Brewka.G.
(Ed.), Publisher: CSLI Publications, pp. 237-266, 1996.

[Nol92] Nolfi, S. and Parisi, D., Growing Neural Networks. Proceedings of the Third
International Conference on Artificial Life - Artificial Life III, Jun. 15-19, 1992, Santa
Fe, New Mexico, USA, Langton, C. G. (Ed.), Publisher: Addison-Wesley, Reading,
MA, 17p., 1992.

[Nol94] Nolfi, S., Floreano, D., Miglino, O., and Mondada, F., How to Evolve
Autonomous Robots: Different Approaches in Evolutionary Robotics. Proceedings of
the Fourth International Conference on Artificial Life - Artificial Life IV, Brooks, R.
and Maes, P. (Eds.), Publisher: MIT Press/Bradford Books, pp. 190-197, 1994.

 237

[Nol95] Nolfi, S. and Parisi, D., Evolving Non-Trivial Behaviors on Real Robots: an
Autonomous Robot That Picks Up Objects. Proceedings of the Fourth Congress of the
Italian Association for Artificial Intelligence: Topics in Artificial Intelligence, Gori
and Goda (Eds.), Publisher: Springer Verlag, pp. 243-254, 1995.

[Nol98a] Nolfi, S. and Floreano, D., Co-Evolving Predator and Prey Robots: Do 'Arm
Races' Arise in Artificial Evolution? In Artificial Life, v. 4, n. 4, pp. 311-335, 1998.

[Nol98b] Nolfi, S. and Floreano, D., How Co-Evolution Can Enhance the Adaptive
Power of Artificial Evolution: Implications for Evolutionary Robotics. Proceedings of
the First European Workshop on Evolutionary Robotics - EvoRobot98, Apr. 16-17,
1998, Paris, France, Husbands, P. and Meyer, J. A. (Eds.), Publisher: Springer Verlag,
pp. 22-38, 1998.

[Nor96] Nordin, J. P. and Banzhaf, W., An On-Line Method to Evolve Behavior and to
Control a Miniature Robot in Real Time With Genetic Programming. In Adaptive
Behavior, v. 5, n. 2, pp. 107-140, 1996.

[Nor97] Nordin, J. P. and Banzhaf, W., Real Time Control of a Khepera Robot Using
Genetic Programming. In Control and Cybernetics, v. 26, n. 3, pp. 533-561, 1997.

[Nor94] Northmore, D. P. M. and Elias, J. G., Evolving Synaptic Connections for a
Silicon Neuromorph. Proceedings of the IEEE Conference on Evolutionary
Computation, v. 2, Orlando, FL, USA, pp. 753-758, 1994.

[Och99a] Ochoa, G., Harvey, I., and Buxton, H., On Recombination and Optimal
Mutation Rates. Proceedings of the Genetic and Evolutionary Computation
Conference - GECCO'99, Orlando, FL, USA, Banzhaf, W., Daida, J., Eiben, A. E. et.
al. (Eds.), Publisher: Morgan Kaufmann, ISBN: 1-55860-611-4, pp. 488-495, 1999.

[Och99b] Ochoa, G. and Jaffe, K., On Sex, Parasites, and the Red Queen. In Journal of
Theoretical Biology, v. 199, pp. 1-9, 1999.

[Par96] Paredis, J., Coevolutionary Computation. In Artificial Life, v. 2, n. 4, Langton,
C. (Ed.), Publisher: MIT Press/Bradford Books, pp. 355-375, 1996.

[Per96a] Perez-Uribe, A. and Sanchez, E., The FAST Architecture: A Neural Network
With Flexible Adaptable-Size Topology. Proceedings of the International Conference
on Microelectronics for Neural and Fuzzy Systems - MicroNeuro '96, Publisher: IEEE
Press, pp. 337-340, 1996.

[Per96b] Perez-Uribe, A. and Sanchez, E., FPGA Implementation of an Adaptable-Size
Neural Network. Proceedings of the International Conference on Artificial Neural
Networks - ICANN '96, pp. 383-388, 1996.

[Pol00] Pollack, J. B., Lipson, H., Ficici, S. G., Funes, P., Hornby, G. S., and Watson,
R. A., Evolutionary Techniques in Physical Robotics. Proceedings of the Third
International Conference on Evolvable Systems - ICES 2000: From Biology to
Hardware (Lecture Notes in Computer Science; V. 1801), Publisher: Springer , pp.
175-186, 2000.

[Rao96] Rao, R. and Fuentes, O., Learning Navigational Behaviors Using a Predictive
Sparse Distributed Memory. In From Animals to Animats 4, Maes, P. et. al. (Eds.),
Publisher: MIT Press, Cambridge MA, USA, pp. 382-390, 1996.

[Rey93] Reyneri, L. M., Chiaberge, M., and Del Corso, D., Using Coherent Pulse Width
and Edge Modulation in Artificial Neural Systems. In International Journal on Neural
Systems: Special Issue on Microneuro 93, v. 4, n. 4, pp. 407-417, 1993.

 238

[Rey94] Reyneri, L. M., Wiyhagen, H. C. A. M., Hegt, J. A., and Chiaberge, M., A
Comparison Between Analog and Pulse Stream VLSI Hardware for Neural Networks
and Fuzzy Systems. Proceedings of the International Conference on Microelectronics
for Neural and Fuzzy Systems - MICRONEURO '94, Sep., 1994, Turin, Italy, pp. 77-
86, 1994.

[Rey95] Reyneri, L. M., Chiaberge, M., and Zocca, L., CINTIA: A Neuro-Fuzzy Real
Time Controller for Low Power Embedded Systems. In IEEE Micro Magazine (M-
MICRO), Special Issue on Hardware for Artificial Neural Networks, v. 15, n. 3, pp.
40-47, 1995.

[Sch96] Schneider-Fontan, M. and Mataric, M. J., A Study of Territoriality: The Role of
Critical Mass in Adaptive Task Division. In From Animals to Animats IV, Maes, P. et.
al. (Eds.), Publisher: MIT Press, pp. 553-561, 1996.

[Sch95] Schwefel, H. P. and Rudolph, G., Contemporary Evolution Strategies.
Proceedings of the Third International Conference on Artificial Life: Advances in
Artificial Life (Lecture Notes in Artificial Intelligence, V. 929), Publisher: Springer
Verlag, Berlin, Germany, pp. 893-907, 1995.

[Set97] Seth, A. K., Interaction, Uncertainty, and the Evolution of Complexity.
Proceedings of the Fourth European Conference on Artificial Life, Husbands, P. and
Harvey, I. (Eds.), Publisher: MIT Press, pp. 521-530, 1997.

[Set98a] Seth, A. K., Evolving Action Selection and Selective Attention Without Actions,
Attention or Selection. Proceedings of the Fifth International Conference of the Society
for Adaptive Behaviour, Pfeifer, R., Blumberg, B., Meyer, J. et. al. (Eds.), Publisher:
MIT Press, pp. 139-147, 1998.

[Set98b] Seth, A. K., Noise and the Pursuit of Complexity, a Study in Evolutionary
Robotics. Proceedings of the First European Workshop on Evolutionary Robotics -
EvoRobot98, Husbands, P. and Meyer, J. (Eds.), Publisher: Springer Verlag, pp. 123-
136, 1998.

[Set99] Seth, A. K., Evolving Behavioural Choice: an Investigation into Herrnstein's
Matching Law. Proceedings of the Fifth European Conference on Artificial Life -
ECAL99, Lausanne, Switzerland, Floreano, D., Nicoud, J.-D., and Mondada, F. (Eds.),
Publisher: Springer-Verlag, pp. 225-235, 1999.

[Shi00] Shipman, R., Shackleton, M., Ebner, M., and Watson, R. A., Neutral Search
Spaces for Artificial Evolution: A Lesson From Life. Proceedings of the Seventh
International Workshop on the Synthesis and Simulation of Living Systems - Artificial
Life VII, Aug. 1-2, 2000, Reed College, Portland, Oregon, USA, Bedau, M.,
McCaskill, J., Packard, N. et. al. (Eds.), pp. 52-59, 2000.

[Sim94] Simoes, E. D. V., Uebel, L. F., and Barone, D. A. C., Fast Prototyping of
Artificial Neural Network: GSN Digital Implementation. Proceedings of the IV
International Conference on Microelectronics for Neural Networks and Fuzzy System,
Sep., 1994,Turin, Italy, pp. 192-201, 1994.

[Sim96] Simoes, E. D. V., Uebel, L. F., and Barone, D. A. C., Hardware
Implementation of RAM Neural Networks. In Pattern Recognition Letters, n. 17, pp.
421-429, 1996.

[Sim97] Simoes, E. D. V., Ueno, Y., and Barone, D. A. C., The Adaptive Weight Using
RAM Model. Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, Oct., 1997, Orlando, USA, pp. 234-239, 1997.

 239

[Sim99] Simoes, E. D. V. and Dimond, K. R., An Evolutionary Controller for
Autonomous Multi-Robot Systems. Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, v. 6, Oct., 1999, Tokyo, Japan, pp. 596-601, 1999.

[Sip95] Sipper, M., An Introduction to Artificial Life. In AI Expert: Special Issue on
Explorations in Artificial Life, Publisher: Miller Freeman, San Francisco, CA, USA,
pp. 4-8, 1995.

[Smi98] Smith, T., Blurred Vision: Simulation-Reality Transfer of a Visually Guided
Robot. Proceedings of the First European Workshop on Evolutionary Robotics -
EvoRobot98, Husbands, P. and Meyer, J. (Eds.), Publisher: Springer Verlag, pp. 123-
136, 1998.

[Ste94] Steels, L., Emergent Functionality in Robotic Agents Through on-Line
Evolution. Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems - Artificial Life IV, Brooks, R. A. and Maes, P. (Eds.),
Publisher: MIT Press, Cambridge, MA, USA, pp. 8-16, 1994.

[Ste95] Steels, L., The Homo Cyber Sapiens, the Robot Homonidus Intelligens, and the
Artificial Life Approach to Artificial Intelligence. Proceedings of the Burda
Symposium on Brain-Computer Interfaces, Muenchen, 17p., 1995.

[Tem95] Tempesti, G., A New Self-Reproducing Cellular Automaton Capable of
Construction and Computation. In Advances in Artificial Life (LNAI-929), Moran, F.
(Ed.), Publisher: Springer-Verlag, pp. 555-563, 1995.

[Teu99] Teuscher, C., Sanchez, E., and Sipper, M., Romero's Pilgrimage to Santa Fe: A
Tale of Robot Evolution. Proceedings of the Genetic and Evolutionary Computation
Conference - GECCO'99 (Workshop), Orlando, FL, USA, Wu, A. S. (Ed.), pp. 409-
410, 1999.

[Tho00] Thompson, A. and Layzell, P., Evolution of Robustness in an Electronics
Design. Proceedings of the 3rd International Conference on Evolvable Systems - ICES
2000, Publisher: Springer Verlag, pp. 218-228, 2000.

[Tho94a] Thompson, A., Evolving Fault-Tolerant Systems. Report ID: Cognitive Science
Research Paper Serial No. CSRP 385, The University of Sussex School of Cognitive
and Computing Sciences, Falmer Brighton, BN1 9QH, England, UK, 6p., 1994.

[Tho94b] Thompson, A., Real Time for Real Power: Methods of Evolving Hardware to
Control Autonomous Mobile Robots. Report ID: Cognitive Science Research Paper
Serial No. CSRP 350, The University of Sussex School of Cognitive and Computing
Sciences, Falmer Brighton, BN1 9QH, England, UK, 6p., 1994.

[Tho94c] Thompson, A., Harvey, I., and Husbands, P., Unconstrained Evolution and
Hard Consequences. Report ID: Cognitive Science Research Paper Serial No. CSRP
397, The University of Sussex School of Cognitive and Computing Sciences, Falmer
Brighton, BN1 9QH, England, UK, 31p., 1994.

[Tho95] Thompson, A., Evolving Electronic Robot Controllers That Exploit Hardware
Resources. Proceedings of the 3rd European Conference on Artificial Life - ECAL'95
(LNAI 929), Moran (Ed.), Publisher: Springer-Verlag, pp. 640-656, 1995.

[Tho96a] Thompson, A., Evolutionary Techniques for Fault Tolerance. Proceedings of
the UKACC International Conference on Control - CONTROL'96 (IEE Conference
Publication No.427), pp. 693-698, 1996.

 240

[Tho96b] Thompson, A., An Evolved Circuit, Intrinsic in Silicon, Entwined With Physics.
Proceedings of the First International Conference on Evolvable Systems: From
Biology to Hardware - ICES96, Oct. 7-8, 1996, Tsukuba, Japan, Higuchi, T. and Iwata,
M. (Eds.), Publisher: Springer-Verlag LNCS, pp. 390-405, 1996.

[Tho96c] Thompson, A., Silicon Evolution. Proceedings of the First Annual Conference
on Genetic Programming - GP96, Koza, J. R., Goldberg, D. E., Fogel, D. B. et. al.
(Eds.), Publisher: MIT Press, Cambridge, MA, USA, pp. 444-452, 1996.

[Tho97a] Thompson, A., Artificial Evolution in the Physical World. In Evolutionary
Robotics: From Intelligent Robots to Artificial Life - ER'97, Gomi, T. (Ed.), Publisher:
AAI Books, pp. 101-125, 1997.

[Tho97b] Thompson, A., Temperature in Natural and Artificial Systems. Proceedings of
the Fourth European Conference on Artificial Life, Husbands, P. and Harvey, I. (Eds.),
Publisher: MIT Press, pp. 388-397, 1997.

[Tho98] Thompson, A., On the Automatic Design of Robust Electronics Through
Artificial Evolution. Proceedings of the 2nd International Conference on Evolvable
Systems: From Biology to Hardware - ICES98, Sep. 23-26, 1998, Lausanne,
Switzerland, Sipper, M., Mange, D., and Pres-Uribe, A. (Eds.), Publisher: Springer-
Verlag, pp. 13-24, 1998.

[Tho99] Thompson, A. and Layzell, P., Analysis of Unconventional Evolved
Electronics. In Communications of the Association of Computing Machinery, v. 42, n.
4, Yao, X. (Ed.), pp. 71-79, 1999.

[Tho96] Thornton, C., Unsupervised Constructive Learning. Report ID: Cognitive
Science Research Paper Serial No. CSRP 449, The University of Sussex School of
Cognitive and Computing Sciences, Falmer Brighton, BN1 9QH, England, UK, 9p.,
1996.

[Tod97] Todd, P. M. and Miller, G. F., Biodiversity Through Sexual Selection. In
Artificial Life V, Langton, C. G. and Shimohara, K. (Eds.), Publisher: MIT Press,
Cambridge, MA. USA, pp. 289-299, 1997.

[Tom95] Tomassini, M., A Survey of Genetic Algorithms. In Annual Reviews of
Computational Physics, World Scientific, pp. 87-118, 1995.

[Tom96] Tomassini, M., Evolutionary Algorithms. In Towards Evolvable Hardware,
Publisher: Springer-Verlag, Berlin, Germany, pp. 19-47, 1996.

[Wag95] Wagner, G. P., Adaptation and the Modular Design of Organisms. Proceedings
of the 3rd European Conference on Artificial Life - ECAL'95: Advances in Artificial
Life (LNAI 929), Moran et al. (Ed.), Publisher: Springer-Verlag, pp. 317-328, 1995.

[Wat00a] Watson, R. A., Reil, T., and Pollack, J. B., Mutualism, Parasitism, and
Evolutionary Adaptation. Proceedings of the Seventh International Workshop on the
Synthesis and Simulation of Living Systems - Artificial Life VII, Bedau, M.,
McCaskill, J., Packard, N. et. al. (Eds.), pp. 170-178, 2000.

[Wat00b] Watson, R. A. and Pollack, J. B., Recombination Without Respect: Schema
Combination and Disruption in Genetic Algorithm Crossover. Proceedings of the
Genetic and Evolutionary Computation Conference, Las Vegas, Nevada, USA,
Whitley, D. (Ed.), Publisher: Morgan Kaufmann, ISBN: 1-55860-708-0, pp. 112-119,
2000.

 241

[Wat99a] Watson, R. A., Ficici, S. G., and Pollack, J. B., Embodied Evolution:
Embodying an Evolutionary Algorithm in a Population of Robots. Proceedings of the
Congress on Evolutionary Computation, Angeline, P., Michalewicz, Z., Schoenauer,
M. et. al. (Eds.), Publisher: IEEE Press, pp. 335-342, 1999.

[Wat99b] Watson, R. A. and Pollack, J. B., Incremental Commitment in Genetic
Algorithms. Proceedings of the Genetic and Evolutionary Computation Conference -
GECCO99, Banzhaf, Daida, Eiben et. al. (Eds.), Publisher: Morgan Kauffmann, pp.
710-717, 1999.

[Wer96] Werger, B. B. and Mataric, M. J., Robotic "Food" Chains: Externalization of
State and Program for Minimal-Agent Foraging. Proceedings of the Fourth
International Conference on Simulation of Adaptive Behavior - SAB-96: From
Animals to Animats 4, Maes, P., Mataric, M., Meyer, J.-P. et. al. (Eds.), Publisher:
MIT Press/Bradford Books, pp. 625-634, 1996.

[Wer99] Werger, B. B. and Mataric, M. J., Exploiting Embodiment in Multi-Robot
Teams. Report ID: Technical Report IRIS-99-378, University of Southern California,
Institute for Robotics and Intelligent Systems, 14p., 1999.

[Xil96] Xilinx, XC6200 FPGA Advanced Product Specification. Publisher: Xilinx,
Inc., 2100 Logic Drive, San Jose, CA 95124, USA, version 1.0 edition, Jun., 1996,
URL: http://www.xilinx.com/partinfo/6200.pdf, 1996.

[Yao97] Yao, X. and Higuchi, T., Promises and Challenges of Evolvable Hardware. In
Evolvable Systems: From Biology to Hardware, (Lecture Notes in Computer Science
1259), Publisher: Springer-Verlag, pp. 55-78, 1997.

A-i

APPENDIX A

Contents of the Attached CD-ROM

 This Ph.D. thesis includes a CD-ROM containing the software implemented

during the development of this work. The CD-ROM also contains a collection of selected

photos and videos that help to illustrate how the proposed evolutionary system was

implemented and operates.

 The material included in the CD-ROM is organised in four folders:

Experimental Data; General Software; Videos; and Photos. The last two folders contain

video files and pictures. General Software contains some files with the main programs and

data records produced and Experimental Data contains the programs developed during the

experiments described in Chapters 6, 7, and 8, organised by chapters and by Experiments

within the chapters. The structure of the CD-ROM is presented in Figure A.1 and the

contents of each folder are listed below.

A-ii

Figure A.1 – Structure of the folders in the attached CD-ROM.

LIST OF THE CD-ROM CONTENTS:

Volume in drive D is CD-ROM

Directory of D:\AppendixA

VIDEOS
GENERAL SOFTWARE
PHOTOS
EXPERIMENTAL DATA

Directory of D:\AppendixA\Experimental Data

CHAPTER6 <DIR> 23/11/00 1:56 Chapter6
CHAPTER7 <DIR> 23/11/00 1:56 Chapter7
CHAPTER8 <DIR> 23/11/00 1:56 Chapter8
 0 file(s) 0 bytes

Directory of D:\AppendixA\Experimental Data\Chapter6

EXP1 <DIR> 23/11/00 1:56 Exp1
EXP2 <DIR> 23/11/00 1:56 Exp2
EXP3 <DIR> 23/11/00 1:56 Exp3
EXP4 <DIR> 23/11/00 1:56 Exp4
 0 file(s) 0 bytes

A-iii

Directory of D:\AppendixA\Experimental Data\Chapter6\Exp1

Graf01.cpp
graf1.exe
exp1.exe
Exp01.cpp
 4 file(s) 345,424 bytes

Directory of D:\AppendixA\Experimental Data\Chapter6\Exp2

exp7.exe
Graf07.cpp
graf7.exe
Exp07.cpp
 4 file(s) 345,424 bytes

Directory of D:\AppendixA\Experimental Data\Chapter6\Exp3

EXP3 1 <DIR> 23/11/00 2:00 Exp3.1
EXP3 2 <DIR> 23/11/00 2:00 Exp3.2
EXP3 3 <DIR> 23/11/00 2:00 Exp3.3
 0 file(s) 0 bytes

Directory of D:\AppendixA\Experimental Data\Chapter6\Exp3\Exp3.1

Exp08.cpp
Graf08.cpp
exp8.exe
graf8.exe
 4 file(s) 345,424 bytes

Directory of D:\AppendixA\Experimental Data\Chapter6\Exp3\Exp3.2

Exp10.cpp
Graf10.cpp
exp10.exe
graf10.exe
 4 file(s) 345,424 bytes

Directory of D:\AppendixA\Experimental Data\Chapter6\Exp3\Exp3.3

Exp09.cpp
Graf09.cpp
exp9.exe
graf9.exe
 4 file(s) 345,424 bytes

Directory of D:\AppendixA\Experimental Data\Chapter6\Exp4

graf13.exe
exp13.exe
Graf13.cpp
Exp13.cpp
 4 file(s) 345,424 bytes

Directory of D:\AppendixA\Experimental Data\Chapter7

EXPS1 <DIR> 23/11/00 2:16 ExpS1
EXPS2 <DIR> 23/11/00 2:16 ExpS2
EXPS3 <DIR> 23/11/00 2:16 ExpS3
EXPS4 <DIR> 23/11/00 2:17 ExpS4

A-iv

EXPS5 <DIR> 23/11/00 2:17 ExpS5
EXPS6 <DIR> 23/11/00 2:17 ExpS6
 0 file(s) 0 bytes

Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS1

Sim01.cpp
Grafsim01.cpp
Grafsim01.exe
Sim01.exe
 4 file(s) 334,522 bytes

Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS2

Grafsim02.cpp
Grafsim02.exe
Sim02.cpp
Sim02.exe
 4 file(s) 337,387 bytes

Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS3

Sim04.exe
Grafsim04.exe
Grafsim04.cpp
Sim04.cpp
 4 file(s) 370,108 bytes

Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS4

Sim05.exe
Grafsim05.exe
Grafsim05.cpp
Sim05.cpp
 4 file(s) 370,301 bytes

Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS5

Grafneu01.cpp
Grafneu01.exe
Simneu01.exe
Simneu01.cpp
 4 file(s) 348,143 bytes

Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS6

Grafneu02.cpp
Simneu02.exe
Grafneu02.exe
Simneu02.cpp
 4 file(s) 349,489 bytes

Directory of D:\AppendixA\Experimental Data\Chapter8

EXPE1 <DIR> 23/11/00 2:34 ExpE1
EXPE2 <DIR> 23/11/00 2:34 ExpE2
 0 file(s) 0 bytes

Directory of D:\AppendixA\Experimental Data\Chapter8\ExpE1

Exp15.exe

A-v

Graf15.exe
Graf15.cpp
Exp15.cpp
 4 file(s) 357,630 bytes

Directory of D:\AppendixA\Experimental Data\Chapter8\ExpE2

Exp16.exe
Exp16.cpp
Graf16.cpp
Graf16.exe
 4 file(s) 357,953 bytes

Directory of D:\AppendixA\General Software

Evolution.asm
virtualscreen.cpp
Handcontrol.asm
Graf20.cpp
GRAFIC.TXT
Initialise.cpp
Gene.txt
Exp20.cpp
 8 file(s) 155,934 bytes

Directory of D:\AppendixA\Photos

Image46.jpg
IMAGE41.KDC
IMAGE39.KDC
IMAGE38.KDC
IMAGE33.KDC
IMAGE31.KDC
IMAGE19.KDC
robot_top.jpg
Robot_side.jpg
robot_front3.jpg
Robot_front1.jpg
Radio1.jpg
Z.jpg
r_n+obs.jpg
r_lab.jpg
r_cima.jpg
r_c+obs.jpg
lab_simple.jpg
lab_med.jpg
lab_complex.jpg
Image48.jpg
IMAGE47.jpg
pspbrwse.jbf
IMAGE44.jpg
Image43.jpg
IMAGE42.jpg
Image41.jpg
Image40.jpg
Image39.jpg
Image38.jpg
IMAGE37.jpg
Image36.jpg
Image33.jpg
IMAGE31.jpg

A-vi

Image30.jpg
Image28.jpg
Image27.jpg
IMAGE26.jpg
IMAGE25.jpg
IMAGE24.jpg
IMAGE23.jpg
Image22.jpg
IMAGE21.jpg
IMAGE20.jpg
Image19.jpg
Image18.jpg
IMAGE17.jpg
IMAGE16.jpg
IMAGE15.jpg
IMAGE14.jpg
Image13.jpg
Image12.jpg
IMAGE11.jpg
IMAGE10.jpg
Image1.jpg
IMAGE09.jpg
IMAGE08.jpg
IMAGE07.jpg
IMAGE06.jpg
Image05.jpg
IMAGE04.jpg
IMAGE03.jpg
Image02.jpg
IMAGE01.jpg
Fig1_5.jpg
eu_robo.jpg
Robot1.bmp
board2.bmp
board1.bmp
 69 file(s) 7,219,290 bytes

Directory of D:\AppendixA\Videos

video1.jpg
video2.jpg
video3.jpg
video4.jpg
video5.jpg
 1 file(s) 1753,270 bytes

B-i

APPENDIX B

Schematic Diagrams

 Appendix B contains two schematic diagrams. The first one, Diagram 1,

contains the schematics of the circuit of the robot board, and a list of the used components.

The second one, Diagram 2, contains the schematics of the circuit of the radio board, and a

list of the used components.

B-ii

Diagram 1:

Schematics of the circuit of the robot board

B-iii

B-iv

List of the used components:

Part Type Designator
0.01uF C7
0.1uF CU4
0.1uF CU3
0.1uF CU2
0.1uF CU7
0.1uF C8
0.1uF CU5
0.1uF CU6
100M R3
10K R7
10K R6
10K R9
10K R8
10K R10
10K R5
10M R1
10uF C5
10uF C9
10uF C6
1K R2
1uF C3
1uF C4
1uF CU1
24pF C1
24pF C2
2K2 R11
2K2 R12
330R R15
330R R16
4011 U4
4K7 R4
74LS04 U12
820R R14
820R R13
8MHz X1
AMRECEIVER-AMRW TX1
AMTRANSMITER-AMT21 TX1
ANTENNA A1
ANTENNA A2
BC182B T1
BC182B T6
BC182B T5
BC182B T4
BC182B T2
BC182B T3

B-v

HEADER 10 JP3
HEADER 10 JP6
HEADER 10 JP1
HEADER 10 JP2
HEADER 10 JP4
HEADER 10 JP5
HEADER 2 JP9
HEADER 2 JP8
HEADER 2 JP6
HEADER 2 JP7
HEADER 3 JP10
L293NE U11
LED-Green L3
LED-Green L2
LED-Green L5
LED-Green L4
LED-Red L7
LED-Red L6
LED-Red L1
LED-Red L9
LED-Red L8
MAX233 U7
MAX603 U6
MAX691 U8
MC68HC11A1FN(52) U1
MC68HC24 U9
MC74HC373 U2
OPE5594 IR4
OPE5594 IR3
OPE5594 IR5
OPE5594 IR7
OPE5594 IR8
OPE5594 IR6
OPE5594 IR2
OPE5594 IR1
RN-10K RN3
RN-10K RN2
RN-10K RN1
RN-4.7K RN4
RN-4.7K RN5
S4576DY U5
SW DIP-8 DP1
SW DIP-8 DP2
SW SPDT S1
SW SPDT S2
SW-PB PB4
SW-PB PB2
SW-PB PB3
SW-PB PB1
SW-PBSMALL PB5

B-vi

Diagram 2:

Schematics of the circuit of the radio board

B-vii

B-viii

List of the used components:

Part Type Designator
0.1uF C2
10uF C3
2K2 R2
2K2 R3
2K2 R1
AMRECEIVER-AMRW TX1
AMTRANSMITER-AMT21 TX1
ANTENNA A1
ANTENNA A2
CON25 JP1
DIODE D1
HEADER 2 JP2
LED-GREEN L2
LED-RED L1
MAX233 U2

C-i

APPENDIX C

Experimental Data

 Appendix C contains complementary data that for a reason of space could

not be presented in the body of the thesis. The data is organised by chapters and by sections

within the chapters.

C.1 - Data Relative to Chapter 6:

C.1.1 - Section 6.3: Experiment 2

 The data presented here is the result of experiments that were carried out to

determine the best sensor configurations to drive the robots according to the hand-designed

controller used in Experiment 2 (Section 6.3). Many sensor combinations were tested in

different environments containing simple (11 tests), medium (20 tests), and complex (9

tests) configurations of obstacles. The best 42 combinations, presented in Table C.2, were

selected and ordered by the average fitness they scored in all 40 experiments. A “blind”

robot with all sensors disabled (0,0,0,0,0,0,0) was also included to provide a comparison to

the worst case. In the sensor specifications shown below, a disabled sensor is represented

C-ii

by 0 and an enabled sensor is represented by its own name (i.e., S1 or S7). S5 was not

present.

• Summary of the Settings

 Table C.1 presents a summary of the settings for the experiments:

Table C.1 – Summary of the settings

Parameter Definition
Fitness Function: +3 points every 1s moving forward

–10 points each collision
Initial Fitness Value: 4096 points
Maximum Fitness Value: 4186 points
Generation Time: Population fixed at the first generation: 30 seconds
Mutation Rate: Not present
Speed Levels: Fixed at maximum speed (Vmax=32)
Sensors Enable: All sensors but S5 can be enabled independently

S5 is permanently disabled
Navigation Controller: Fixed Neural Network (m=4, n=7, neuron size=4 bits)

• Results

Table C.2 – The Best Sensor Configurations in 40 Tests

Sensor Configuration Average Fitness Value Sensor Configuration Average Fitness Value
S8,0,S6,S4,S3,S2,S1 4144 S8,S7,S6,S4,S3,0,S1 4130
0,S7,S6,0,S3,0,S1 4143 0,0,0,0,S3,S2,S1 4129
0,S7,S6,0,S3,S2,S1 4142 0,0,0,0,0,0,S1 4128
0,S7,0,0,0,S2,S1 4141 S8,S7,0,0,0,S2,S1 4128
0,S7,0,0,S3,S2,S1 4140 S8,S7,S6,0,S3,S2,0 4127
0,S7,S6,S4,0,0,S1 4139 S8,S7,S6,S4,0,0,S1 4127
S8,S7,S6,S4,0,S2,S1 4139 0,0,0,0,0,S2,S1 4126
0,0,0,0,S3,0,S1 4138 S8,0,S6,S4,0,0,S1 4126
S8,0,0,S4,S3,S2,S1 4138 S8,S7,S6,S4,S3,S2,0 4125
S8,S7,S6,0,S3,0,S1 4138 0,0,0,S4,S3,S2,S1 4123
0,S7,0,S4,S3,0,S1 4136 0,0,S6,S4,S3,0,S1 4123
S8,0,0,S4,S3,S2,S1 4135 0,S7,S6,0,0,0,S1 4123
S8,S7,0,S4,0,0,S1 4135 S8,0,0,0,0,S2,S1 4122
0,0,0,S4,0,0,S1 4134 0,S7,0,S4,0,S2,0 4119
S8,S7,S6,S4,S3,S2,S1 4134 S8,0,0,S4,0,S2,S1 4118
0,S7,0,0,0,0,S1 4133 S8,0,0,0,S3,S2,S1 4113
0,0,0,S4,0,S2,S1 4132 S8,0,S6,S4,S3,0,0 4112
0,S7,S6,S4,S3,S2,S1 4132 S8,0,0,0,0,0,S1 4110
S8,S7,0,S4,S3,S2,S1 4132 S8,0,0,0,S3,0,S1 4107
S8,S7,0,S4,S3,S2,0 4132 S8,0,0,S4,S3,0,0 4106
S8,0,S6,S4,S3,0,S1 4131 0,0,0,0,0,0,0 4073
S8,0,S6,S4,0,S2,S1 4130

C-iii

C.2 - Data Relative to Chapter 7:

C.2.1 - Section 7.2: Experiment S1

 The chart S1.1 presented in Figure 7.2 (Section 7.2) is just one of many

experiments performed with the simulator configured as described in Experiment S1. In

total, it was run 300 times for each mutation rate (0.1% and 0.5%), during 30,000

generations.

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness
6 Robots & 0.1% 4319.1 2.13177026 4322 4316
6 Robots & 0.5% 4308.2 2.29975844 4312 4305

50 Robots & 0.1% 4339.1 1.95874658 4342 4335
50 Robots & 0.5% 4336.4 2.01254863 4340 4331

100 Robots & 0.1% 4344.9 1.52356458 4348 4343
100 Robots & 0.5% 4341.8 1.62352418 4345 4338

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 30,000;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 30,000;

Max. Fitness Maximum fitness value obtained in generation 30,000
in 300 tests;

Min. Fitness Minimum fitness value obtained in generation 30,000
in 300 tests;

 The charts S1.3 and S1.4 presented in Figures 7.4 and 7.5 (Section 7.2) are

just one of many experiments performed with the simulator configured as described in

Experiment S1. In total, it was run 300 times for each mutation rate (0.1%, 0.5%, 1%, 3%,

10%, 20%, 50%, and 80%), during 300 generations.

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness
0.1% 4216.4 2.59058123 4219 4211
0.5% 4228.2 1.75119007 4230 4225
1% 4198.1 2.72641401 4202 4194
3% 4192.1 2.51440296 4195 4188

10% 4181.5 3.20589734 4185 4177
20% 4166.8 2.394438 4170 4163
50% 4162.2 4.18462795 4169 4157
80% 4160.3 3.77270902 4165 4152

C-iv

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 300;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 300;

Max. Fitness Maximum fitness value obtained in generation 300 in
300 tests;

Min. Fitness Minimum fitness value obtained in generation 300 in
300 tests;

C.2.2 - Section 7.3: Experiment S2

 The chart S2.1 presented in Figure 7.7 (Section 7.3) is just one of many

experiments performed with the simulator configured as described in Experiment S2. In

total, it was run 300 times for each mutation rate (0.1% and 0.5%), during 30,000

generations.

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness
0.1% 4300.5 2.12132034 4304 4292
0.5% 4326.4 1.71269768 4339 4330

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 30,000;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 30,000;

Max. Fitness Maximum fitness value obtained in generation 30,000
in 300 tests;

Min. Fitness Minimum fitness value obtained in generation 30,000
in 300 tests;

 The chart S2.2 presented in Figure 7.8 (Section 7.3) are just one of many

experiments performed with the simulator configured as described in Experiment S2. In

total, it was run 300 times for each mutation rate (0.1%, 0.5%, 1%, and 10%), during 300

generations.

C-v

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness
0.1% 4225.9 2.13177026 4229 4222
0.5% 4251.1 1.85292561 4253 4248
1% 4239.9 2.33095117 4243 4236

10% 4190.4 3.16929715 4194 4185

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 300;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 300;

Max. Fitness Maximum fitness value obtained in generation 300 in
300 tests;

Min. Fitness Minimum fitness value obtained in generation 300 in
300 tests;

C.2.3 - Section 7.4: Experiment S3

 The Experiment S3 presented in Figure 7.10 (Section 7.4) is just one of

many experiments performed with the simulator configured as described in Experiment S3.

In total, it was run 300 times for mutation rate of 0.5%, during 9000 generations.

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness
0.5% 4353.9 1.59513148 4356 4349

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 9000;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 9000;

Max. Fitness Maximum fitness value obtained in generation 9000
in 300 tests;

Min. Fitness Minimum fitness value obtained in generation 9000 in
300 tests;

C-vi

C.2.4 - Section 7.5: Experiment S4

 The chart S4.1 presented in Figure 7.11 (Section 7.5) is just one of many

experiments performed with the simulator configured as described in Experiment S4. In

total, it was run 300 times for Sexual and Asexual reproduction, during 3700.

Reproduction: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness

Sexual 4352 1.01846171 4356 4352
Asexual 4356 0 4356 4356

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 3700;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 3700;

Max. Fitness Maximum fitness value obtained in generation 3700
in 300 tests;

Min. Fitness Minimum fitness value obtained in generation 3700 in
300 tests;

 The chart S4.2 presented in Figure 7.12 (Section 7.5) is just one of many

experiments performed with the simulator configured as described in Experiment S4. In

total, it was run 300 times for Sexual and Asexual reproduction, during 600.

Population: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness

6 Robots 4271 2.01846171 4275 4267
8 Robots 4302 2.03546816 4305 4298

10 Robots 4318 1.96587146 4321 4316
15 Robots 4323 1.82664546 4326 4319
25 Robots 4339 2.04882256 4341 4336
35 Robots 4343 1.62585825 4345 4341
45 Robots 4343 1.82325496 4346 4341
60 Robots 4349 1.53585212 4352 4347
80 Robots 4356 0 4356 4356

100 Robots 4356 0 4356 4356

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 600;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 600;

Max. Fitness Maximum fitness value obtained in generation 600 in
300 tests;

Min. Fitness Minimum fitness value obtained in generation 600 in
300 tests;

C-vii

C.2.5 - Section 7.6: Experiment S5

 The chart S5.1 presented in Figure 7.13 (Section 7.6) are just one of many

experiments performed with the simulator configured as described in Experiment S5. In

total, it was run 300 times for each mutation rate (0.5%, 1%, 3%, and 15%), during 600

generations.

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness

0.5% 4301.5 3.02765035 4306 4297
1% 4332.3 2.83039063 4336 4328
3% 4322.7 2.58413966 4326 4318

15% 4301.9 3.21282154 4304 4295

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 600;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 600;

Max. Fitness Maximum fitness value obtained in generation 600 in
300 tests;

Min. Fitness Minimum fitness value obtained in generation 600 in
300 tests;

C.2.6 - Section 7.7: Experiment S6

 The chart S6.2 presented in Figure 7.15 (Section 7.7) are just one of many

experiments performed with the simulator configured as described in Experiment S6. In

total, it was run 300 times for each mutation rate (0.5%, 1%, 3%, and 15%), during 600

generations.

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness
0.5% 4323.6 3.33999335 4326 4318
1% 4341.3 2.71006355 4344 4337
3% 4331.3 2.71006355 4334 4327

15% 4289.5 3.27448045 4292 4283

C-viii

Where: Av. Best Fitness Average in 300 tests of the fitness of the best robot in
generation 600;

Standard Deviation Standard Deviation for the Average in 300 tests of the
fitness of the best robot in generation 600;

Max. Fitness Maximum fitness value obtained in generation 600 in
300 tests;

Min. Fitness Minimum fitness value obtained in generation 600 in
300 tests;

C.3 - Data Relative to Chapter 8:

C.3.1 - Section 8.2: Experiment E1

 The chart Summary of Experiment E1 presented in Figure 8.3 (Section 8.1)

is just one of many experiments performed with the real evolutionary system configured as

described in Experiment E1. In total, it was run 12 times for the black box controller,

during 200 generations. Far less experiments were performed here than with using the

simulator in Chapter 7. The reason for this is that it takes more than three hours to perform

only one real experiment with the duration of the generations set to one minute.

Controller: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness
Black box 4666.948 3.68920588 4671 4660

Where: Av. Best Fitness Average in 12 tests of the fitness of the best robot in
generation 200;

Standard Deviation Standard Deviation for the Average in 12 tests of the
fitness of the best robot in generation 200;

Max. Fitness Maximum fitness value obtained in generation 200 in
12 tests;

Min. Fitness Minimum fitness value obtained in generation 200 in
12 tests;

C-ix

C.3.2 - Section 8.3: Experiment E2

 The chart Summary of Experiment E2 presented in Figure 8.6 (Section 8.2)

is just one of many experiments performed with the real evolutionary system configured as

described in Experiment E2. In total, it was run 12 times for the black box controller,

during 200 generations. Far less experiments were performed here than with using the

simulator in Chapter 7. The reason for this is that it takes more than three hours to perform

only one real experiment with the duration of the generations set to one minute.

Controller Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness
Neural Network 4690.235 3.20538458 4696 4982

Where: Av. Best Fitness Average in 12 tests of the fitness of the best robot in
generation 200;

Standard Deviation Standard Deviation for the Average in 12 tests of the
fitness of the best robot in generation 200;

Max. Fitness Maximum fitness value obtained in generation 200 in
12 tests;

Min. Fitness Minimum fitness value obtained in generation 200 in
12 tests;

