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Abstract 

 

  This work studies evolutionary computation applied to robotics. It has 

produced a genetic system where the population exists in a real environment, where they 

exchange genetic material and reconfigure themselves as new individuals to form the next 

generations, providing the means of running genetic evolutions in a real physical platform. 

This thesis describes the techniques that could be adapted from the literature as well as the 

novel techniques developed to allow the design of the hardware and software necessary to 

embedding the distributed evolutionary system. It also describes the environment where the 

experiments were carried out in real time and in simulation. These experiments test the 

influence of different parameters, such as different mutation rates and partner selection, 

crossover, and reproduction strategies. This work reports comparative studies between 

different methods of embedding an evolutionary control circuit in a population of six 

autonomous mobile robots. The reviewed architectures are: evolvable hardware; dynamic 

state machine; condition-behaviour mapping; pulse stream neural systems; and the chosen 

one: RAM neural networks. 

  This work proposes and implements a fully embedded distributed 

evolutionary system that is able to achieve collision free-navigation in a few hundreds of 

trials. Evolution can manipulate the morphology of the robot: the configuration of the 

sensors and the motor speed levels. This thesis presents the first experimental proofs of the 

embedded evolution concept applied to the evolution of the morphology and control circuit 

of a population of real robots in real time. It proposes the Predation strategy that not only 

can improve the performance of the system but also prevents the population from being 

stuck in local optima. It is demonstrated that evolution can help in the traditional design of 

robotic platforms, since it can suggest the best features a robot should incorporate to 

perform specific tasks. Finally, this work provides understanding on the implementation of 

real evolutionary systems and inspiring insights that have potential of application in the 

areas of automation and cybernetics. 
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1 INTRODUCTION 
 

 

  This chapter introduces this Ph.D. thesis, explaining what is proposed and 

the contributions to the state-of-the-art. It presents the perspectives of Evolutionary 

Robotics (ER) for multi-robot control and overviews its main approaches, unanswered 

problems, and some promising directions. This chapter also introduces the workspace, the 

chosen application, and the delimitation of the Ph.D. project. It also shows a synopsis of 

the thesis organisation, chapter by chapter. The concepts mentioned here will be thoroughly 

explained in Chapters 2 and 3. 

  This work is concerned with automated synthesis of robotic embedded 

controllers using Evolutionary Computation [Par96]. This is a new research field also 

known as: Artificial Evolution, Evolvable Systems, or Evolutionary Electronics [Ale66]. 

Evolutionary methods have been employed for developing robot controllers automatically 

in simulation [Cli96], on physical systems [Hig96b], and combinations. Specifically, this 

work concentrates in embedding an evolutionary algorithm within a population of physical 

robots. 

  A review of the state-of-the-art of robot control strategies showed the need 

for contributions in the areas of self-training [Cli92] [Gra96], autonomy and auto-

adaptation to changes in the environment where the robots are operating [Hus93] [Per96b] 

[Tom96]. Therefore, the main interest of this work will be the development of a strategy 

for controlling a group of robots that combines these approaches into a promising solution 

involving Evolutionary Computation [Yao97]. It is intended to be applied to control a 

group (population) of robots in the field, instead of just using the evolving group to 

develop an optimum controller for a single robot, what has been the main purpose of EC 

until now [Flo98b]. The proposed evolutionary system innovates for it can produce not 

only a trained robot but also an open-ended evolution, continuously adapting the robot 

controllers to cope with a variable environment. Figure 1.1 shows the difference between 

applying evolution as a solution finder (the traditional approach) and as an open-ended 

evolutionary system. The first concentrates on producing an efficient combination of the 
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available resources in a fixed environment until some threshold level is achieved. The user 

then chooses the best robot configuration to replicate. If the environment conditions 

change, the robot controller is doomed to fail [Jak95] [Jak96]. The proposed system is able 

to face a mutable environment, since the robots are constantly being modified by evolution 

to fit these variations. 

 

Solution Finder

! Produce an efficient
combination of the
available resources

!  Fixed environment
! User chooses the best

robot configuration to
be replicated

Open-ended Evolution

! Produce a self -adapting
robot system

! Mutable environment
! The robots will

constantly adapt to the
environment

 

Figure 1.1 – Two different ways of applying evolution to a robotic system. 

 

  Instead of using Artificial Evolution (AE) [Flo94] [Fun00a], such as Genetic 

Algorithms (GAs) [Mit95], as an optimisation technique for a conventional Neural 

Network (NN) architecture [Gar94b] [Nor94] [Per96a], the proposed solution means using 

it to design robot control circuits automatically [Cli94] [Flo96b]. The evolutionary 

technique can operate by modifying the configuration of a predefined architecture (such as 

a Neural Network), or by building the whole control circuit from scratch using a 

programmable device (such as an FPGA). Figure 1.2 shows how the robot control circuit 

interfaces a sensor module, from which it receives the sensor readings, and commands the 

motor drive module on how to drive the motors. Evolution can work with basic low-level 

primitives, together with noise and uncertainty, to synthesise a solution that could be of a 

very different nature to the way electronic circuits are normally designed [Tho94c] 

[Key97d]. AE can build/evolve systems that are too complex to understand, but functional, 

nevertheless. This work consists of building an Artificial Genetic System, where the 

population will actually exist as real robots and exchange genetic information in order to 

adapt to solve a particular problem. 



 

 3 

 
 

  Most of the work to date has applied genetic algorithms to produce 

controllers for a simulated (Figure 1.3-a) population of robots [Cli96] [Fic00] [Fun00b]. 

Limited numbers of researches have evolved the controllers in simulation and then 

transferred them onto physical robots [Mig95] [Smi98]. An even smaller number of 

researchers have conducted experiments where the genetic algorithms run in an external 

computer and the configuration pattern for each individual is downloaded to one single 

physical robot (Figure 1.3-b) to be evaluated one at a time [Mon95] [Tho95] [Flo96c] 

[Flo97b]. This still cannot be considered a real evolutionary system, because the population 

cannot interact in parallel and most of the uncertainty of a truly physical evolutionary 

system where all individuals exist and interact in real time will not be present [Jak95] 

[Jak97a] [Jak97b]. Finally, just a handful of experiments, reported by Floreano and 

Mondada [Flo01], makes use of two or more physical robots, but still tethered to external 

computation (Figure 1.3-c) where the genetic code resides. Therefore, this work is novel in 

implementing for the first time a fully embedded evolutionary system. 

Sensors Sensor
Module

Control
Circuit

Motor
Module

MotorsSensors Sensor
Module

Control
Circuit

Motor
Module

Motors
 

Figure 1.2 – How the evolvable control circuit fits in the robot architecture. 
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Figure 1.3 – Different ways to apply evolutionary techniques to robotics: 
simulated environment (a); simulated evolution with real robot evaluation 
(b); and real population tethered to an external computer where the 
evolutionary system resides (c). 
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  Differently from other authors that involve simulation in some of the 

evolutionary phases [Har93b] [Mil94] [Ste94] [Bul95] [Tho96a], the term Evolutionary 

System will be applied in this work to describe an environment where the individuals 

physically exist and artificially breed and die, to give place to the next generation. For that 

reason, it is not an Evolutionary Algorithm, but a real Evolutionary System. The initial 

literature review has demonstrated that an evolutionary system has never been implemented 

fully on-board of a population of real robots, working completely independent of external 

computation [Har97b] [Yao97] [Lay99a] [Teu99] [Wer99]. It was not until 1999 that 

Watson et al. [Wat99a] (evolving the controller) and the publication of the preliminary 

results of this work [Sim99] (evolving the controller and morphology) claimed to provide 

the first experimental proofs of the Embedded Evolution concept. Embedded Evolution is 

defined in this work as evolution that takes place in a population of real robots, completely 

independent from external computation or human intervention to evaluate, reproduce, and 

reposition the robots for new trials. Therefore, what is proposed is the physical 

implementation of a genetic system containing the robots as the individuals and a genetic 

code (bits stored in the RAM memory of the robots) that specifies the configuration of their 

control device, and their speed and sensor organisation (morphology). In the scope of this 

work, the term morphology is defined as the physical, embodied characteristics of the 

robot, such as its mechanics and sensor organisation [Mat96]. So far, the few examples of 

evolving both morphology and control exist only in simulation [Lip00]. Therefore, this 

 

Control Circuit

! Neural Network
Configuration

Morphological Features

! Precise value of Velocities
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! Selection of Sensors
– Number, Position

Genetic MaterialGenetic Material Robot RAM

 

Figure 1.4 – The genetic material stored in the robot RAM defines not only the 
control circuit, but also the morphological features of the robot. 
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thesis will show for the first time an embedded system that evolves both the control circuit 

and the morphology of the robots. Figure 1.4 shows that the genetic material of the robots 

can define their control circuit (the configuration of a Neural Network), the position of the 

sensors and the precise value of motor velocities. 

  To allow a clear investigation of the implicit interactive features within the 

evolutionary approach, a relatively simple task that does not involve explicit robot 

interaction was chosen: collision-free navigation [Mor96] [Rao96] [Key97a]. Therefore, 

the robots are encouraged to explore the environment while avoiding collisions into the 

walls, obstacles, or other robots [Set97]. Although trivial for traditional robotic 

computation domains, collision-free navigation provides a non-trivial search space for an 

evolutionary system, mainly where both robot control and morphology are evolved 

[Wat99a]. Furthermore, evolutionary methodologies for collective tasks in multi-robot 

interactive domains have not yet been reported [Lip00]. Hence, the insights that this 

research will bring about intend to be basic steps towards the developing of evolutionary 

techniques to a level where they can seriously be considered for designing industrial robots. 

  The main issues normally addressed by Evolutionary Computation are: i) to 

synthesise automatically more complex behaviours than could be produced by hand 

[Ang94a] [Bul95]; ii) to exploit all of the available features, considering that some of them 

may even be opaque to the designer [Pol00]; iii) to produce the desired behaviour 

specifying what the robot should do, but not how the controller works [Tho96b]; iv) to 

show that evolutionary techniques can reduce the human effort required to develop control 

systems as compared to traditional manual methods [Tho97a]. The main issues to be 

addressed in this work lie under ii and iii. Because of simplicity of the task, issues i and iv 

do not have significant impact (i.e., the behaviour aimed by the evolutionary controller is 

relatively simple, and could have been designed by hand with less effort). 

 

 

1.1 Problem Delimitation 

 

  To adapt the proposed solution to the conditions of the Electronic 

Engineering Laboratories, the theoretical work was evaluated over a set of experiments, 
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performed within a workspace that can be adapted to reproduce simple robotic 

applications. 

 

• The Workspace 

  The workspace consists of six autonomous mobile robots working in a 

2.50m × 2.50m domain, where they can navigate, avoid obstacles, and perform specific 

tasks. The robots have eight two-bit infrared proximity sensors and 32 speed levels for each 

motor. Both the robots and their working domain were specially built for the experiments 

in this work. Figure 1.5 shows the six robots navigating in their working domain. Because 

the workspace contains various robots, the environment also includes some robot-to-robot 

interference [Sch96]. Such interference in this work is defined as collisions between robots 

and reflection of the infrared signals by approaching robots. 

  All robots have a binary bit string, the “chromosome”, containing the 

genetic code that specifies their control device and physical features, such as speed and 

position of the sensors [Flo94]. The internal architecture is specified by this genetic code at 

the control circuit level. This control circuit is implemented within a microprocessor 

[Nol94] [Mon96], able to be reconfigured to produce new generations of more adapted 

robots. The robot individual capacity is quite simple, but presents the necessary 

 

 

Figure 1.5 – General view of the six robots and their working domain. 
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evolutionary capabilities. The evolutionary system is not based in an external computer, but 

is distributed between the robots and coexists with their evolvable controller inside the 

microprocessor. The distributed embedded evolutionary system of each robot 

communicates to the others through an embedded radio [Mat98b]. 

 

• The Expected Behaviour 

  The robots will navigate and try to perform the obstacle avoidance task 

totally independent of human intervention or external computation [Fic99]. The robots 

work in a cyclic procedure, where they have a working phase, where they try to perform the 

selected task, and a mating phase, where they reproduce. Figure 1.6 shows the continuous 

evolutionary process where the robots are constantly adapting to changes at the 

environment. Once a robot completes a working phase, it will attempt to find a “partner” 

with which to breed. If a partner satisfies the selection criteria, the two robots can exchange 

genetic code, and transform themselves into different robots (two parents mate and 

reconfigure themselves as two new offspring) [Bac91] [Bed97]. According to the selection 

criteria, the robots that are more adapted to perform the specified task will have more 

chance of generating descendants. Therefore, the best-adapted robots survive and spread 

their characteristics [Mon93]. After many generations (after some threshold level is 

Working Season End of
Lifetime

Mating SeasonWorking Season End of
Lifetime

• Task Performing

• Fitness Evaluation

Test the Ability to

Carry out the Task

• Mate Selection
• Chromosome Exchange

• Robot Reconfiguration

Continuous Evolutionary Process

 

Figure 1.6 – The continuous evolutionary process of the robot population. 
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achieved), the evolutionary system should produce a majority of well-adapted robots, 

qualified to work in the environment, and a few unfit robots. 

 

1.2 Objective 

 

  The objective of this work is to develop a self-training process, where a 

group (“population”) of six real robots can be taught to perform specific tasks in a closed 

mutable environment, completely independent of human intervention, external 

computation or power supply (see Figure 1.7). The robots should be linked by radio, 

forming a decentralised evolutionary system. That aim brings substantial technological 

demands and considerable algorithm detail must be added before it is workable. The robots 

must be able to adapt constantly their control circuit and morphology to changes of the 

surroundings, continuously modifying their internal configuration to work properly in that 

environment. Therefore, the robots must evolve while deployed “in the field”, using the 

real world to act as “its best model” [Bro91b]. 

  This work studied the main techniques for evolutionary robotics and tested 

the most relevant ideas that could be employed to produce a fully embedded evolutionary 

controller to navigate a population of physical robots in real time [Rey95]. Therefore, 

during the outcome of the work, many different concepts were proposed and investigated 

while looking for inspiration to develop the neural network architecture, and the 

evaluation, selection and reproduction strategies (e.g., developing the fitness function, or 

the crossover and mutation operators). However, some of this research could not be applied 

to embedding evolution within the robots and only the optimal results were reported for the 

simple reason of space. Nevertheless, the generated insights and understanding are always 

present in the discussions and justifications presented in this thesis. 
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 Goals: 

• To implement a workspace with a group of six autonomous mobile robots 

and the environment containing the structures that are necessary for 

navigation and task performing, such as walls and obstacles, as well as a 

monitor computer to produce a data record of the evolutionary experiments; 

• To produce a novel distributed fully-embedded evolutionary controller for a 

population of autonomous mobile robots applied to collision-free navigation 

in the suggested working environment; 

• To show that the proposed evolutionary system can produce not only a 

trained robot but also an open-ended evolution, continuously adapting the 

robot controllers to cope with a variable environment; 

• To produce the first experimental proofs of the Embedded Evolution 

concept, where both control circuit and morphology are evolved.  

 

Rob1

Rob2

Rob3

Rob4

Rob5

Rob6

Distributed
Evolutionary

System

Real Mutable Environment
(simple to complex)

Proposed Evolutionary System:

-- Real Robot Population;
-- Fully Embodied Controller;
-- Distributed Evolutionary System;
-- Continuous Evolution;
-- Evolving Morphology and Control;

 

Figure 1.7 – The proposed system consists of a distributed evolutionary 
controller embedded within a population of real robots. All robots are 
linked by radio, forming a decentralised system. 
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1.3 Thesis Organisation 

 

  Chapter 2 is devoted to the study of evolutionary computation applied to 

robotics. The chapter reviews evolutionary robotics and more specifically genetic 

algorithms and presents the most relevant strategies that can be applied to the development 

of evolutionary robotic systems. In addition, the principles underlying evolutionary 

computation are addressed together with a review of the literature to explore the weak 

points and show where improvements are required. It overviews the most important topics 

and concepts that will be referred to in the other chapters, so that it provides vital 

information to the reader and can be used as a reference of the terms employed in this 

thesis. The main addressed topics are: artificial life, embedded evolution, incremental 

evolution, species adaptation genetic algorithms, co-evolution of different behaviours, and 

co-adaptation of controller and morphology. It also considers the issues on evolving the 

robot population in simulation and the problems that arise when the final result is 

transferred to a real robot.  

  Chapter 3 reports comparative studies between different alternatives to 

embedding an evolutionary control circuit in a population of autonomous mobile robots 

that is able to achieve the task of collision-free navigation. The chapter debates if the 

evolvable control circuit should be structured or not; if it should be simulated or integrated; 

and if it should be trained at first and then just refined by evolution. It discusses the main 

architectures that can be applied to the design of a navigation control circuit that can be 

evolved. It also attempts to apply different strategies to implement the embedded controller 

according to the project specifications and limitations and provides a comparative analysis 

of these strategies that selected a weightless neural network as the best option. The 

reviewed strategies are: evolvable hardware; dynamic state machine; condition-behaviour 

mapping; pulse stream neural systems; and Boolean neural networks. 

  Chapter 4 introduces the formulation of the proposed evolutionary system 

and what is required to allow its implementation in the robots. The chapter describes how 

the evolutionary system was developed, the techniques that could be adapted from the 

literature to be applied to the proposed system, and the novel techniques developed to 

allow the design of every circuit and program necessary to embedding a distributed 

evolutionary system in a population of autonomous mobile robots. It presents the robots 
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and the environment where the experiments were carried out and specifies what is 

necessary to perform the evolution of the population towards the desired task-behaviour: 

collision-free navigation. It also defines the employed genetic operators such as crossover, 

mutation, partner selection, and reproduction. The architecture of the chosen Boolean 

neural network is developed and described as well as the strategy of communication that 

allows the distributed evolutionary system to control the evolving robots. 

  Chapter 5 describes the robot hardware and software, showing how a 

population of autonomous mobile robots was built to accommodate the distributed 

evolutionary system as they were specified in Chapter 4. The chapter describes the robot 

architecture, explaining how its internal circuits were conceived and work. It discusses the 

alternatives to build the computing system, the sensor circuit, the motor drive circuit, and 

the communication circuit, which allow the robots to communicate and coordinate their 

activities. It also describes a stand-alone radio board that was developed to allow a monitor 

computer to supervise the evolutionary experiments and produce a data record containing 

all the relevant information for each generation. 

  Chapter 6 presents the preliminary experiments performed with the real 

robots that helped to develop and refine, by trial and error, the configuration of the 

evolutionary system, the navigation control circuit, the sensor module, the motor drive 

module, and the monitor computer. It tests the influence of different parameters in the 

performance of the system. The chapter puts to test the ability of the proposed evolutionary 

system to evolve the part of the robot morphology that corresponds to the sensor 

configuration. It determines the best sensor configuration that could be used as a reference 

to the other experiments. It also investigates if the evolutionary system is able to evolve an 

unstructured controller. A different selection strategy, called inheritance selection, which 

chooses the robots to reproduce by calculating their average performance in the previous 

generations is also proposed in Chapter 6. 

  Chapter 7 presents the experiments run in simulation that tested the 

influence of different parameters of the evolutionary system, such as different mutation 

rates, strategies to select the partners to breed, crossover strategies, and reproduction 

techniques. Simulation allowed an efficient and fast way to test novel strategies that 

improved considerably the performance of the evolutionary system. The chapter introduces 

the developed simulator program and how it was used to evaluate the robots in a virtual 

world. It investigates different ways to evolve the robot configuring bit string and proposed 
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the use of predation to bring new genetic material to the population, introducing more 

diversity and preventing it from being stuck in local optima. 

  Chapter 8 brings together all the insights and understanding achieved in the 

previous two chapters to build a fully embedded distributed evolutionary system that 

evolves both the robot navigation control circuit and its morphology and is able to achieve 

collision free-navigation in a few hundreds of trials. The chapter presents the first 

experimental proofs of the embedded evolution concept applied to the evolution of the 

morphology and control circuit of a population of real robots in real time. It attempts to 

evolve the configuration of the sensors around the robot and the speed levels of the motors. 

It also compares the performances of an unstructured controller and a structured neural 

network.  

  Finally, Chapter 9 presents the conclusions and the contributions of this 

research. The outlined scope and assumptions of this work along with its limitations are 

compared to the obtained results to determine if it succeeded in producing a powerful 

embedded evolutionary system that is able to achieve obstacle avoidance. The chapter 

shows not only what was achieved, but also what was learned while executing the research 

and offers some possible opportunities for further investigation to extend the scope of the 

work reported in this thesis. 

  Appendix A describes the contents of the attached CD-ROM, which 

contains the software developed in this work, as well as some photographs and videos of 

the robots performing their task. Appendix B contains the schematic diagrams of the 

electronic circuit of the robots and the radio board. Finally, Appendix C contains some 

tables summarising the many experiments that for reason of space could not be included in 

the body of the thesis. 
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2 EVOLUTIONARY ROBOTICS 
 

 

  This chapter presents methods of applying Evolutionary Computation (EC) 

to design controllers automatically for autonomous mobile robots. It introduces EC and 

overviews the state-of-the-art in this area. It also presents several different subdomains of 

this research field, such as Genetic Algorithms (GAs), Genetic Programming (GP), 

Evolutionary Systems (ES), and Artificial Life (ALife). This chapter will also expand the 

Evolutionary System domain into several interesting techniques that can be applied to 

improve the evolution of controllers for the robots. Such techniques are: co-evolution; co-

adaptation; incremental evolution; and species adaptation genetic algorithms. 

 

 

2.1 Evolutionary Computation 

 

  Evolutionary Algorithms (EAs) are an emergent computing strategy because 

of their ability to solve difficult optimisation problems and their versatility in applications 

involving the machine-learning field [Tom95]. EA methodologies have been applied not 

only in academic research, but also in industrial problems [Cal95]. EAs are adaptation, 

search, and optimisation procedures inspired by biology, more specifically in the 

Darwinian Theory of Evolution [Kni48] [Cam99]. They abstract and mimic some of the 

traits of natural evolution to produce functional artificial adaptive processes [Flo97a]. 

Though evolution-inspired, EA is free to use whatever strategy works well for a given class 

of problems, even if it has no direct biological counterpart. EA is particularly suited to a 

physical robotic system because, even though it is frequently seen as a sequential execution 

of genetic routines in simulation, it is intrinsically parallel, and can control a population of 

individuals (robots) that work simultaneously in spatially-extended domains. 
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  Evolutionary Computation is a research field that involves nature-inspired 

techniques such as Genetic Algorithms and Genetic Programming, which are explained 

below. 

 

 

2.1.1 Genetic Algorithms 

 

  Genetic Algorithms (GAs) were introduced in the sixties when the 

fundamental biological mechanisms were abstracted away and expressed mathematically in 

a form that can be simulated on a computer and applied to a wide range of problems 

[Hol62]. GAs are search engines applied to large search spaces of well-defined finite 

dimensionality [Shi00]. GAs consist of mapping feasible solutions in some problem space 

to individuals throughout a string of binary digits, also called the chromosome. The 

characteristics or features of each feasible solution are also called the phenotype, which is 

represented by a binary code, called the genotype. Therefore, each individual, through a 

suitable coding, represents a point (a feasible solution) in the search space of a given 

problem. 

  A GA is an iterative procedure where a population of individuals is 

randomly generated [Mit95]. Each individual of the population is evaluated in each 

iteration step, also called a generation, and given a score, or fitness value, that relates to its 

performance in solving the target problem [Tom95]. The following generations are formed 

by evolution so that, in time, the population comes to consist of better (fitter) individuals. 

Each subsequent generation is created, traditionally, by applying two genetic operators, 

known in biology as crossover and mutation, to a selected group of individuals from the 

previous generation [Wat00b]. In a fitness-proportional selection [May96], the individuals 

are selected with a probability proportional to their relative fitness, so that good individuals 

have a greater chance of being selected to reproduce. The parents reproduce, creating a 

resultant individual consisting of a mixture of the parental genetic material (crossover) 

along with a small amount of copying errors (mutation). Reproduction may be sexual, 

when crossover between two parents occurs, or asexual, in which case just mutation is used 

to produce offspring from a single parent [Bro00]. 
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  The crossover operator usually works by exchanging substrings of the parent 

chromosomes after a randomly-selected crossover point. The mutation operator adds 

background noise to the process to prevent premature convergence into local optima. 

Mutation is applied to the chromosome by flipping bits at random with a certain probability 

called the mutation rate [Ang94b]. If the natural metaphor is to be followed, a given 

generation consists of different creatures (individuals) whose chances of survival are in 

relation to their fitness. The better (fitter) a creature, the higher its probability of survival, 

and in time, the population will be comprised of better creatures. However, GAs are 

stochastic and convergence is not guaranteed [Koz98].  

  There are several possibilities to select individuals for reproduction as a 

function of their fitness [Bar98]. Fitness-proportional selection is one of the best-known 

methods [Fun98]. Once the fitness fi of each individual i in a given generation is obtained, 

it is possible to calculate the total population fitness TF: 
 

∑
=
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  Then, a probability pi is assigned to each individual as follows: 
 

TF
fipi =  

 

  Finally, a cumulative probability Cpi is obtained for each individual by 

adding up the fitness of the individual to the fitness of the preceding population members: 
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  A random number r uniformly distributed in [0,1] is generated Popsize 

times and the individual i is selected for reproduction each time: 
 

Cp(i-1) < r < Cpi 
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  If r < Cpi, the first individual is selected for reproduction. This method can 

be compared to the spinning of a biased roulette wheel [Tom95] divided into Popsize slots, 

each with a size proportional to the fitness of the respective individual. If an individual has 

a high fitness score, it has a high probability of being selected many times and will produce 

many descendants. One problem with this approach is that, after the population converges 

and the individuals get better, the differences in fitness between individuals become small, 

which renders selection ineffective [Tom96]. Other methods that do not allocate trials 

proportionally to fitness try to solve this problem. Examples of such methods are Ranking 

selection and Tournament selection. 

  In Ranking selection, the individuals are ordered by fitness and the best 

individual is selected a predetermined multiple of the number of times the worst one is 

selected [Tod97]. In tournament selection, a number of individuals (the tournament size) 

are selected at random with uniform probability and only the best one among them is 

selected to reproduce. The selection pressure is proportional to the tournament size 

[Har93a]. This method is not global so that local tournaments can be held simultaneously 

in spatially isolated populations. 

  Figure 2.1 illustrates how a standard GA works. The population is randomly 

initialised and tested in the environment. The best individuals reproduce to create the next 

generation, which will be tested again. The process only stops when a termination 

condition is satisfied [Set98a]. Therefore, evolution continues until a satisfying solution is 

found. In some cases, there is an implicit fitness evaluation as the individuals battle for 

virtual resources necessary for survival. In other cases, an explicit fitness function is 

applied to each generation of creatures, forcing evolution in a desired direction [Bro91a] 

[Bro92]. 

  In classical GA, crossover is the fundamental operator and mutation is seen 

as a supplementary function [Tom96]. Crossover combines parents selected from beneficial 

trials, thus combining strings that have already been proven relatively good, and so having 

more chance of generating fitter individuals [Bro00]. Selection and crossover alone tend to 

cause rapid convergence, with the danger of losing potentially useful genetic material. The 

original version of the crossover operation is one-point crossover, where, once two bit 

strings have been selected to produce offspring, a position p is selected at random between 

one and the length of the strings minus one [Tom95]. Both strings are then divided at this 

position, generating four substrings: substring1a; substring1b; substring2a; and 
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substring2b. Two new strings are produced by swapping all bits of these substrings: 

offspring1 = substring1a + substring2b; offspring2 = substring1b + substring2a (here “+” 

means concatenation). These two new offspring will enter the new population for the next 

generation in place of their parents. This strategy was inspired by biology and is very 

simple and efficient [Bro00]. The idea was expanded into multi-point crossover. It applies 

the same strategy, but divides the original strings in more than one cut point and the 

substrings are swapped among these points.  

  Another strategy is uniform crossover, which forms two offspring from two 

parent bit strings. For each bit in the first offspring, a bit in the corresponding position is 

copied randomly with some probability from one of the parents. The second offspring gets 

the corresponding bit from the remaining parent. This strategy is less likely to preserve 

good building blocks, but provides a more uniform distribution of the bits [Wat00b].  

Environment

Test the
Performance of all
Individuals in the

Environment

Randomly Generated
Initial Population

of Individuals

Select Fitter
Individuals and
combine them

Mutate the new
Individuals

Replace some bad
individuals by the

new ones

Test
Termination
Condition

End Yes No

 

Figure 2.1 – General scheme of a standard genetic algorithm. 
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  Mutation is necessary to avoid search stagnation by introducing new 

diversity. Without mutation, evolution can only combine the individuals of the population 

to form the next generations. As only the best individuals are selected to reproduce, the 

population tends to converge to a single better configuration. Therefore, after some 

generations, the configuring bit strings of the population will be all the same and the 

population will cease to improve, since it cannot be modified anymore. Mutation 

introduces new diversity by randomly flipping some bits of the chromosome every time the 

individuals reproduce. Hence, modifying their configuring bit string and allowing evolution 

to proceed. Nonetheless, mutation rates need to be low, otherwise the search tends to 

degenerate into a random walk [Har96].  

  Generally, applying mutation to a fit individual often produces negative 

results, deteriorating its fitness, and is only occasionally positive [Tho94c]. Neutral 

mutations are the ones that modify the genotype, but leave the phenotype unchanged (and 

fitness) [Bar98]. Nevertheless, they open the possibility of a further mutation making some 

difference. In this case, the mapping from genotype to phenotype contains redundancy such 

that a phenotype is represented by many genotypes [Shi00]. This allows genetic changes to 

be made while maintaining the current phenotype and thus may reduce the chance of 

becoming trapped in sub-optimal regions of genotype space. 

  Adaptive mutation schemes vary the rate or the form of mutation, or both, 

during the GA run [Tho97b]. Therefore, the search space can be explored uniformly at first 

and more locally towards the end, locally improving the best candidates. A small mutation 

rate will tend to converge the population into a local optima [Har93a]. If the mutation rate 

increases, the population can spread around this local optima to search the neighbourhood 

towards ridges of new hills, but if the mutation rate becomes too big, then the fitness of the 

population may disperse completely. Usually, GAs are not strong enough to demonstrate 

conclusively that the global optimum has been reached [Cli97] [Har97a]. 

  A variant of GA, called Genetic Programming (GP), was proposed by J. R. 

Koza [Koz98]. While in a GA evolution takes place at the genotypic level (i.e., at the level 

of coding sequences), GP emphasises phenotypic adaptation (i.e., the behavioural 

expression of a genotype in a specific environment). GP is an attractive approach to 

evolving controllers in simulation since it manipulates higher-level primitives, such as Lisp 

programs, for example. This abstraction leads to a reduction of the search space, making 

evolution work much faster [Ban93]. 
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  Since it was proposed, GP began to conquer some space from GA 

applications. De Garis applied GP to configure neural networks [Gar94a]; and Sen applied 

GP to multi-robot systems [Hay95]; Later, Koza and Rice were successful in evolving box-

pushing behaviour with the same approach, but still in simulation [Koz92]. Nordin applied 

GP to evolve a real robot controller [Nor96] and Koza et al. also employed FPGAs to 

accelerate the evolutionary process [Koz97]. However, the effectiveness of these 

approaches is dependent on the proper design of the behaviour primitives. 

  As the complexity of applications increases, the foresight needed to design it 

by hand will soon be outstripped, making progress beyond relatively simple domains 

infeasible [Cli92]. Therefore, the possibility of an automatic synthesis without explicit 

design offered by evolution becomes very attractive [Har93a]. Natural evolution is the 

existence proof for the viability of this approach, given that relatively complex designs like 

the human eye were produced in this way [Kep94] [Tod97]. 

 

 

2.2 Evolutionary Robotic Systems 

 

  Since John von Neumann, in the early 1950s, posed the question “Can a 

machine reproduce?”, many researchers have attempted to investigate the logic necessary 

for reproduction. In analogy with nature, this was an attempt to allow an artificial machine 

to create a copy of itself, which in turn could create more copies [Mic95] [Mey97]. Ever 

since, many attempts to create such self-replicating machines succeeded in computer 

simulations. A good example is Chris Langton’s Cellular Automaton [Maz98]. The effort 

culminated when Langton and his colleagues defined the term Artificial Life (ALife) 

[Lan89]. They attempted to abstract the fundamental dynamical principles underlying 

biological phenomena, and recreate these dynamics in other physical media [Sip95] 

[Dau98]. Differently from biological research, which is essentially analytic, ALife is 

synthetic, attempting to construct phenomena from their elemental units [Mic95] [Mit95]. 

The reproductive process proposed by von Neumann is as real as that carried out in nature 

[Bro92] [Ste95].  
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  ALife studies not only improve the understanding of nature, but also bring 

insights into artificial models such as Evolutionary Systems (ES). ES offers the ability of 

adaptation to a dynamic environment [Nol94]. Therefore, ES offers greater adaptability to 

deal with unforeseen events than traditional design. Brooks combined ALife and ES 

methods to design robots that had the necessary adaptability to function in a human 

environment [Bro91a] [Bro91b]. These methods work differently from the top-down 

methodology of traditional Artificial Intelligence (AI) [Ste95]. AI starts by identifying a 

complex behaviour and then tries to build a system that presents all the details of the 

behaviour [Neb96]. ALife starts from simple elemental units, gradually building its way 

upwards through evolution, in a bottom-up manner [Sip95]. Whereas AI has traditionally 

concentrated on complex human functions, ALife concentrates on basic natural behaviours, 

emphasizing survivability in complex environments [Dau98].  

  In a recent article [Lip00], Lipson and Pollack attempted to bring computer 

models closer to physical reality. They described a system that evolves locomotive 

machines in simulation, but can also employ a rapid-prototyping device to build them 

automatically. They claimed to have achieved automatic reproduction of robotic life forms. 

However, their work consists of a simulated evolutionary process, where some individuals 

can be automatically prototyped. As evolution goes on in the computer, there is no 

connection to the physical world, such as fitness evaluation. What their work really 

innovates, therefore, is the ability of automatically prototyping some individuals to display 

physically what is going on in simulation. Their robotic population does not exist or 

reproduce in the real world. In evolutionary terms, there is no difference from their 

previous work [Fun99], where they implement the structures by hand out of real Lego 

blocks. However, they have only used this to show the robustness of the structures 

generated by evolution in the simulation. Hence, there is some way to go before self-

reproducing robots can exist in the real world [Bro00]. 

  What a truly evolutionary robot system needs is a strategy that allows the 

“robot creatures” to self-replicate [Kan97]. The only feasible solution so far is to build the 

next generation by hand, using some modular blocks that can be attached to the bodies of 

the robots, enabling them to modify their configuration from one generation to the next 

[Tem95]. These blocks can contain different sensors, motors, or actuators, so that robots 

containing different features, or characteristics, can be produced [Har93c] [Har94]. Figure 

2.2 illustrates how different blocks containing actuators, sensors, and motors with different 

capacities can be mounted on the robot body. However, there is an alternative to automate 
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this strategy. Consider an evolutionary system where different sensor configurations are to 

be evolved together with the robot controller. If all the available sensors are placed around 

the robot, and can be enabled or disabled by the genotype, different physical characteristics 

can be produced, so that the robots can have different sensor configurations. In comparison 

to natural evolution, where humans lost their tail because it was not practical anymore, this 

strategy consists of giving the robots many “tails” (redundant sensors) and letting evolution 

decide which ones to pick [Har97c]. Therefore, new robots with different physical 

characteristics can be produced without the necessity of rebuilding their mechanical bodies. 

This strategy is used in this work to produce the evolutionary robotic system that will be 

described in Chapter 4.  

 

 

2.2.1 Issues on Using Simulators 

 

  When EC is used to design automatically a robot controller, a software 

simulation of the robot will make it easier to be manipulated by evolution [Har94] [Hus95]. 

Even when a real robot is used, the actual controller undergoing evolution is usually 

simulated in software [Tho97a]. When developing EAs using simulation, to achieve 

realistic results the simulation must take account of the imperfection of the real world, such 
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Figure 2.2 – Robot body containing different sockets used to connect 
different blocks that contain motors, sensors, and actuators with different 
capacities. 
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as noise, and non-ideal performance of sensors [Jak95]. However, a significant drop in 

performance may occur when the results of the algorithm optimisation are loaded into the 

robot [Jak96] [Jak97a]. Another approach is to use the real robots themselves [Jak97b] 

[Jak98b]. However, the problem with this approach is the prohibitively long time taken, as 

demonstrated by experiments on Khepera robots [Nor97]. Nevertheless, the experiments in 

Chapter 8 will show that fully-embedded evolution of simple behaviours can succeed in 

less than two hours, because it allows the evaluation of the whole robot population in 

parallel [Fic99] [Sim99] [Wat99a]. 

  Most of the reported work with evolutionary systems makes use of computer 

simulations of the robots [Cli96] [Cha98]. Some authors used faithful representations of 

the environment, including some effects of noise [Nol94] [Jak95] [Mat95]. However, many 

concluded that if noise levels in the simulator differ significantly from those in the real 

robots, the obtained solutions are less likely to be transferred to the real system [Mat96]. 

Brooks advertised in [Bro92] that when building a simulator it would be very difficult to 

estimate the uncertainty that the real world presents. In addition, there is a danger of 

confusing the global world-view, where sensors, for example, return perfect information, 

with the robot view of the world. Hence, it is likely that the evolved controllers will rely on 

unrealistically accurate actuators and sensor responses. Any abstraction made in a 

simulation may be exploited by the EA and result in behaviour that is badly adapted to the 

real world. 

  The simulators are limited by the experience of the programmer on the 

relevant factors to be included [Cli92]. That is, the simulation will only include the levels 

of noise that the programmer expects to happen. For complex robots, a faithful simulation 

may take more time than trials on real robot architectures [Mig95]. According to Harvey et 

al. in [Har94], producing sufficiently accurate simulations of visual sensing can be 

prohibitively long. Thus, when applying simulated evolution to robot vision, using a real 

video input system proved a more attractive option [Bro91b]. 

  There can be no substitute for experience with real robots, but simulations, 

though, do have some benefit if the appropriate care is taken [Cli96] [Smi98]. In an open-

ended evolution, for example, simulation can be used to speed up the process by training 

basic skills to simulated robots in an abstracted environment, and then the best solutions 

can be transferred to the robots to be refined later, while the robot continues evolving in the 

real world. This strategy may accelerate evolution, even though performances may 
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significantly deteriorate when the best simulation solutions are transferred to the physical 

robots [Nol94] [Nol95].  

  Another good use of simulators is in abstracting complexity from the robots 

and environment [Mig95]. This strategy will be used in the work reported in Chapter 7 to 

allow different characteristics of the system to be analysed individually in simulation. It is 

possible in simulation, for example, to isolate the robots from the uncertainty of the real 

world, and analyse the effects of genetic operations like the crossover and mutation 

strategies. Therefore, simulation is acknowledged as a valuable tool, used to gain insight 

and understanding of complex systems. However, the developed simulator was not 

intended to provide a high-fidelity simulation of the robots and their environment. Instead, 

it served only as a testbed to set up new experiments. 

 

 

2.2.2 Embedded Evolution 

 

  Floreano and Mondada in [Flo96a] took the first steps towards bridging the 

gap between computer models and physical reality. They used a physical Khepera robot to 

provide physical sensor readings, tethered to an off-board workstation, hosting the 

evolutionary software. They were followed by many researches, such as Harvey [Har97b], 

Jakoby et al. [Jak98a], Husbands [Hus98], Mataric et al. [Sch96], and Thompson 

[Tho97a], among others. Nevertheless, all these authors lack parallelism or independence 

from external computation, or both. Watson et al. [Wat99a] and the preliminary results of 

this work [Sim99] described the first experiments with the Embedded Evolution (EE) 

concept. 

  EE is a methodology for the automatic design of physical robot controllers 

that takes place in a population of real robots [Wat99a]. It avoids the problems of evolving 

in simulation and transferring the design to physical robots and speeds up evolution by 

evaluating each robot in parallel. The evolutionary algorithm is decentralised [Mat97c], 

distributed among and embedded within the robot population so that there is no need for 

human intervention to evaluate, breed, reconfigure, or reposition the robots for new trials 

[Och99a]. Fitness evaluation, partner selection, and reproduction are carried out 
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autonomously and individually by the robots [Sim99]. The robots are not only autonomous 

in their task behaviour, but in the evolutionary algorithm as well [Fic99]. 

  When designing control systems for physical robots, it is not always clear 

how a robot control system should be decomposed and the sub-systems often include 

interactions mediated via the environment [Har97b]. Another major problem is that the 

interactions among sub-parts tend to grow exponentially as the systems become more 

complex [Tho97a]. When the complexity of the interactions grows, a primary 

decomposition into perception, planning, and action becomes difficult to obtain [Pol00]. 

An alternative to this is to allow evolution to deal with the unexpected interactions between 

sub-systems and design a controller based on the behaviour of the complete system (i.e., 

seeing the robot as a whole: body; sensors; motors; and controller) [Flo94].  

  In EE, evolution is manipulating a physical object that exists in real-time 

and space, and behaves according to the mechanics of the robots [Tho97a]. To determine 

the interactions between the robot components, it is crucial to consider their size, shape, 

and location. This fact makes those interactions richer, but, in some ways, more 

constrained, since the characteristics of the components and their interactions are not 

exactly predictable or constant over time. Evolution should be able to exploit freely the 

collective behaviour of the components without the necessity of predicting it from 

knowledge of their individual properties [Tho96b]. It can take advantage of the rich 

structures and dynamical behaviours that are natural to the robot hardware, far beyond the 

scope of conventional design, which is only a sub-set of the possibilities. Even stochastic 

noise is not always a problem and can present advantageous effects [Tho94c]. However, it 

alters the behaviour of the robot hardware, modifying fitness and obscuring the fitness 

landscape. This effect decreases the difference in fitness between two robots that are 

neighbours in genotype space and may lead to imprecision in selecting the fittest robot 

[Set98b]. These effects will be analysed in Chapter 6 where this problem will be 

approached. 

  A noticeable disadvantage of EE is that it is difficult to collect experimental 

data from the robots, since there are no centralised mechanisms for evolution [Wat99a]. EE 

is also susceptible to failure if the robots become reproductively isolated, which can easily 

happen in communication systems based on a local-range infrared link [Fic99]. EE adds 

even more difficulty to the inherent robotic problem of replicating entire experiments 

[Tho97a]. Noise in the sensors, effectors, and the environment result in a large variance 
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across trials [Mat96]. This uncertainty was already difficult to reproduce in simulation, 

even by preserving the same random seeds, but it is practically impossible in a physical 

controller, embedded within a population of real robots. Any stochastic components in the 

algorithm compound the problem. In simulated evolution, the programmer can manipulate 

the rules to eliminate non-determinism and produce repeatable trials [Jak96]. 

  Much of the analysis of expected behaviours in EE is provided by the user 

(i.e., it is qualitative and based on human judgment) [Mat95]. Typically, statistical tests are 

not significant as insufficient data are available. Because genetic algorithms are stochastic, 

the average result over several runs is a more useful indicator of their performance [Set97]. 

However, because of the uncertainty and variability of physical experiments, an average 

performance is also difficult to establish as trials may vary significantly. 

  The design of a fitness function in EE is more difficult than in simulation, 

because not all sensory information taken by simulation (such as the position of the robot 

in the environment) is actually available from the point of view of the robot in the real 

world [Nol94]. Towards the end of the evolutionary experiment, the differences between 

individual fitness become smaller, resulting in a less effective selection [Tom95]. In EE, a 

possible alternative is to increase the duration of a generation at the end of the experiment, 

to introduce more selection pressure in the environment and differentiate the better-adapted 

individuals [Sim99] [Pol00]. 

 

 

2.2.3 Encoding the Characteristics of the Robot 

 

  When an evolutionary algorithm is distributed among a population of 

physical robots, some parameters must be selected to codify their control circuit and 

embedded characteristics [Har93c]. These parameters are usually represented by a binary 

string of bits (alleles), also called the robot genotype. The chromosome contains the binary 

string. Then, the genotype is applied to configure the robot features, also called the robot 

phenotype, in such a way that determined groups of bits (genes) in specific locations in the 

chromosome configure specific features [Nol94]. If the encoding is robust enough, that is, 

if it presents some redundancy, small modifications (mutation) in the genotype should not 
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produce radical changes in the phenotype [Cam99]. This is a concept referred to in biology 

as Neutrality, Neutral Mutations, or Neutral Variation [Ler76]. Therefore, some genetic 

variations observed in populations are probably trivial in their impact on reproductive 

success. Moreover, even if only one fraction of the extensive variation in a genotype 

significantly affects the organisms, it is still a reservoir of raw material for evolution.  

  Neutrality can be obtained by using an artificial neural network (ANN) to 

implement the robot controller [Bee91] [Nol92]. ANNs have usually an intrinsic 

redundancy, tolerance to noise, and low degradation with respect to component failure 

[Ale90]. They typically have a smooth fitness landscape and present good neutrality, 

allowing some neuron contents or weights to be modified without radically changing their 

fitness (their response for the same set of stimulus) [Mat96]. Some care must be taken 

when mapping phenotype to genotype, because the size of the chromosome exponentially 

affects evolution performance. For a chromosome of length n, and b possible alleles at each 

position, the search space is calculated as bn possibilities. Typically, the bigger the search 

space, the longer the time that the evolutionary process spends evaluating complex designs 

to find an appropriate configuration of primitives. Then, successful evolution becomes a 

practical impossibility [Bac91]. 

  Although crossover is viewed as the fundamental operator in classical GAs 

[Tom95], in EE, the population size tends to be comparatively very small (e.g., ten 

individuals or less) [Sim99] [Wat99a]. In these cases, the search can rapidly converge to 

stagnation in few generations and mutation alone will be the only source of diversity in 

evolution. Therefore, after an initial phase where crossover boasts evolution to a rapid 

convergence, EE will rely on selection and more sophisticated versions of mutation as the 

principal evolutionary operators [Sch95]. In general, a compromise must be found between 

exploitation of good fitness regions (local improvement by crossover) and further 

exploration of the search space (use of mutation to avoid missing better regions further 

away) [Har96] [Cli97].  

  There are several strategies to encoding the characteristics of the robot 

architecture. The most relevant ones will be presented below: 
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• Incremental Evolution 

  Incremental Evolution (IE) was suggested by Harvey in [Har92] [Har93a] 

and states that rather than randomly initialising the population to evolve controllers to a 

challenging task, it is better to evolve from a population that has been selected for a similar 

but less challenging task [Cli92]. IE works with no predetermined number of components 

to be used in the design [Mee96]. A sequence of increasingly complex tasks is presented, 

involving the evolution in succession of progressively more complex systems. Brooks’ 

approach is an example of “wiring in” new behaviours one at a time, and waiting until 

current behaviours are thoroughly debugged before “wiring in” the next one [Bro91b]. 

Evolutionary robotics typically needs adaptive improvement techniques rather than the 

optimisation skills of the GAs on a fixed-dimensional search space [Mit95]. The number of 

components required to produce the expected behaviour may be unknown a priori. 

Incremental evolution will progressively increase the number of components through 

successively more difficult tasks. This approach takes GAs as adaptive improvers rather 

than optimisers [Bro92].  

 

• Species Adaptation Genetic Algorithms 

  To allow for a wider variety of possible control architectures, the length of 

the genotype may be variable [Har93b]. Species Adaptation Genetic Algorithms (SAGA) 

was proposed by Harvey [Har92] explicitly for dealing with variable-length genotypes. 

SAGA makes use of incremental evolution starting with a short, simple genotype, which 

produces elementary behaviour. It lets evolution synthesise the elementary behaviours at 

first and then progressively increases the genotype size, allowing evolution to synthesise 

again from this better-adapted population [Mat96]. Therefore, complex individuals can be 

evolved from simple ones, with associated increase in genotype lengths [Har93a]. These 

two phases (genotype alteration and synthesis) repeat until a sufficiently complex design is 

obtained. The variations in the genotype length should be achieved, on the average, without 

significant impact on fitness [Har94]. In SAGA, crossover between individuals is only 

allowed for parents within a certain genotype distance from each other. Reproduction can 

be problematic with genotypes of different length and domain-specific GA programs may 

be necessary [Tho94c]. 
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• Robot Symmetry 

  To reduce the search space for evolution, the physics of the robot and its 

controller can have some degree of symmetry [Bro92]. For example, with bilateral 

symmetry, both sides of the controller and morphology can be specified by the same 

genome [Mat96]. If the encoding scheme allow some repeatability of modular structures, a 

genotype that encodes only the type and number of predefined substructures will be much 

more compact [Ban94].  

 

• Co-evolution of different behaviours 

  The co-evolution of two or more behaviours is a delicate process that has 

been achieved mostly in simulation [Bul95] [Bla98] [Och99b]. Co-evolution, as for 

example in the pursuit-evasion context [Flo01], occurs when one kind of pursuing robot 

has its fitness determined by the current behaviour of another kind of evader, and vice 

versa [Har97b]. GAs typically work on static fitness landscapes. Alternatively, co-

evolution works on dynamic fitness landscapes that change over time [Mil94] [Flo98a]. To 

achieve this, co-evolution makes use of the relationships among the systems that are being 

evolved in such a way that they depend on each other. Rather than evolving to solve a fixed 

problem, the organisms are constantly adapting to each other and their surroundings, 

including food, mates, competitors, and predators. For example, stealth can be the response 

of a predator for countering a more agile prey, and so on [Flo97a]. Competitive fitness 

functions that are dependent on the constituents of the population can provide a more 

robust training environment than independent fitness functions [Nol98a]. 

  Co-evolutionary strategies proved successful alternatives in many works 

involving simulation, such as parental imprinting, aggressive signalling, sexual selection, 

and evolved communication. Embedded co-evolution in robotics involves the construction 

of two or more robotic populations (predators and prey for example) that are interrelated to 

each other [Bul95]. This adds complexity and cost to the already difficult task of 

embedding an evolutionary algorithm within physical hardware. 

 

• Co-adaptation of controller and morphology 

  A truly general encoding scheme should smoothly integrate specifications of 

both controller and morphological features [Mat96]. This scheme may include 
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configuration codes that define and permit co-adaptation of the control architecture and 

parameters specifying sensory and motor characteristics [Nol98b]. Distinctively from the 

interactions between competitive behaviours of co-evolutionary algorithms, co-adaptation 

involves parallel evolution of different features of the same individual [Wat00a]. 

Therefore, the morphology of a robot, such as sensor distribution and range can be selected 

by evolution while the controller progressively learns how to deal with the new features 

[Lun97]. Using the natural metaphor, it is like both nervous system and body shape 

evolved together in the natural world of a species, as the genetic code can configure the 

shape of the body as well as the instinct in the brain. In this way, the natural skills that an 

individual is born with as well as the characteristics of its body are manipulated by 

evolution from generation to generation, until an efficient combination emerges to solve 

the target task. 
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3 ROBOT CONTROL CIRCUIT 
 

 

  This chapter discusses alternative strategies to the traditional 

implementation of robotic control systems based on artificial intelligence (AI) and 

evolutionary computation (EC). It describes some of the main approaches, pointing out the 

key challenges, unanswered problems, and some promising directions. An analysis of the 

state-of-the-art will select the best technique for the implementation of an embedded 

evolvable control scheme for a group of autonomous mobile robots. 

 

 

3.1 Embodying an Evolvable Control Circuit 

 

  From the study of the Evolutionary Robotics field presented in Chapter 2, it 

was possible to identify the necessary characteristics of a control strategy for the 

adaptive/evolvable behaviour-based robot controller. The working environment attributes 

and the number of robots that will carry out the chosen evolutionary scheme were 

introduced in Chapter 1. Once the environment and the tasks have been determined, the 

next step before drawing the robot architecture is to define the technique that will 

implement the robot controller. 

  The strategy for the implementation of an embedded evolvable controller 

has to provide the appropriate building blocks for evolution to work with [Mat96]. The 

Evolutionary System (ES) has to be able to manipulate the controller primitives, adjusting 

them to perform the desired behaviour. It has to allow the designer (the evolutionary 

technique) to see the robot as a whole (body, sensors, motors, and “nervous system”), as a 

dynamic system coupled with a dynamic environment [Lun97]. To do so, there are several 

possibilities. Consequently, it is necessary to consider some classification and concepts: 
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• Should the Control be Structured or not? 

  One of the main problems in evolving robotic controllers is how to 

guarantee the possibility, at any time, of understanding what is really implemented inside 

the chosen adaptable (evolvable) device [Gru94] [Tho94a]. This can be achieved by using 

some high level semantic groupings. However, this approach inevitably incorporates the 

human designer’s prejudices (and limitations) [Har97b]. So the controller primitives 

manipulated by the evolutionary process should be at the lowest possible level, but still 

permit some kind of structured arrangement that can be deduced from the circuit [Tho96]. 

This restriction practically eliminates any unconstrained use of low-level semiconductor 

physics. 

  Without restrictions, evolution can go on by taking note of the overall 

behavioural effect of variations made on real circuits. This is very different from 

conventional structured design techniques, which proceed by modelling, abstraction, or 

analysis [Wag95]. These are simplifying constraints normally imposed to make design 

tractable by humans, a decomposition of a complex system into separate parts of 

manageable size [Tho94c]. Evolution does not need a prior analysis of the problem and 

such constraints can be relaxed. If some objective fitness function can be written to tell 

how well an individual can carry out some specific task, evolution should allow the gradual 

emergence of a solution for a complex system without explicit design. However, all this 

freedom generally costs a large number of trials of a real circuit working in a physical 

environment [Hig94]. In addition, sometimes evolution cannot evolve hardware 

unsupervised, because of the danger of damaging expensive parts or injuring people 

[Hig96b]. There is the risk, for example, of short-circuiting outputs, over stimulating 

drivers and actuators, or repetitive mechanical collisions of movable parts [Iba97] 

[Key97a]. Adequate simulation, normally used to speed up evolutionary processes, may 

take much longer than using real hardware, or may not even be feasible as when vision 

modelling or detailed semiconductor physics are involved [Har97b].  

  The use of abstract models or structures simplifies design and allows the 

result of an evolutionary process to be extracted from the circuit and subsequently analysed 

[Tho99]. However, useful properties of the real hardware that have been abstracted away 

will not influence the behaviour of the designed control circuit [Tho00]. Evolvable 

Hardware (EHW) avoids the need of design abstractions and the accompanying constraints, 

and works by observing variations made into the real hardware [Har96] [Tho97a]. It does 
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not need to consider the spatial structure (modularity) or the temporal structure 

(synchronisation) of the circuit. Furthermore, there is no need to constrain artificially the 

dynamics of the configurable hardware being used [Tho98]. Physical electronic circuits can 

display a broad range of dynamic behaviours, of which discrete time systems, digital 

systems, and even computational systems are just subsets [Tho96c]. Nevertheless, the 

evolutionary process can also benefit from a kind of modularity, such that different 

phenotype characteristics can be improved semi-independently by genetic operations 

[Wag95]. It must be observed that any kind of modularity that is appropriate to the future 

identification of the designed circuit could be very different from that which benefits 

evolution [Kod98]. 

  Although human and evolutionary decomposition may sometimes coincide, 

evolution, according to Thompson [Tho94b], should ideally “be allowed to explore the full 

range of possibilities without inheriting limitations from humans”. Unconstrained 

evolution can also integrate into the design an ability to function in the presence of faults 

[Tho96a]. Therefore, it can produce a working system from faulty parts, integrating fault 

tolerance and automatic design [Key97c]. To make it possible, it is important that 

evolution operates at the same level of abstraction as the faults, imposing very low-levels 

of abstractions to generate a fault tolerant integrated control circuit [Key98]. 

  Certainly, unconstrained evolution has a considerable potential for many 

applications [Har94] [Tho96c], but as this work concentrates in studying embedded 

evolution, it is more important to identify and exploit generic structures that can produce 

the desired phenotype for the expected behaviour [Jak96]. Therefore, it is important to take 

complexity out from the controller and the task behaviour, concentrating the effort in 

designing and analysing a distributed embedded system [Key97a] [Key97b]. Hence, a 

modular higher-level architecture will be selected.  

 

• Should the Control be Simulated or Integrated? 

  To evaluate the fitness of an individual, its genotype is expressed to produce 

a setting of the evolvable control circuit configuration [Har93b]. In the so called “intrinsic 

hardware evolution”, that data set is then applied to the chip, which instantiates the 

corresponding circuit, and the behaviour of this real circuit is then evaluated to give a 

fitness score. In the “extrinsic” case, evolution is carried out using a simulated model, with 

only the final score being downloaded onto the chip [Cha98]. When using simulations, it is 
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important to decide how realistic the model should be; that is how timing, communication, 

and interactions among control, sensors, and motors should be handled [Tho97a]. In 

simulations, evolution cannot proceed by analysing the overall behaviour of the real circuit, 

and has to manipulate abstract models, as described in Chapter 2. 

  Since the goal of this work is to produce a population of self-training real 

robots that can control their own evolution, only the issues associated with intrinsic 

hardware will be addressed. Hence, the question here is: should this programmable control 

circuit be integrated into a distinct hardware circuit or implemented in software and 

executed by the robot on-board microprocessor? If the genetically specified piece of 

hardware is tested in situ, the low-level physics of the hardware can be used, and the 

components can behave at their natural timescales, without the necessity of global clocking 

or other design constraints [Chi93]. The embedded evolutionary algorithm will execute 

within the robot on-board microprocessor. This means that a processor and memory will be 

already available on the robots and, therefore, implementing the evolvable control in 

software is the simplest alternative.  

 

• Should the Control be Trained at First and Then Refined by Evolution? 

  The major problems for evolving a robot controller for a specific 

environment were explained in Chapter 2. It pointed out the risk of choosing an 

Evolutionary Algorithm (EA) that cannot produce the expected behaviour [Har97b]. In 

Evolutionary Robotics (ER), a genotype specifies the characteristics of a control system, 

and depending on the application, it may not be a fixed-dimensional search space of known 

size and the fitness landscape is not always smooth [May96] [Bar98]. Moreover, the 

number of components required to produce an appropriate behaviour may be unknown at 

first, and the number of needed components will increase over time when Incremental 

Evolution (IE) is applied through successively more difficult tasks [Har93a]. 

  An initial training phase where the control system can be taught to work 

properly with samples of the most common situations that can be found in the real 

environment can be run in simulation [Cha98]. This possibility facilitates the specification 

of the crossover and selection parameters, and the mutation rate, in a fitness-proportional 

selection [Bar98]. The idea is to generate a training set to be used by the chosen 

evolutionary technique and use it to produce an initial population of distinct trained control 

circuits, able to behave adequately in some standard situations. This population can then be 
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downloaded in to the real robots and continue to evolve in the real noisy environment 

[Cli92]. This solution can be more complex, but should reduce the amount of time that is 

necessary to achieve a reasonable adapted behaviour. It is also a safe way to evolve real 

hardware, since the circuit will be pre-defined in simulation where trials involving 

dangerous situations can be performed. Once a safe, stable configuration is found; 

evolution can be applied to tune its parameters. 

  Although applying an initial training phase may sound attractive to 

embedded evolution, it may bias evolution to early convergence into a local optima and 

include fallible designer’s prejudice [Mee96]. As the chosen task-behaviour of collision-

free navigation is relatively simple and can be safely executed with a population of real 

autonomous mobile robots, a complete evolution of the global system is preferred. To give 

evolution more freedom to explore uniformly the search space in the initial phase of the 

experiment, it is a better idea to start with a randomly initialised population, positioned into 

random places in the environment [Tho97a]. 

 

 

3.2 Alternatives for the Controller Architecture 

 

  The possibilities presented below for implementing the evolvable control 

circuit of the robots were chosen according to their relevance to the state-of-the-art and the 

viability of evolving them on hardware. This section reviews some alternatives to 

implementing the robot embedded controller, presenting insights obtained while 

considering their viability to this work. This analysis is not a comprehensive study leading 

to the implementation and test of all alternatives, but a brief review of their relevant 

characteristics and how they can be adapted to implement an embedded evolutionary 

controller.  
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  The alternatives considered for implementing the evolutionary controller 

are: 

a)  Evolvable Hardware; 

b)  Dynamic State Machine; 

c)  Condition-Behaviour Mapping; 

d)  Pulse Stream Neural System; 

e)  Boolean Neural Network; 

 

  Even though most of the suggested alternatives were inspired by the work of 

other authors, such as Thompson [Tho94a] [Tho96b] (alternatives a and b), Mataric 

[Mat97b] (alternative c), Reyneri et al. [Rey93] [Chi95] (alternative d), and Simões et al. 

[Bot96] [Sim97] (alternative e), this section presents insights and new solutions for 

adapting them to fit the evolutionary controller and the robot application suggested in 

Chapter 1. 

 

 

3.2.1 Evolvable Hardware 

 

  Evolvable Hardware (EHW) is a recently introduced concept [Tho97a] that 

allows artificial evolution to manipulate directly the configuration of a silicon chip. 

Intrinsic EHW deals with evolving electronic circuits in real time, measuring performance 

directly from the hardware to calculate the fitness value [Hig96b].  

  A Field-Programmable Gate Array (FPGA) was considered to be evolved by 

the genetic system to perform the robot control. In an FPGA, the functioning of the chip is 

not determined in the factory, but in the field by the users [Lay99b]. The use of a real chip 

has some problems that must be considered: the limit on the number of times it could be 

reconfigured; the ability to reconfigure while basic operations are still being performed; the 

presence of a layer of secret proprietary software between the user and the chip; the 

possibility of easily damaging the device with an invalid configuration; and the dependency 

of the internal components on the temperature and singular physical properties of the chip 
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[Hig94]. It is also possible to build custom configurable hardware systems out of separate 

components [Tho95], but each architecture will have its own characteristics. 

  There are many interesting possibilities arising from the use of evolvable 

techniques together with FPGAs [Tho96c], such as fault-tolerant design or design under 

low power/area constraints. If the evolvable algorithm uses no modelling or abstraction, 

then the physical properties of the chip can be explored to generate the desired behaviour. 

This approach also allows physical faults to be used as positive characteristics (phenotype) 

to be evolved into a useful controller [Tho94a]. However, evolving circuits in lower levels 

of abstraction that could work over the full range of conditions (both external, like 

temperature, and internal, like the properties peculiar to individual chips) which they could 

encounter in an industrial application is still a difficult problem with the present scientific 

state-of-the-art [Gar97]. Another problem is interfacing the FPGA to an IBM PC-

compatible ISA bus or a serial port, to provide a communication link between the robot 

main processor and the programmable controller; hence, the configuration bits can be 

downloaded to the FPGA. These problems are specific to the application and depend on the 

FPGA being used. Xilinx is aware of these problems and produced the XC6200 Series that 

overcame many of these difficulties [Xil96]. Before this series, FPGA architectures were 

proprietary and researchers could not manipulate their internal structures, nor understand 

the meaning of their configuring bit string. The architecture of the XC6200 is open and the 

configuration bits can be written in small sections that change local circuitry.  

  To guarantee that each generated configuration will have the same 

phenotype on all controller chips, one simple solution is the use of a clock signal for 

synchronisation [Tho97a]. This temporal co-ordination (phase control) can also be 

manipulated by evolution and be determined in real time according to the problem at hand. 

Such strategy can add a powerful new dimension to electronic systems: time. Then, the 

physical/analogue characteristics of the chip under evolutionary control will not alter the 

phenotype of the controller. However, they are not useful to the algorithm anymore 

[Tho00].  

  At the initial phase of this work, where FPGAs were being investigated to 

implement the robot controller, real time evolution of a physical FPGA was only beginning 

to be proved experimentally by Thompson [Tho94c] [Tho96c]. To simplify the robot 

architecture, a software implementation of an array of logic gates can be run by the robot 

on-board microprocessor, instead of using a real FPGA. This approach reduces complexity 



 

 37 

and cost and allows a larger population to be built. It also permits to concentrate in 

embedding the evolutionary strategy, instead of dealing with problems associated with the 

controller real hardware physics. With this technique, many problems pointed out above 

(physical properties, interfacing...) do not need to be considered anymore. 

  For a software implementation of an evolvable hardware controller, an 

initial solution consists of an array of 256 logic cells, where each cell has three inputs and 

its output can produce all Boolean functions of three inputs. Figure 3.1 represents how the 

output of each cell can be connected through reconfigurable switches to any input of its 

four neighbouring cells only, to form a two-dimensional array. This limitation is necessary 

to prevent short circuits among the outputs of the cells if this strategy is to be transferred to 

a real FPGA in future work. Consequently, the variety of wires for the interconnection of 

the logic cells, so common in most FPGAs [Tho96c], had to be suppressed. A 

configuration memory holds the genotype containing the settings (two bits) of the switches 

that control the routing of the cell inputs and outputs, and a set of eight bits for each cell 

that compose the performed Boolean function. 

  The contents of the configuration memory are then codified on to a genotype 

and an evolutionary algorithm can automatically evolve these bits to obtain a robot control 

circuit to achieve a given task. Therefore, a genotype of 2560 bits (256 × 10 bits per cell) 

can encode the functions and the interconnection patterns of the 256 logic cells. Figure 3.2 

shows an example of how the logic cell array can be connected to eight 2-bit proximity 

sensors to calculate the corresponding speed levels for two motors. The population of robot 

controllers (depending on the number of available robots) is initialised randomly. For each 

generation, every genotype is used to configure the software implementation of the logic 

cell array that coexists with the evolutionary algorithm within the robot microprocessor. 

The architectures presenting the best performances are selected and their configuration bit 

strings are combined to produce daughter architectures (resulting configuration strings) that 

are used to reconfigure the robot control circuit before starting another evaluation phase. 
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  Once problems related to intrinsic EHW are solved, such as how to 

automate the crossover process having a commercial software between the FPGA and the 

supervisor system, a real FPGA can be used in the robots with few modifications in the 

evolutionary system. Because of this, the evolutionary software can evaluate, select, and 

reproduce the individuals, which are FPGA configurations, but can only generate an output 

file that needs to be manually loaded into the commercial software that burns the FPGA 

circuit. The commercial software cannot be automatically controlled by the evolutionary 

system, imposing human interference. Each generated circuit (phenotype) can be 

previously evaluated, to check if there is a path between the controller inputs and outputs, 

so that trials will not be wasted with infeasible solutions [Tho96c]. The parent genotypes 

will be combined until a group of adequate individuals is generated. 

  An evolvable hardware as the presented FPGA is an alternative to 

implement the robot evolutionary controller, but some problems can be anticipated: this is 

a complex architecture that is difficult to simulate and demands computation power that a 

simple microcontroller will have problems to provide [Mot96]; the number of components 

(cells, interconnections) necessary to produce the robot task behaviour is still unknown, so 

the architecture may not be able to achieve a good performance; despite the modularity of 

the array, the connectivity of the cells depends on their position in the array, making it 

I1  I2 I3   O
0   0   0   D0
0   0   1   D1
0   1   0   D2
0   1   1   D3
1   0   0   D4
1   0   1   D5
1   1   0   D6
1   1   1   D7

B0, B1B0, B1

Output
Mux

  Logic Cell

Input
Mux

  Boolean Function

Contacts to
other Cells

 

Figure 3.1 – The programmable logic cell. The settings of the switches that 
control the cell are specified by 10 bits; Bits B0 and B1 control the 
input/output multiplexers and bits D0 - D7 specify the desired Boolean 
function. 
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difficult to add more cells to expand functionality; and in spite of being inspired in a real 

FPGA architecture, their similarities are not enough to guarantee a direct conversion to a 

real circuit [Per96b]. Therefore, the use of EHW was discarded. 

 

 

3.2.2 Dynamic State Machine 

 

  Another alternative to the implementation of the robot evolvable controller 

is the use of a random-access memory (RAM) to implement a dynamic state machine 

(DSM) [Tho95], instead of the well-known “direct-addressed ROM” implementation of a 
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Figure 3.2 – The evolvable hardware controller: a 256 logic-cell (LC) array. 
Eight 2-bit proximity sensors (S1 to S8) connect to specific cells on the 
first column. Two groups with five specific cells each produce the output 
signal to the motor drivers (the 5-bit outputs allow 32 speed levels to 
each motor). All 256 logic cells are configured with 2560 bits (10 bits per 
cell) stored into the configuration bit string. 
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finite state machine (FSM). It can be obtained by placing the contents of the RAM under 

evolutionary control [Tho99]. Each signal can be latched according to the clock or feed 

directly the memory address inputs. Figure 3.3 shows a DSM applied to control a robot, 

where the sensor signals are converted to digital inputs and held by a clocked register as the 

current state for a central DSM control with evolvable contents. This configuration was 

inspired by the solution proposed by Thompson in [Tho97a]. The memory outputs contain 

the speed commands to drive the motors in the next state. Each present-state and input 

combination form the address that select a specific output. These binary codes are then 

converted by the motor drive modules M1 and M2, and used to control both motors. 

  If a fixed clock is applied to the system, the sensory/control/motor 

functional decomposition cannot be removed. Therefore, evolution cannot manipulate the 

dynamics of the signals and environment to generate the control system [Tho95]. However, 

it makes possible that complex digital sensors and motor drivers are used to allow well-

elaborated tasks. Nevertheless, the system still produces a rich range of possible dynamic 

behaviours. The evolutionary system can have control of the latch and decides which of the 

input lines are clocked, and which are free running. Therefore, it can decide from which 

lines it will keep a trace of previous stimuli and actions. If no clock is applied, it will not be 

possible to simulate the control machine in software, since the effects of the asynchronous 

variables and their interaction with the clocked ones depend upon physical properties of the 

hardware. 

  

4k RAM – 8 bits 
 

      12 Address Inputs            8 Data Outputs 

    Genetically Controlled 
                  Latch 

 S1  S2  S3  S4 
M1 M2 

 2  2  2  2 

 2  2  12  4 

 Clock 

 

Figure 3.3 – The evolvable Dynamic State Machine: S1 to S4 are 2-bit infrared 
proximity sensors; and M1 and M2 are the motor driver modules. This solution 
was inspired by [Tho97a]. 
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  The size of the RAM as well as the number of state variables depend on the 

characteristics of the sensors and motors used in the robot and the expected behaviour. A 

4Kbyte memory with four state variables can be applied to control a two-wheeled robot 

with four infrared sensors. More state variables can be introduced incrementally as the 

difficulty of the task is increased [Mee96]. The genetically controlled latch needs 12 more 

bits to select which address input will be clocked. The contents of the RAM and the 

clocked/unclocked condition of each variable are directly encoded onto a linear bit-string 

genotype (32,768 + 12 bits) [Wat99b]. This very simple controller can drive the robot 

around based in the information supplied by its four proximity sensors. Nevertheless, it 

constitutes an enormous search space (232780 possibilities) and the evolution towards a good 

solution may take too long and seems impracticable [Shi00]. Even making use of 

incremental evolution to reduce the search space, the dimensionality of this approach may 

be untreatable in a real time embedded evolutionary system [Har93c]. Considering that a 

more complex robot architecture containing eight proximity sensors and motor drivers with 

32 speed levels was proposed, the use of this approach to implement the control circuit 

would get even more complex and had to be discarded. 

 

 

3.2.3 Condition-Behaviour Mapping 

 

  The “state and action” representation of the world of a mobile robot can be 

described in a higher level of condition and behaviour abstraction [Mat97a]. Behaviours 

are control laws that achieve and/or maintain particular goals. They are designed (or 

learned) so as to provide the desired outputs while abstracting away the low-level details of 

control [Mat97b]. Behaviours are triggered by conditions predicated on sensor readings and 

mapped into a proper subset of the state space, which is necessary and sufficient for 

activating a particular behaviour [Mat94]. This subset is typically much smaller than the 

complete robot state space. Behaviours abstract away the details of the low-level sub-

controllers driving the robot, while conditions abstract away the details of the robot state 

space. 

  The learning strategy consists of finding (evolving) a mapping from 

conditions to behaviours into some effective procedure for a specified task [Mat96]. Each 
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robot controller can be evolved to select the most appropriate conditions for triggering each 

specified behaviour. This strategy requires pre-processing and post-processing to deal with 

the abstraction of noisy sensor readings into an input state and the low-level details of 

controlling the robot according to the selected behaviour. Therefore, the evolvable 

controller has to ask the main processor about the conditions faced by the robot, and then 

selects and tells the processor the most appropriate behaviour to be executed [Mic97]. 

Figure 3.4 shows a controller inspired by the work presented by Mataric in [Mat97b]. 

  Some examples of possible conditions encountered by the robots are:  

• near wall; 

• have object; 

• low battery; 

• obstacle on the left; 
 

  These conditions are in general easily detected internally by the robot and 

will trigger appropriate behaviours according to the chosen procedure [Wer96]. Some 

expected behaviours are: 

• disperse; 

• go home; 

• look for recharge; 

• turn right; 

  

Sensors 

 

Main Processor 

 

Evolvable 
Control 

 

Motor 
Drivers 

Noisy Sensor 
Readings 

Commands 

 Conditions 

Behaviour 

 

Figure 3.4 – The implementation of an evolvable controller based onto a 
Condition/Behaviour mapping scheme. The controller asks the main processor 
about the conditions faced by the robot, and then selects the most adequate 
behaviour to be executed by the processor. This solution was inspired by 
[Mat97b]. 
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  The fitness function can be calculated using some reinforcement learning 

concepts, such as reward and punishment [Mat93]. Immediate reward and progress 

estimating functions can be applied to evaluate a robot fitness. It can be analysed externally 

(e.g., the relative position of the robot to targets, obstacles, other robots…) or internally 

(e.g., sensor readings, distance to obstacles, collisions, low battery indication…) [Mat97a]. 

When implementing an embedded evolutionary controller, the fitness function can only be 

analysed internally. The learning process consists of allowing evolution to adjust the values 

of a table containing the mapping of each condition to the corresponding behaviour, as it is 

exemplified in Table 3.1. 

  The controller is an ordering table implemented in the robot RAM memory. 

In the example given by Table 3.1, this memory (a mapping table) only needs 16 × 4 bits to 

implement the evolvable controller. If more than one behaviour are selected (by writing 

one in its corresponding position) in the table, the ones to the left have priority to be 

chosen. Therefore, the order of the behaviours in the table rows is also important. In a real 

situation, however, the memory will be considerably bigger to accommodate all possible 

conditions and behaviours necessary to navigate the robot safely. The evolutionary 

algorithm can control the bits stored in this memory and adjust them to a proper mapping 

between the conditions and behaviours. The memory bits can then be arranged in sequence 

to form a bit string: the robot genotype (or chromosome) [Set99]. The execution of the task 

Table 3.1 – An example of condition-behaviour mapping. 

Condition Behaviour 
near 
wall 

have 
object 

low 
battery 

obstacle 
on the left 

disperse go home look for 
recharge 

turn 
right 

0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1 
0 0 1 0 0 0 1 0 
0 0 1 1 0 0 0 1 
0 1 0 0 0 1 0 0 
0 1 0 1 0 0 0 1 
0 1 1 0 0 0 1 0 
0 1 1 1 0 0 0 1 
1 0 0 0 1 0 0 0 
1 0 0 1 0 0 0 1 
1 0 1 0 0 0 1 0 
1 0 1 1 0 0 0 1 
1 1 0 0 1 0 0 0 
1 1 0 1 0 0 0 1 
1 1 1 0 0 0 1 0 
1 1 1 1 0 0 0 1 
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may appear quite simple, since its learning space has been appropriately minimised. In 

practice, however, a uniform exploration and learning of the optimal policy can present a 

considerable challenge for an evolutionary technique in a highly dynamic, uncertain 

environment, where many conditions and behaviours are present [Mat98a]. 

  A mixed strategy consisting of refining (or evolving) each behaviour 

separately at first, using an evolutionary algorithm to control their parameters, was 

considered to be used to implement the robot control. The idea consists of considering each 

behaviour as a lower-level task and evolving a distinct sub-controller to achieve each one 

of them [Cli92]. Each sub-controller is a reconfigurable circuit that can be implemented in 

software in the robot microprocessor and memory, having a limited set of subroutines 

containing speed values and time delays for each motor driver. Figure 3.5 shows an 

example of a lower-level behaviour containing a set of chosen subroutines. The values of 

V1, V2, and Time are adjusted by evolution.  

  Once the set of subroutines is chosen for each behaviour, evolution can 

adjust the speed and time variables until the robot is able to perform it. Figure 3.6 shows an 

example of three lower-level behaviours and their corresponding set of subroutines. In the 

figure, T is a time constant that represents the delay of one iteration. If for example, the 

robot executes one iteration each 10ms, T = 10ms. If behaviour 1 is selected, the robot will 

adjust the speed of motor 1 (V1) to zero, and motor 2 (V2) to Vmax, the pre-defined value 

for maximum speed, and keep these settings for 100 iterations (1s). In doing so, the robot 

stops the left wheel and turns around it as demonstrated in the figure. The first subroutine 

of behaviour 2 sets negative speeds for both motors, making the robot reverse for 200 

iterations (2s) before turning around its centre for 0.5s. If the “GO HOME” behaviour 

  Subroutine 1: V1, V2, Time;
  Subroutine 2: V1, V2, Time;
                      ...
  Subroutine n: V1, V2, Time;

Lower Level Behaviour

M2RobotM1

S2S1

 

Figure 3.5 – Example of a lower-level behaviour containing a set of subroutines 
that are chosen and adjusted by evolution. M1 and M2 are the left and right 
motors of the robot, and S1 and S2 are the left and right sensors. V1 and V2 are 
the speed levels of the corresponding motor and Time is the time delay while 
the subroutine is active. 
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(behaviour 3) is selected, the sensor information will be used to drive the robot towards an 

infrared beacon that indicates the position of “home”. HBIS1 and HBIS2 represent the light 

intensity of the home beacon received by the left and right sensors respectively. The 

difference of intensity is added to the speed, turning the robot until it is facing the beacon 

when the difference becomes zero. 

  The sub-controllers can be then evolved individually until each necessary 

behaviour is capable of driving the robot accordingly. When this first step can produce 

satisfactory results, all the sub-controllers (performing specific behaviours) are attached to 

a central condition-behaviour-mapping controller, which receives the present conditions of 

the robot as inputs. Then, the complete controller can be evolved in the dynamic 

environment to select the appropriate behaviours according to each situation the robot 

  V1 = Vmax + (HBIS2 - HBIS1);
  V2 = Vmax + (HBIS1 - HBIS2);
  Time = "While robot is not Home" ;

Behaviour 3: Go Home

M2RobotM1

S2S1

Home
Beacon

  V1=0, V2=Vmax, Time=100T;

Behaviour 1: Turn Left Long

  V1=-Vmax, V2=-Vmax, Time=200T;
  V1=-Vmax, V2=Vmax, Time=50T

Behaviour 2: Reverse and
Turn Left Short

V2V1

 

Figure 3.6 – Example of three lower-level behaviours and their 
corresponding set of subroutines. S1 and S2 are the left and right 
sensors, V1 and V2 are the speed levels of the corresponding motor, and 
T is the delay of one iteration. HBIS1 and HBIS2 are the light intensity 
of the home beacon received by the left and right sensors respectively. 
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faces. Each behaviour as well as the central mapping of condition-behaviour can still be 

continuously refined by the genetic algorithm. Figure 3.7 shows a general view of the 

incremental control system. 

  This is a powerful solution that can be implemented on-board the robot 

microprocessor. It abstracts away from evolution the complexity of the sensory structures 

and motor drivers, allowing a significant reduction of the search space [Mee96]. The 

behaviours can become progressively more complex to accommodate other robot 

applications. The only reason this solution was not chosen is the necessity of human 

intervention to evaluate when each behaviour is obtained or to reposition the robots for 

new trials. 
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Figure 3.7 – The incremental control system: each behaviour is selected by a 
central mapping of condition to behaviour that translates the sensor readings 
into conditions and chooses the appropriate evolvable behaviour to control the 
motor drivers. 
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3.2.4 Pulse Stream Neural System 

 

  An interesting alternative to implement the evolvable controller is the use of 

Artificial Neural Systems (ANS), which are computing systems based on cognitive 

approaches [Rey94]. In PS neural systems, information is contained in waveform timing, 

not in the amplitude. Coherent Pulse Width Modulation (CPWM) [Rey93] is a PS 

technique which presents good performance for control applications [Chi95]. There are 

many ANS techniques already prototyped in hardware that can be used for robot control, 

but a fair comparison among them is difficult to find. Nevertheless, the CPWM 

implemented by Chiamberge, described in [Rey95], is a good solution for robot navigation 

problems. It was chosen for it can be easily evolved by a genetic algorithm, since the 

weights of the synapses are controlled by the voltage on specific capacitors, periodically 

refreshed from an external digital memory [Chi96]. The memory contents can be dealt with 

as a genotype and evolved by the chosen evolvable technique. 

  The CPWM chip has a self-standing prototype board to interface it to a 

controller plant [Rey95]. This board can be used as described in Figure 3.8 to perform the 

programmable control of the robots [Chi93]. The system array has 16 inputs coming from 

the external world (eight digital for direct CPWM signals and eight analogue, internally 

converted by on-chip converters). The chip has 32 digital outputs, including the 16 hidden 

ones, which are also available outside. 

  The inconvenience of applying the CPWM chip to control the chosen robots 

is that it requires an interfacing board, which may consume too much power to fit into a 

small-sized robot. However, if this technique is to be used, a specific interface for 

controlling the configuration memory and the CPWM chip from the robot microprocessor 

needs to be designed. This approach would involve a complex design of the robot 

architecture and the overall cost would exceed this project budged. Therefore, it had to be 

discarded. 
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3.2.5 Boolean Neural Network 

 

  Boolean Artificial Neural Networks have been used in many situations 

providing fast training, processing speed, and easy hardware implementation [Fil92] 

[Sim94] [Har97d] [Sim97]. Boolean neural networks can have weights between nodes or 

not. In the last case, they can also be described as “RAM-based”, “n-tuple based”, or 

Weightless neural networks [Lud99]. As the last name suggests, these models do not have 

weighted connections between neuron nodes, and work with binary inputs and outputs. The 

neuron functions are stored in look-up tables that can be implemented in software or using 

Random Access Memories (RAMs). The learning phase consists of directly changing the 

neuron contents in the look-up tables, instead of adjusting the weights between nodes. This 

characteristic generally allows a faster learning than weighted neural networks, since by 

modifying weights the previously learned information is also modified. In the more flexible 

Boolean neural networks, the neurons can learn new information by changing only the 

memory contents corresponding to the new input pattern, without modifying the 

information related to other inputs.  

  Since the original work by Bledsoe and Browning [Ble59] and Aleksander 

[Ale66] proposed the N-tuple sampling technique, many weightless models were proposed 

such as the PLN (Probabilistic Logic Neuron) [Ale90], pRAM (Probabilistic RAM) 

[Aus94], and GSN (Goal-Seeking Neuron) [Aus98]. They consist in the addition of new 

 

CPWM Chip 
 

8 Digital Inputs (D0 to D7) 
8 Analog Inputs (A0 to A7) 
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Figure 3.8 – A self-standing CPWM prototype board controlling a robot as 
illustrated in [Rey95]. 
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features and learning schemes, resulting in more powerful neural nodes. In relation to robot 

implementations, the RAM model, or RAM node is very attractive, since it provides great 

flexibility, modularity, parallel implementation, and high speed of learning, what leads to 

less complex architectures that can easily be implemented with simple commercial circuits 

[Fil92]. Figure 3.9 shows a representation of a typical RAM neuron, as illustrated in 

[Aus94]. The RAM node is a random access memory addressed by its inputs. The 

connectivity of the neuron (N), or the number of inputs, defines the size of the memory: 2N. 

The inputs are binary signals that compose the N-bit vector of the address that can access 

only one of the memory contents. This neuron consists of a memory that stores a look-up 

table that implements any Boolean function performed by the neuron. Therefore, a RAM 

neuron can compute any Boolean function of its inputs.  

  A RAM neural network is a single layer architecture where the number of 

neurons is typically enough to cover all of the network binary input vector and depends on 

the neuron connectivity. Simões et al. studied the main issues and constraints of the 

connectivity pattern in RAM networks in [Sim96]. Figure 3.10 shows the connectivity 

pattern of a RAM discriminator [Ale84]. For an input vector of size K, the number of 

necessary neurons J of connectivity N that should be used to cover all inputs of the input 

Output

Typical RAM node

M(2N-1)
.
.
.

M(0)

Input 1

Input N

Input 2

Read/Write Data  

Figure 3.9 – Typical RAM node or neuron as illustrated in [Aus94]. 
 Where:  N is the connectivity (number of inputs); 
    Input 1 to Input N are the input terminals of the neuron; 
    M(0) to M(2N-1) are the memory contents (neuron contents); 
    Output is the output terminal that transmits the addressed  
    content; 
    Data is the input terminal to receive learned data; 
    Read/Write defines the working mode of the neuron: if it 
    is in the learning or recognition phase; 
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vector should satisfy: J × N > K. This neuron group is called a WISARD discriminator and 

its response is produced by connecting an adder that sums the neuron outputs, counting the 

number of active neurons (neurons outputting “1”) in the group [Lud99]. A WISARD 

system is built by grouping together a set of discriminators, each one being responsible by 

recognising a different class of patterns. A winner-takes-all-block can be attached to the 

adder outputs to choose the discriminator containing the greater number of active neurons, 

pointing to the winning class. Although individual RAM neurons cannot generalise, a 

WISARD discriminator is able to classify unknown patterns based on the knowledge 

acquired by the learning phase. 

  Learning in a RAM neuron is much simpler than adjusting weights in 

weighted neural networks. It is performed by just writing new contents to the memory of 

the neurons [Aus88]. The neurons are initialised with “0” in all contents, and are taught to 

respond with “1” to the patterns that belong to the class corresponding to the neuron group, 

or discriminator. This is accomplished by writing “1” to the memory positions of all 

neurons of the corresponding class addressed by the input pattern.  

  Once a RAM architecture containing neurons grouped in discriminators for 

each class was chosen, a new strategy is necessary to allow its use to form an embedded 

evolvable controller for the robots. This strategy consists of replacing the learning phase by 

an evolutionary algorithm [Cli92], able to manipulate the neuron contents. To exemplify 
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Figure 3.10 – The connectivity pattern of a WISARD discriminator, as 
illustrated in [Ale84]. 
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how this solution works, consider the same example of Section 3.2.2, where the robot has 

four infrared sensors and two motors. Each sensor reading is converted into a 2-bit signal 

and the network output consists of three classes of commands to each motor driver: Stop; 

Front; and Reverse. Different behaviours can be obtained by combining those three speed 

commands so that the robot can perform a long turn or a short one around its centre, stop, 

or move forward. 

  The implementation consists of two RAM neural networks, one controlling 

each motor. The size of the input vector (K), containing four sensors and two bits per 

sensor, for each neural net is 4 × 2, which equals to 8 bits. An n-tuple classifier [Aus88] 

with five two-input neurons is enough to cover all bits of the input vector. The neural net 

architecture is presented in Figure 3.11, where the neurons can be previously trained with 

the most common situations faced by the robot during normal navigation or just randomly 

initialised. The evolutionary algorithm will then try to adjust the neuron contents until the 

network behaviour is able to drive the robot properly. The neuron contents are directly 

encoded onto a linear bit-string genotype containing 120 bits (15 neurons for each motor; 

four bits per neuron). After randomly initialising this bit string, the genetic code can be 

evolved by the evolutionary algorithm in real time until the robots can perform the desired 

tasks, allowing the evolvable controller to face a real noisy environment. 

  This solution was inspired by a similar architecture, investigated before in 

[Bot96], that applied the fast training and simple hardware design of the RAM model to 

control a mobile Khepera robot. The article presented two weightless neural networks used 

to control the robot: the GSN [Sim94] and the RAM model [Sim96]. The implementation 

using the GSN model made use of two pyramids to control each wheel. The sensor values 

were directly connected to the pyramid inputs, and the network outputs were applied to 

control the wheel motors. The article presented a new concept that allowed each neuron, 

after the training phase, to be manipulated as a "black box". All possible combinations of 

neuron inputs were analysed to convert the complete network into a combinational circuit. 

The minimisation of the circuit logic was processed according to [Sim96]. There, a 

description of the minimised neuron network was converted into an Assembler language 

code that used simple basic instructions. Consequently, the network circuit could be 

directly executed by the microprocessor ALU (Arithmetic Logic Unit). This strategy 

decreased the execution time of the algorithm, because simple logic functions (NOT, AND, 

and OR) are faster to execute than complex floating-point operations used by a great 

number of robot control models [Pol00]. This strategy of mapping the behaviour of a 
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complete circuit into a logic table will be applied to a RAM controller in the experiments 

described in Section 6.4 of this thesis. 

  The RAM neural network shown in Figure 3.11 has three behaviour classes 

with five neurons each that control the robot motors. The RAM model was implemented 

according to the same approach used for the GSN in [Bot96], with the inclusion of simple 

additions and comparisons, both necessary to the RAM model output evaluation, executed 

by the “Select Action” block in the figure. The RAM neural network simplicity and its 

implementation as elementary logic functions are responsible for its fast performance. The 

weightless neural networks, mainly the RAM and the GSN models, tend to occupy a small 

portion of memory. Therefore, memory allocation is not a great issue, increasing the 

possibilities for the robot computing system. The mapping of the RAM neural network into 

simple ALU logic functions and their direct execution in the microprocessor ALU can 

reduce even more the total memory required by the control algorithm. The faster speed 

provided by these simple implementations allows a faster controller, which can improve 

the decision rate in complex sensory systems, like artificial vision [Smi98]. This strategy 

also allows the use of low-cost microprocessors. 

  The strategy of previously training the neural net with examples of pre-

defined situations and then leaving the neuron contents to be refined in real time 

 

Figure 3.11 – RAM Neural architecture controlling a 2-wheeled Robot: S1 to S4 
are infrared sensors; S, F, and R represent the groups of neurons of the 
classes Stop, Front, and Reverse, containing five neurons each. 

 



 

 53 

manoeuvring can be faster than allowing evolution to work with a randomly initialised 

neural network [Tho99]. However, it can lead the population to become trapped into a local 

optima, and prevent evolution from exploring different controllers through the genotype 

space before climbing a fitness slope, reaching the expected behaviour [Har93a]. For all 

advantages mentioned above, a RAM neural network was chosen to implement the 

embedded evolutionary controller for the robot population. Chapter 4 presents more details 

of the chosen neural network architecture and shows how it is combined with the 

evolutionary system. 
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4 THE EVOLUTIONARY SYSTEM 
 

 

  This chapter presents the strategies chosen to implement the individual 

controller of each robot and the evolutionary system that controls the group of robots. It 

also shows an overview of the complete system and an introduction to the robot 

architecture. Although the strategies described in this chapter can be applied, in theory, to 

control any number of robots, in this work the global idea was adapted to control a group of 

six robots. Even though the suggested system was proven to work with such a small 

population, a larger population of robots would give greater diversity to evolution, 

improving the performance of the system [Fic00]. Thus, more individuals provide more 

genetic combinations and increase the chances of finding a good solution to the problem. 

  The goal of the implemented evolutionary system is to train automatically a 

team of six autonomous mobile robots to interact with an unforeseen environment in real 

time. The system is also able to continuously refine the generated solution during the whole 

working life of the robots, coping with modifications of the environment or in the robots. 

Although implemented into a specific group of 2-wheel differential-drive robots for a 

specific task, the evolutionary system described in Sections 4.1 and 4.2 can be adapted to 

control other kinds of robots performing different tasks. Section 4.3 and Chapter 5 describe 

how the system was specifically adapted to our team of robots. Nevertheless, these two 

sections are general enough to be used as guidelines to help the conversion of the system to 

other mobile or static platforms. 

  To test whether randomly initialised robots could really be trained by 

evolution to do something practical, a very simple task was chosen: exploration with 

obstacle avoidance [Mor96]. Such a simple task, that is also known as collision-free 

navigation [Rao96] [Key97a], facilitates the implementation of the system and allows its 

development in relatively low-cost robots. Therefore, more robots could be built and 

evolution can benefit from more diversity in the population. The main issue considering 

functional specification in an evolutionary system is to tell evolution what the robots have 

to do, without telling it how they are going to achieve that [Flo96a]. In our case, the robots 
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are encouraged to explore the environment, going as fast as possible without colliding into 

the obstacles or each other. Because the workspace contains various robots, the 

environment also includes some robot-to-robot interference [Set97] (e.g., collisions 

between robots and reflection of the infrared signals by approaching robots). Though the 

presented task is simple and does not involve explicit robot interaction, the transparency of 

this domain allows a clear investigation of the implicit interactive nuances within the 

evolutionary approach. Chapter 6 will show how, based on a reward-punishment scheme, 

evolution can find unique, unexpected solutions for that problem. 

 

 

4.1 Individual Control Strategy 

 

  The robot architecture can conceptually be seen as a central control module 

interfacing all other functional modules, which either supply or demand data required for 

autonomous processing (see Figure 4.1). The modules were implemented using a 

combination of dedicated hardware and software executed by the robot microprocessor. 

The robot architecture is configured by a set of parameters, a certain number of bits stored 

in RAM memory. In evolutionary terms, this set of parameters is called the robot 

chromosome [Koz98]. The Sensor Module is configured by a subset of the chromosome 

that indicates the number of sensors used and their position in the robot periphery. The 

motor drive module is configured by another subset of the chromosome that configures the 

speed levels of the robot.  

  The Motor Drive module receives and translates commands from the central 

control module and controls the direction of travel and speed of the two robot motors. The 

proximity of obstacles is obtained by the sensor module that decides which proximity 

sensors are connected to the central control module according to the parameters stored in 

the robot chromosome. 

  The subsystems of the Central Control Module are presented in Figure 4.2. 

Connected together via the communication module, the Evolutionary Control circuits of all 

robots control the complete evolutionary process. They process the data stored in the 

chromosome and send the configuration parameters to the Navigation Control and the other 



 

 56 

modules. The evolutionary control systems of all robots use communication to combine 

and form a global decentralised evolutionary system [Mat98b]. This global system controls 

the evolution of the robot population from generation to generation. It is responsible for 

selecting the fittest robots (the best-adapted to interact with the environment), mating them 

with the others by exchanging and crossing over their chromosomes, and finally 

reconfiguring the robots with the resultant data (the offspring) [Tom95].  

  A Supervisor Algorithm monitors the robot performance, informing the 

evolutionary control how well-adapted it is to the environment. According to events and 

tasks performed by the robot, perceived internally by special sensors, a score or fitness 

value is calculated and used by the global evolutionary system to select the best-adapted 

individuals to breed. The supervisor algorithm is responsible for activating a rescue 

routine, a built-in behaviour that is able to manoeuvre automatically the robot away from a 

dangerous situation once it is detected by the sensors. Contact sensors in the bumpers 

determine the occurrence and position of a collision. When activated, the rescue routine 

will take control of the robot until it is safely recovered. It can communicate directly to the 

motor drive module, by-passing the navigation control. When the rescue manoeuvre is 

completed, the supervisor algorithm allows the motor drive module to accept once more 

the commands of the navigation control circuit and the robot resumes on its way. 

Central Control
Module

Sensor
Module

Motor Drive
Module

Sensor Readings Direction/Speed

Communication
Module

D
at

a

Configuration Data Configuration Data

 

Figure 4.1 – Architecture of the robot control system: the Sensor Module and 
Motor Drive Module are configured by the Central Control Module, which 
processes data from the sensors and commands the motor drive module in 
how to drive the robot. 
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  It is the Navigation Control, configured by the evolutionary control, that 

commands the motor drive module according to the information provided by the sensor 

module. It processes the information of the sensors and decides what the robot has to do. 

Then, it sends a command to the motor drive module, which will control the speed of the 

motors to make the robot manoeuvre accordingly. The navigation control is the centre of 

the autonomous navigation of the robot. Configured by the parameters stored in the 

chromosome, it drives the robot independently. Evolution is responsible for adjusting these 

parameters so that the robot performs well in the environment. The implementation of the 

navigation control circuit is explained below in Section 4.1.1. 

  Section 4.2 explains how the developed evolutionary system works. All 

components of the robot architecture are presented in more detail in Section 4.3 and 

Chapter 5 describes them in terms of hardware and software.  
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Figure 4.2 – The Robot Central Control comprises three main subsystems: the 
Evolutionary Control, the Supervisor Algorithm, and the Navigation Control. 
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4.1.1 The Navigation Control Circuit 

 

  A RAM neural network was chosen to implement the navigation control 

circuit basically for the reasons given in Section 3.2.5. RAM neural networks have unique 

features that facilitate their evolution by the system, simplify the implementation in the 

robot hardware, and allow small modifications to be carried out with minimum effort 

[Sim96] [Sim97]. They provide a robust architecture, with good stability to mutation and 

crossover. Most neural networks, like the chosen one, present redundancy between the 

genotype and the phenotype [Shi00]. In other words, a small change in the bits of the 

chromosome (the genotype) will not produce a radical change in the behaviour of the 

network (the phenotype) (see Section 2.1.1 for a detailed explanation of these terms). This 

characteristic is called Neutrality [Kni48]. Therefore, the selected neural network is stable 

enough to allow evolution to gradually refine the configuration parameters of the 

navigation control circuit, seeking a better performance. Its good neutrality makes it suited 

to be evolved by the system since a small mutation on a fit individual should, on the 

average, produce an individual of approximately the same fitness [Bar98]. Similarly, 

crossover between two parents of similar fitness, on the average, should produce offspring 

with similar fitness. 

  A Boolean neural network such as the RAM is a good solution for 

implementing with an embedded controller (see Section 3.2.5), because it is fast and small 

enough to cope with the speed and memory restrictions of the on-board microprocessor 

[Bot96]. It allows the utilisation of command outputs that can be interpreted as high-level 

routines or be employed as low-level incremental commands executed in each iteration 

[Sim96].  

  Figure 4.3 shows the sensor module processing the information of the 

sensors and feeding the neural network inside the navigation control circuit. The output of 

the neural network is a command that tells the motor drive module how to control the 

motors. The evolutionary control reads the information contained in the chromosome and 

sends the parameters to configure the sensor and motor drive modules. It also reads the 

contents of the neurons from the chromosome and transfers them to the neural network in 

the navigation control circuit. The motor drive module intercepts the command and 

activates the corresponding routine that generates the signals for the motors. 
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  Figure 4.4 shows more details on how the navigation control circuit 

interfaces the sensor and motor drive modules. Section 3.2.5 presented an introduction to 

the RAM neural network architecture. This section will show in more detail how it can be 

configured to implement the navigation control circuit. The neurons are connected in 

groups (discriminators) that correspond to one of the possible classes of commands (C1, 

C2, … Cn) the neural network can choose. The groups are connected to an Output Adder 

(O1, O2, … On) that counts the number of active neurons in the group. The Winner-takes-

all block receives these counting from the output adders, chooses the group with more 

active neurons, and sends the corresponding Command to the motor drive module. The 

sensor module converts the analogue readings of the infrared proximity sensors into 2-bit 

signals that can be connected to the neuron inputs.  

  Figure 4.5 presents an example of eight possible commands. The commands 

FS, FM, FF, and S tell the command interpreter inside the motor drive module the level of 

speed it should signal the motors to go. The robot can Stop; or move to the ahead with 

three different speed levels: Fast, Medium, and Slow. The commands TRS, TRL, TLS, and 

TLL specify how the robot is going to turn. It can Turn to the Left or Right in a Short way 

(turning around its centre with one wheel going forward and the other backwards) or Long 

way (stopping one wheel to do an arch). 

Sensors

Sensor
Module

Neural
Network

Motor Drive
Module

Motors

Neuron Contents

Parameters Parameters
ProximityAnalog Command Signals

Evolutionary
Control

Chromosome

Configuration Data

Navigation Control Circuit

 

Figure 4.3 – The navigation control circuit interfacing the sensor and motor 
drive modules, and the evolutionary control. 
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Table 4.1 – Encoding of the Neural Network Commands. 

Command Denomination Hex Code Binary Code Description 
Command 1 FS 00 00000000 Front Slow 
Command 2 FM 01 00000001 Front Medium 
Command 3 FF 02 00000010 Front Fast 
Command 4 S 03 00000011 Stop 
Command 5 TRS 04 00000100 Turns Right Short 
Command 6 TRL 05 00000101 Turns Right Long 
Command 7 TLS 06 00000110 Turns Left Short 
Command 8 TLL 07 00000111 Turns Left Long 

 

  Table 4.1 shows the encoding of the commands chosen by the neural 

network to control the motor drive module. Each command is represented by a 

hexadecimal number (00 to 07) and converted into eight bits that are transmitted to the 
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Figure 4.4 – The neural network in the navigation control circuit. S1 to Sn are 
the binary sensor readings. The Output Adders (O1 to On) count the number 
of active neurons in the group. C1 to Cn are the classes of commands to the 
motor drive module. 
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motor drive module. The commands can then be interpreted by the motor drive module and 

the corresponding speed levels are selected to drive the motors. As it can be seen in the 

figure, only the first three bits are being used. The other five bits can be used to 

accommodate more codes in future applications. 

  In the selected approach, the inputs of the RAM neurons are connected to 

the sensor outputs provided by the sensor module. All neurons of the network have the 

same number of inputs, although that number may vary according to the application 

[Lud99]. In the implemented network, all neurons in the same position in the groups are 

connected to the same inputs (i.e., the first neuron of the first group will have the same 

inputs as the first neuron of the second group and so on…). Figure 4.6 shows a 3-input 

neuron where i0, i1, and i2 are different neuron inputs connected to the input lines that 

bring in the signals from the sensors. Nm,n is the neuron designator where m is the number 

of the group to which the neuron belongs and n is its position in the group [Fil92]. All 

neurons with the same position n are connected to the same input lines Li, Lj, and Lk, and 

consequently, to the same sensor outputs. 

  The connectivity between the input lines and the sensor outputs is controlled 

by a Connectivity Matrix that defines which sensor outputs are connected to Li, Lj, and Lk. 

Figure 4.7 exemplifies how the groups of neurons are connected in the neural network 

architecture. The connectivity matrix is randomly initialised at the beginning of a new 

Motor Drive
Module

Command
InterpretationWinner Takes All Block Command

FS - “front slow”; FM - “front medium”; FF - “front fast”;
TRS - “turn right short”; TRL - “turn right long”;

TLS - “turn left short”; TLL - “turn left long”; and S - “stop”

 

Figure 4.5 – Example of eight possible commands to the motor drive module. 
FS, FM, FF, and S tell the command interpreter the level of speed of the 
motors and TRS, TRL, TLS, and TLL specify how the robot is going to turn. 
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evolutionary experiment. In the figure, the dotted lines between the sensor outputs and the 

input lines exemplify one randomly-generated possibility of how the connectivity matrix 

can connect the sensors to the network. In Chapters 6, 7, and 8, different experiments will 

be described with the same architecture, but with a different number of neurons and neuron 

inputs. In this way, an efficient configuration that is not too complex to be evolved by the 

system, but can still drive the robots properly, could be found. 

  One other advantage of RAM neural networks is their modularity [Ale90]. 

This characteristic simplifies the modification of the architecture. The number of neuron 

inputs can be modified by rearranging the connectivity to the sensors alone. Sensors can 

also be added or removed in this way. New commands are easily included by inserting 

more neuron groups [Aus98]. Figure 4.7 shows how to insert a new command (e.g., 

Reverse – R) in the network architecture by connecting a new neuron group (neuron group 

m+1) to the input lines that run horizontally through the architecture. This flexibility 

helped in carrying out many experiments where different configurations of the basic 

architecture were tested (see Chapter 6).  

  The RAM neural network can be evolved by simply storing sequentially the 

neuron contents into the robot chromosome and allowing the evolutionary algorithm to 

manipulate these bits. Section 3.2.5 explained how the architecture was chosen, and its 

configuration depends on insights gained through a long trial-and-error process that will be 

presented in the experiments in Chapters 6, 7, and 8. Basically, the neural network must 

have enough inputs to cover all the sensors, although some of the sensors may be 

connected to more than one input line [Sim97]. To avoid saturation, enough neurons must 

be placed in the groups so that the network can learn all the different input configurations 

To Other Neurons
with same n

i0

i1

i2
Neuron
Output

Li

Lj

Lk

Nm,n

 

Figure 4.6 – Example showing a 3-input neuron: Nm,n. 
Where:  m – is the group the neuron belongs; 
  n – is the position of the neuron within the its group; 
  i0, i1, and i2 are the neuron inputs; 
  Li, Lj, and Lk – are input lines connected to the sensor outputs. 
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that correspond to the correct output commands [Fil92]. If the network is having difficulty 

learning a different configuration, more neurons should be added. Different architectures 

were implemented and simulated in software until the developed solution was obtained. 

  Figure 4.8 shows a 4-input neuron with capacity in its memory to store 16 

bits. It presents a neuron (a) and its four inputs i0, i1, i2, and i3. The neuron contents are 

stored in the 16 bits of memory (b), addressed by the inputs. B0 to B15 are the binary 

contents of the neuron and can be “0” or “1”. The four inputs (i0, i1, i2, and i3) form the 

address that points to a single bit in memory. This figure also shows how a neuron can be 

connected to four sensors (c) working with just 1-bit signals: these sensors can detect the 

presence of an obstacle, but are unable to tell how far away it is. Figure 4.8 (d) shows how 

the inputs i0 and i1, and i2 and i3 are combined to connect the neuron to two sensors that 

work with two-bit signals: they are able to tell the distance from obstacles with a range of 

four levels. This illustrates once more the flexibility of the RAM neural network. In a 

simple application, the sensor module can make use of 1-bit sensors to find the direction of 

obstacles. For a more elaborate navigation task, where the robot needs to discriminate how 

far it is from the obstacles, the sensor modules can be modified to supply the neural 
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Figure 4.7 – Example showing the connectivity of 3-input neurons in the neural 
network architecture, containing m groups with n neurons each. Randomly 
initialised, the Connectivity Matrix defines which sensors are connected to 
the input lines Li, Lj, and Lk. 
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network with 2-bit signals from each sensor output. Both variations can be connected to the 

neural network without modifications of the architecture, allowing different experiments to 

be performed with the same navigation control circuit. 

  Figure 4.9 shows a different configuration of the RAM neural network used 

in some of the experiments to implement the navigation control circuit of the robot. It 

consists of an n-tuple classifier that provides eight commands for the motor drive module 

[Aus88]. The network is formed by 64 neurons containing four inputs (eight groups with 

eight neurons per group) connected to eight 2-bit sensors controlled by the sensor module 

[Sim99]. This is one variation of the configuration of the RAM neural network architecture 

studied in this work, with a different number of neurons, neuron inputs, commands, and 

sensor outputs. Chapters 6, 7, and 8 present a series of experiments that explored different 

configurations of the same basic architecture. 

i0 i1 i2 i3 Out 
0 0 0 0 B0 
0 0 0 1 B1 
0 0 1 0 B2 
0 0 1 1 B3 
0 1 0 0 B4 
0 1 0 1 B5 
0 1 1 0 B6 
0 1 1 1 B7 
1 0 0 0 B8 
1 0 0 1 B9 
1 0 1 0 B10 
1 0 1 1 B11 
1 1 0 0 B12 
1 1 0 1 B13 
1 1 1 0 B14 
1 1 1 1 B15 
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Figure 4.8 – A 4-input neuron (a) and its 16 bits of memory (b). B0 to B15 are 
the binary contents of the neuron. The four inputs (i0, i1, i2, and i3) form the 
address that points to a single bit in memory. S1, S2, S3, and S4 are the 
sensor outputs from the sensor module. The figure shows how to connect the 
4-input neuron to four 1-bit sensors (c) or to two sensors with 2 bits (d). 
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  Each sensor reading is converted into a 2-bit signal as shown in Figure 

4.8(d). For each sensor, the sensor module can enable or disable this 2-bit signal, 

preventing the sensor to be connected to the input lines. Sections 4.3.2 and 4.3.5 describe 

in more detail how the sensor module performs this. The connectivity matrix is initialised 

randomly every time a new evolutionary experiment begins. The network output consists of 

eight commands to the motor drive module: S - Stop; FS - Front Slow; FM - Front 

Medium; FF - Front Fast; TRS - Turn Right Short; TRL - Turn Right Long; TLS - turn Left 

Short; and TLL - Turn Left Long. The Turn Short command means that the robot will turn 

with one wheel going forward and the other backwards. The Turn Long command makes 

the robot turn by stopping one wheel. The winner-takes-all block chooses the group of 

neurons containing more active neurons, according to the sensor inputs in each iteration, 

and selects the corresponding command. The resultant manoeuvre and speed values are 

determined by the motor drive module, that gradually increments or decrements the speed 

of the motors in each iteration, until reaching the selected level (i.e., stop; slow; medium; or 

fast). 

  Figure 4.9 presents only one of many possibilities of implementing the 

navigation control circuit of the robot. It is not the final version and was modified many 

times in the experiments reported in Chapters 6, 7, and 8, in addition, other alternatives 

will be presented when each experiment is introduced. Chapter 5 explains in more detail 

the hardware and software that were used to implement the navigation control circuit. 

 

4.2 Evolutionary Control System 

 

  It is the evolutionary control system, located inside the central control 

module of the robots (see Figure 4.1 and Figure 4.2), that performs the evolutionary 

processes of evaluation, selection, and reproduction [Tod97]. All robots are linked by 

radio, forming a decentralised evolutionary system. The evolutionary algorithm is 

distributed among and embedded within the robot population. Figure 4.10 exemplifies a 

cyclic evolutionary process where the individuals are evaluated according to their capacity 

to perform the tasks in the environment. If they perform well, it can be said that they are 
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Figure 4.9 – A RAM Neural Network architecture controlling a 2-wheeled 
Robot: S1 to S8 are infrared sensors; S, FS, FM, FF, TRS, TRL, TLS, and 
TLL represent the groups of neurons of the classes Stop, Front Slow, Front 
Medium, Front Fast, Turn Right Short, Turn Right Long, Turn Left Short, 
and Turn Left Long. 

 

well-adapted to (or fit for) the environment [Mit95]. The robots are assigned a score, or 

fitness value, that tells how fit they are. When the evaluation period is over, the individuals 
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select a partner to mate with according to their fitness value. The best individuals have 

more chance of being selected to breed. Next, they exchange their chromosomes, crossing 

over their genes to form the new combinations. The resultant chromosomes are then used 

to reconfigure the old individuals, originating new ones, or the offspring. Then, a new 

evaluation phase starts again. Assuming that new robots cannot really be created 

spontaneously, the offspring must be implemented by reconfiguring selected old 

individuals. 

  An evolutionary process, in the context of this work, is the procedure 

necessary for the development of suitable controllers for the population of robots. The 

process can stop when the average fitness value of the population reaches a specified 

threshold or continue indefinitely while the robots execute a certain task. In the developed 

evolutionary system, the robots work in a cyclic procedure, differently from a traditional 

design technique, where the controller is designed or trained at first and then transferred to 

the robot that is put to work. This cyclic procedure is inspired by the natural world where 

animals, like some birds for example, have a working or foraging season and a mating 

season, where they concentrate their attention in finding a mate and reproducing [Mit95]. 

  The cyclic procedure of the robots, a generation in evolutionary 

computation terms [Bac91], is exemplified in Figure 4.11. The robots do not pursue 

reproductive activities concurrently with their task behaviour. Instead, they perform a 

working season, where they execute the selected task in the environment (or working 

domain) and are evaluated according to their performance. The internal timer of Robot 1 

indicates the beginning of the mating season. It is important to observe that the 

evolutionary scheme is decentralised and distributed amongst all six robots. Robot 1 is by 

no means dominant in this process. The internal timer of Robot 1 is just used to signal the 

others, indicating the beginning of the mating season. It was necessary to avoid 

Fitness
Evaluation

Partner
Selection

Crossover
of the Genes

Reconfiguration  

Figure 4.10 – An evolutionary process of evaluation, selection, and 
reproduction (or crossover). 
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synchronisation problems, since it was impossible to guarantee that all robots would begin 

the mating season at the same time. In the mating season, the robots communicate to let the 

others know their fitness value. They start emitting a “mating call”, where they “shout” 

their identification, their fitness values, and chromosomes. The best robots survive to the 

next generation, breeding to become the “parents” of the new individuals [Nol94]. The less 

well-adapted robots recombine their chromosomes with the better-adapted ones, 

reconfiguring their parameters as a new robot before starting a new generation. 

  The robot recurring procedure for one generation, shown in Figure 4.11, 

works according to the following algorithm: 

 

• Working Season: 
1. Avoid obstacles; 

2. Count collisions; 

3. The internal timer of Robot 1 indicates the beginning of the 
mating season; 

 

• Mating Season: 
1. Robot 1 orders all robots to stop; 

2. Robot 1 sends a mating call via the radio (containing its 
identification, fitness value, and chromosome); 

3. Robot 2 then sends its mating call and so do all other robots, one 
after the other, until the last one; 

4. All robots listen for mating calls, receiving every fitness value, 
comparing with the others, and then selecting the partner to mate 
with (if own fitness is the highest, the robot does not breed); 

5. When all genes are received and partners chosen, start Crossover; 

Reconfiguration

Working
Season

Mating
Season

Internal Timer

Fitness
Evaluation

Partner
Selection

Crossover
of the Genes

 

Figure 4.11 – The cyclic procedure of the robots, or a generation. 
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6.  Begin reconfiguration with the resultant chromosome and wait 
until… 

7. Robot 1 announces the end of the mating season and orders all 
robots to start another cycle. 

 

  The process begins with the random initialisation of the robot chromosomes. 

Then, the first generation starts with all robots performing their tasks in a working season. 

For the case of obstacle avoidance, they will navigate and have their fitness value 

calculated according to a function similar to the one presented in Figure 4.12. Robot 1 has 

control over the duration of the working season and uses the radio to stop the other robots 

when its internal timer reaches the end of the working season or the “lifetime” of the 

robots. That is important to synchronise the cycle and make sure that all robots will stop 

working at the same time. Starting with Robot 1, each robot transmits, one by one, a 

mating call via the radio, containing its identification, fitness value, and chromosome. 

When they are not transmitting, the robots listen for other mating calls, receiving the 

fitness value from the call, comparing it with the others, and then selecting the optimal 

partner with which to mate. If own fitness is the highest, the robot does not breed and 

“survives” to the next generation. The cycle will be completed when all robots find a 

partner to mate with and combine their genes in the crossover phase. The mating season 

lasts until all the six robots signal Robot 1 that they have found a partner, have mated, and 

have reconfigured themselves with the resultant chromosome. Robot 1 then orders them to 

restart another cycle (once more Robot 1 is used only to synchronise the next phase). In 

other words, the best-adapted robots “survive” to the next generation, while the others 

“die” after mating, to lend their bodies to their offspring. 

 

 

4.2.1 Fitness Evaluation 

 

  A simple obstacle avoidance task was chosen. The limited complexity of 

this task allows a good evaluation of the fitness in a short period. A complex task requires 

more time so that the robots can be subjected to more challenges in order to show that they 

can perform well in more than specific situations. A smaller generation time means a faster 

evolution, because more combinations of solutions will be tried [Pol00]. 
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  A reward-punishment scheme is applied during the fitness evaluation 

process, executed by the supervisor algorithm (see Figure 4.2). Each robot is evaluated 

during the “working season”, where its fitness function is calculated by penalising 

collisions and lack of movement (reducing the fitness value), encouraging the exploration 

of the environment (rewarding by increasing the fitness value for every second of 

movement). A major issue that must be addressed is how to detect a good (fit) robot. This 

question may be highly complex in nature [Har93a], but in the context of evolutionary 

programming, it can be simply defined by the programmer, in accordance with the 

particular problem at hand. Nevertheless, defining the rule for fitness evaluation is a crucial 

phase in evolutionary programming, since evolution proceeds without human intervention, 

relying on this rule to select the best individuals, and may produce a solution different from 

the expected [Ste94]. Furthermore, writing a fitness function depends on the targeted 

behaviour and the characteristics of the robot, and the necessary insights are gained through 

incremental augmentation over many trials in the environment. 

  For the obstacle-avoidance problem, a simple rule can be applied: a robot 

will increase its fitness each time it comes across an obstacle and successfully avoids it. 

Each time it collides, the fitness will be decreased. Figure 4.12 shows an example of a 

fitness function where the robot fitness is increased by one for every second the robot is in 

movement, encouraging exploration. It is punished by decreasing its fitness by ten when it 

collides. The fitness is also decreased by 100 to punish the robot for turning for more than 

five seconds. Therefore, this sub-function prevents a particular efficient solution that kept 

the robot spinning in a small circle within an obstacle-free area.  

  In a situation where an obstacle is close to the robot, but the proximity 

sensor readings are not interpreted correctly by the navigation control or are not enabled by 

the sensor module, a collision may occur and the fitness variable will be decreased. The 

bumper sensors will then be analysed by the supervisor algorithm to calculate where the 

collision took place in a total of 12 sectors with 30 degrees each (Section 4.3.5 explains 

this in more detail). Once the place of collision is detected, a rescue routine will drive the 

robot away from the obstacle, returning the navigation control to the neural network. When 

the robot is moving forward without colliding with obstacles, its fitness will be increased 

every second. 

  From the experience of a number of trial-and-error experiments, it was 

found that a simple fitness function usually produces the best results. This is because it 
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does not eliminate the autonomy of evolution [Flo96a]. As more complex behaviours are 

evolved, the designer has a tendency to gradually add sub-goals to the fitness function. This 

strongly biases the possible solutions [Mat96]. This approach, although effective, reduces 

the search space of evolution and fails to facilitate the work of the designer. 

 

 

4.2.2 Partner Selection 

 

  The procedure for partner selection is based on the robot fitness value or 

score. Whereas biologists try to analyse the selection mechanisms they believe exist in the 

natural world, artificial evolution seeks inspiration in nature to propose novel selection 

mechanisms [Har93a]. They can be very simple, like choosing the best robot to mate with 

all other ones, or more complex, such as the roulette-wheel technique (see Chapter 2) 

[Mit95]. In this work, the simple approaches are preferred because of the restrictions of an 

embedded controller (i.e., low processor speed and small memory size – there is a limit to 

how much memory the processor can address). These present a limit of what can be 

implemented on-board the robots. As the population is very small, a simple technique can 

deal with the robot selection without problems. Therefore, some simple, but efficient 

Fitness Function

More Sub-functions... More Conditions...

Fitness = Fitness + 1 For every second the robot is moving;

Fitness = Fitness - 10 If a collision is detected;

Fitness = Fitness - 100 If robot is turning for more than 5 seconds;

 

Figure 4.12 – An example of how a fitness function can be constructed. 
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selection techniques were developed, and will be described in more detail when they are 

tested in the experiments in Chapter 6. These techniques are:  

 

1. Select the robot with the highest fitness value in the generation to breed with all 

other robots and survive to the next generation. This tries to make sure that in the 

next generation the best fitness will be at least similar to the present one. 

2. The fittest robot survives and the others choose their partners giving 80% chance of 

selecting the fittest robot, and 20% chance of selecting any other but itself. 

3. An “Inheritance” scheme was developed: the score used to select the robot is the 

average of the robot fitness in the last five generations (i.e., inheriting the scores of 

its previous generations). The robot with the best average survives, but only breeds 

with the robots with the fitness in the present generation lower than its own fitness. 

This approach protects new robots that are actually better than the one with the 

highest average, but need more generations to be selected by their average. 

4. Another very simple strategy that was effective in the experiments is to select the 

fittest robot, allow it to survive, and reconfigure all the others with a small variation 

(mutation) of its chromosome. This is a form of “asexual reproduction”, where the 

robots do not cross over their chromosomes. All robots in the next generation will 

be a copy of the best one, but will suffer random changes (mutation) in a few genes. 

This has come to be called Naive Evolution by the GA community [Har93a]. This 

strategy has been changing the opinion of most GA researchers that emphasise the 

importance of crossover [Tom95]. 

 

  All techniques suggested above are elitist. Elitism requires that the current 

fittest member (or members) of the population is never deleted and survives to the next 

generation [Tom95]. The developed inheritance scheme prevents a robot from being 

deleted even if it is not the fittest, but has the biggest accumulated average fitness value. It 

is the only selection technique where the fittest member of the population does not have the 

same number of offspring (or the same probability to have offspring) whether it is far better 

than the rest, or only slightly better. In the other ones, it will always have the same 

probability to have offspring; and in most of them, will breed with all other robots. This 

approach is often too severe in restricting exploration by the less fit robots [Bli96]. 
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  These techniques are better explained in Chapter 6, that shows many 

experiments performed with variations of the solutions presented above. A common 

problem with these techniques is the possible appearance of a super fit individual that can 

get many copies and rapidly come to dominate the population, causing premature 

convergence to a local optima [Tho94c]. This can be avoided by suitably scaling the 

evaluation function, or by choosing a selection method that does not allocate trials 

proportionally to fitness, such as ranking selection and tournament selection [Har93a]. This 

work, however, does not experiment with these methods. Instead, another solution will be 

developed to attack this problem (see Section 6.5).  

 

 

4.2.3 Crossover Strategy 

 

  The crossover is the phase in the evolutionary algorithm where the 

chromosomes of both parents are combined to produce the offspring [Tom95]. Many 

techniques are proposed in the literature to implement the crossover phase [Hig96a] 

[Lan96] [Hem97] [Lan97]. Nevertheless, this work uses a very simple strategy, because of 

the restricted resources of the embedded controller. 

  In the developed evolutionary system, both morphological features and the 

controller circuit are evolved to respond to changes in the environment. The robots 

constantly adapt to changes in the surroundings by modifying their features and the 

contents of the RAM neural controller. The term “morphology” is defined as the physical, 

embodied characteristics of the robot, such as its mechanics and sensor organisation 

[Lun97]. In the experiments described in Chapter 8, the morphological features modified 

by evolution are the number and position of sensors, as well as the speed levels of the drive 

motors. Therefore, the genetic material specifies the configuration of the robot control 

device and morphological features, as shown in Figure 4.13. The control device is 

implemented within the robot microprocessor (a neural network for navigation control) and 

two programmable modules control the robot features, which are the sensor module and the 

motor drive module (see Figure 4.1). 
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  For the selection of the robot features controlled by the sensor module, a 

more complex “dominance approach” was implemented to combine the eight pair of genes 

[Ler76]. Each sensor in the sensor module is configured by two genes (two bits – B1, B2 to 

B15, B16 in Figure 4.13) in the chromosome: i) two genes will determine the presence of a 

feature (“enable the sensor”); ii) one gene comes from each parent; and iii) all features are 

recessive [Cam99]. The two genes are coded using bits in such a way that the combinations 

“1,1”, “0,1”, and “1,0” disable the sensor, and “0,0” enables it (see Figure 4.14). 

Dominance:

The sensor module features:

    Two genes determine the presence of a feature

    One gene comes from each parent

    All features are recessive

    Dominant: "1"

    Recessive: "0"

 

Figure 4.14 – The strategy to select the sensor module features. As all features 
are recessive: only the robots containing “0,0” in their respective positions 
in the chromosome have the corresponding sensor enabled. 

 

  An example where two robots mate using the developed strategy to select 

the sensor module features is shown in Figure 4.15. Considering only the feature that 

enables or disables sensor 1, the father’s chromosome has B1 = “1” and B2 = “0”; the 
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Figure 4.13 – An example of how the genes in the chromosome are used to 
configure the sensor module (eight pairs of genes: B1, B2 to B15, B16), the 
motor drive module (ten genes: B17 to B26), and the navigation control 
(neuron size × number of neurons: B27 to Bn). 

 



 

 75 

mother’s chromosome has the same genes, B1 = “1” and B2 = “0”. The strategy combines 

the chromosomes to produce the new B1 and B2 for the offspring. One of the two genes of 

the father and mother is randomly selected. By crossing such individuals, four possible 

combinations can be produced in the genotype, each with a 25% probability of occurring. 

Table 4.2 shows the probability of the phenotype, where the resultant robot has only a 25% 

chance of having the feature enabled. This is a way of introducing neutrality to the genes 

that select the sensors [Ler76] [Shi00] (i.e., different genotype configurations produce the 

same phenotype). 

 

Posible Resultant
Combinations:

Sensor 1 Enable:

... 1   0  ...

... 1   0  ...

... B1  B 2  ...

Father

Mother

Offspring 1 0

1 11 10

0 01 00

 

Figure 4.15 – An example of the possible combinations that can result from 
the crossing of two parents containing both the dominant and the recessive 
genes. 

 

Table 4.2 – Probability of a Phenotype to be present. 

Phenotype Probability 
Do not have the feature 75% 

Have the feature 25% 

 

  The motor drive module has ten bits associated with it in the chromosome. 

The features selected by the module are the three different speed levels for the motors. 

Figure 4.13 shows that the three speed levels, Fast, Medium, and Slow are controlled by 

these ten bits. The contents of these ten bits (B17, B18, B19, B20, B21, B22, B23, B24, B25, and 

B26) are added together to form a decimal number that indicates the speed level Fast. The 

result is a number between zero and ten that indicate the level of the Fast speed. The 

contents of the first six bits (B17, B18, B19, B20, B21, and B22) are added together to form a 

decimal number that indicates the speed level Medium. The result is a number between 

zero and six. In the same way, the contents of the first three bits (B17, B18, and B19) are 



 

 76 

added together to form the decimal number that indicates the speed level Slow. The result 

is a number between zero and three. Therefore, as they use the same bits, this guarantees 

that the level Fast is always greater than or equal to Medium, which is always greater than 

or equal to Slow.  

  The resultant speed for the three levels is converted by the motor drive 

module to a value (an internal parameter) between 1 and 32, because the robot motor can 

have 32 speed levels. This conversion is not linear, because of the way the motors are 

controlled by pulse modulation, as it will be explained in Chapter 5, and the corresponding 

values are shown in   

 

Table 4.3. This approach permits co-adaptation where the chromosome integrates 

specifications for both controller and morphological features [Lun97]. Evolution can select 

not only the number of sensors to use, but, if the number of sensors is fixed, it can select 

which ones to pick (i.e., the sensor position on the robot).  

 

Table 4.3 – Conversion of the speed levels of the robot. 

  Speed Level: 0 1 2 3 4 5 6 7 8 9 10 

  Value (internal parameter): 1 7 9 11 14 17 20 23 26 29 32 

  Velocity (m/s): 0 0.02 0.05 0.08 0.1 0.13 0.15 0.17 0.2 0.23 0.26 

 

  For the genes that control the neural network and the motor drive module, a 

random exchange of the genes from the parents is used to form the resultant chromosome. 

This strategy is called uniform crossover [Lan96], although here only one offspring is 

produced. Therefore, a gene is selected from the father or the mother to occupy the 

corresponding position in the offspring chromosome. Considering the configuration given 

by Figure 4.9, a random exchange of the 1034 genes (64 neurons with 16 bits each, plus 10 

bits to select the motor drive module) from both parents occurs after a dominance selection 

of the 16 bits that enable the sensors. 

  After the crossover is completed, a mutation phase starts. Applying mutation 

to a chromosome means that a small number of copying errors may occur when copying 

the genes from the parent chromosomes to the offspring [Och99a]. In this work, a mutation 

rate of M% means that each gene in the chromosome has a probability of M% of being 

selected and binary inverted (e.g., new gene = NOT(gene)). Therefore, for each bit in the 
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chromosome a random real number r is generated between 0.0 and 100.0, if r < M flip the 

bit. Small mutation rates, usually between 1 and 3%, are the ones that produced the best 

results in the experiments. Higher mutation is only useful in the beginning of the 

evolutionary experiment. A high mutation rate does not help to evolve faster, and did not 

prove to be a good strategy. Although it may help in the beginning of the process to bring 

more variety into such a small population (e.g., six robots), it slows down the process after 

the initial genetic material is combined. Therefore, in the long term, it produces a very 

uneven population, where the fittest individual is considerably distant from (better than) the 

average fitness of the population. Generally, only a few robots will be well adapted to the 

environment. 

  A low mutation rate makes the whole evolutionary experiment much faster 

[Och99a]. It produces a population with limited variation where the average fitness is 

almost as high as the fitness of the fittest individual. There are two reasons for this: i) late 

in the evolutionary experiment, the population that is combined to produce the next 

generation will present a high fitness value if the mutation rate is small. When such a 

converged population mate, it is more likely to produce a fit individual than a less fit one; 

ii) by applying a small mutation to a chromosome containing a majority of good genes, 

there is a chance that the few bad genes alone will be modified, thus producing a better 

offspring (i.e., if a high mutation modifies many genes in a chromosome that has more than 

50% of good genes, the chance of changing good genes to bad ones is greater than 

changing bad to good ones). A low mutation rate is also important if the robots are working 

as a group and a bad performance can severely affect the overall operation [Har93c]. 

  A variable mutation rate would theoretically make use of a high rate to 

speed up evolution until a certain “fitness level” is achieved, and then reduce mutation in 

order to increase the average fitness and produce a more balanced population [Har93a]. 

However, it has not been possible to find a way to detect when that “fitness level” is 

achieved in the embedded controller from the robot point of view. Therefore, there is no 

way of knowing how close to the final result the robot is, because that result is unknown 

and may not be a unique solution for the problem. It was expected that a premature drop of 

the mutation rate could cause the population to be stuck in a local optima for a longer time 

[Har92], but that did not happen experimentally. Instead, fixing a low mutation rate from 

the beginning of the process actually made the whole evolution a lot faster (see Chapter 7). 

The ideal mutation rate turned out to be the one that has the greatest chance of modifying 



 

 78 

only one of the genes in the chromosome (e.g., 1% for a chromosome containing 100 

genes, 0.1% for a chromosome with 1000 genes, and so on). 

 

4.3 System Specification 

 

  This section presents in a general way how the robotic system should be 

implemented to work with the developed evolutionary system. Chapter 5 describes how the 

system was designed in terms of hardware and software in the lowest details. The ideas 

described here, in principle, can be adapted to work with other robots, in different 

environments. 

 

 

4.3.1 Overview 

 

  The mobile autonomous robots form a decentralised embedded evolutionary 

system where no host computer is required. Nevertheless, an IBM PC is used to monitor all 

data exchanged via the radio link, producing a complete record of the chromosomes, 

parameters, and variables for every generation. 

  Figure 4.16 shows a perspective of the working domain containing the 

environment where the robots work and the monitor computer, connected to the radio link 

to monitor the communication among the robots. The robots can communicate with each 

other and the monitor computer via an asynchronous serial data link using their 

communication module. The computer monitors the robot internal variables without 

interfering in the system, but has the capacity to start or stop an evolutionary experiment. 
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  A radio board is connected to the monitor computer, which logs data on the 

evolutionary experiment. It is a multi-channel driver/receiver interfacing the IBM PC via 

its serial port. A software interface permits the downloading of software, data, and 

commands between the robots and the computer. Programming and low-level debugging 

are provided by the computer. When programming or debugging, bi-directional data 

between the robot processor and the computer can operate either via a wired link or via 

radio. Chapter 5 shows more details of the software and hardware involved. Figure 4.17 

shows the monitor computer connected to the radio and Figure 4.18 shows a close-up of 

the radio board that is used by the monitor computer to communicate with the robots and 

monitor the evolutionary experiment. 

--  2.50m
  --

--  2.50m  --

Monitor
Computer

Radio

Rob1

Rob2

Rob3

Rob4

Rob5

Rob6

 

Figure 4.16 – Working domain containing the environment where the robots 
work, as well as the monitor computer connected to the radio link. 
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Figure 4.17 – The monitor computer connected to the radio. 

 

 

Figure 4.18 – A close-up of the radio board. 

 

  The experiments were performed within a 2.50m × 2.50m working domain, 

containing walls and obstacles of varied sizes, where the robots can explore the 

environment, avoiding collisions. Many movable obstacles and internal walls of different 

sizes are available to change the scope of the workspace where the robots navigate. Figure 
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4.19 shows how the workspace can be modified into four different configurations by 

rearranging the obstacles and walls. This flexibility is necessary to allow different degrees 

of complexity of the environment during the experiments. Figure 4.20 shows different 

configurations of the workspace representing a simple (a) and a complex (b) environment. 

 

 

4.3.2 Introduction to the Robot Architecture 

 

  The robot architecture consists of a two-wheel differential-drive platform 

(20cm diameter), containing a Motorola 68HC11 - 2MHz, 64Kb of RAM [Mot96], 

bumpers with eight collision sensors, and eight peripheral active infrared proximity 

sensors. It exchanges information with the other robots at 1.2Kbps by a 418MHz AM 

radio. Both robots and workspace were specially built for the experiments. 

Relative Size of
a Robot = 20cm

2.50m

      (a)                                                       (b)

         (c)                                                       (d)

 
Figure 4.19 – Four different configurations of the 2.50m × 2.50m workspace 

showing how the environment can be modified for the experiments, from 
simple (a) to very complex (d). 
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(a) 
 

 
(b) 

Figure 4.20 – An example on how simple (a) and complex (b) environments 
can be produced by rearranging the obstacles and walls. 

 

  Figure 4.21 shows a plan view of the base, where the position of the infrared 

proximity sensors, the four bumpers, and the wheels are illustrated. All eight proximity 

sensors are connected to the sensor module, which is configured by the chromosome. The 

module can individually enable or disable the sensors, changing the number of active 
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sensors and, consequently, their position in each generation. Therefore, the physical, 

embodied characteristics of the robot can be modified. In evolutionary terms, these 

constitute the morphology of the robot [Lun97]. The wheels are placed in the middle of the 

robot, allowing it to turn around its central axis. The robot has four round bumpers on its 

front, back, left, and right, which are attached to the base by eight contact sensors (Cs1 to 

Cs8). These sensors permit the supervisor algorithm to pinpoint the location of a collision.  

  Figure 4.22 (a) shows the team of robots parading in their workspace. Robot 

1 is a prototype and is larger than the others. Figure 4.22 (b) shows a top-view of Robot 2, 

displaying its infrared proximity sensors and round bumpers. Each robot has a banner 

identifying it by displaying its number. The three green keys on the right form a small 

keyboard used to enter commands to the robots manually. 

  The robot architecture is composed of modules that interface each other and 

can be combined with other circuits to allow new features, such as a different chassis, 

power supply, actuators, or even a new communication system to be installed. Figure 4.23 

shows how the five units are packed together. The base contains the communication 

system, the computing system, the sensor pack, the power management pack, and the motor 

drive pack. The communication system contains the radio link, which allows serial  
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Figure 4.21 – Robot architecture (a) representing the position of the proximity 
sensors and motors, the Central Control, the Motor Drive, and the Sensor 
Modules. A round bumper (b) with collision sensors surrounds the robot. 
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(a) 
 

 
(b) 

Figure 4.22 – A view of the robot team (a) and top-view of Robot 2 (b), 
showing the position of the infrared sensors and bumpers. 
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communication among the robots and the monitor computer. The computing system 

contains the neural network of the navigation control and the evolutionary control system. 

It accesses the sensors through I/O ports and uses the COM port to interface the radio. The 

sensor pack groups the infrared proximity sensors around the periphery of the robot and the 

contact switches attached to the bumpers. The power management pack is basically 

composed of the voltage monitoring circuit, which can switch off the microprocessor, the 

sensors, radio, and the motors to protect the data in memory until the battery is replaced. 

The motor drive pack contains the high-current drivers and controls the pulse signals, 

which drive the motors. 

  The centre of the robot architecture is its microprocessor, the Motorola 

68HC11 [Mot96]. Most of the robot functionality is implemented in software and executed 

by the microprocessor. The sensors and motor drives are connected to the microprocessor 

Robot Architecture

Communication System:
♦ Radio Serial Link;

Computing System
(NN + EA Implementation):

♦ I/O Ports;
♦ Com. Port.

Sensor Pack:
♦ Proximity Sensors;
♦ Collision Sensors.

Power Management Pack:
♦ Batteries;

♦ Power Monitoring Circuit.

Motor Driver Pack:
♦ Motor Drivers;

♦ Motors/Gear box/Wheels.

 
Figure 4.23 – The robot modular architecture, containing the communication 

system, the computing system, the sensor pack, the power management pack, 
and the motor drive pack. 
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through I/O ports and the radio through a RS232 serial port. The RAM memory, which 

stores the program and data, has a small internal backup battery. A power monitor circuit 

supervises the condition of the main battery and shuts down the microprocessor if the 

voltage drops below a threshold, stopping all operations to protect the data stored in 

memory. The program counter and all other internal variables are preserved and the robot 

can resume its operation as soon as a new battery is replaced.  

  Figure 4.24 shows the components of the robot architecture. It displays the 

main data and control lines among the units. The microprocessor receives information from 

the other robots and the monitor computer, and specifies the internal configuration of the 

neural network, which will control the motors according to the sensor readings. 

 

 

4.3.3 Computing System 

 

  The robot modular architecture permits different combinations of the 

modules with other hardware and software, so that new robot architectures can be 

generated. It was conceived in this way, because it allows future work to be carried out by 
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Figure 4.24 – Components of the robot architecture, showing how the 
microprocessor interfaces to the other units. The power monitor can shut 
down the processor if the main battery voltage goes low. 
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modifying the existing robots to perform different, more complex tasks. Therefore, the 

computing system consists of a processor unit and memory, interfacing the other units 

throughout input/output ports (I/O ports) and a serial COM port. Figure 4.25 shows a 

diagram of the computing system and its ports. 

  The microprocessor and memory are used to implement the software 

algorithms of the central control, the communication, the sensor, and the motor drive 

modules. Therefore, the computing system takes part in the implementation of the software 

of every module. For the central control module, it implements the algorithms of the 

navigation control (the neural network functions), the supervisor algorithm (the evaluation 

of robot performance), and the evolutionary control (the coordination of the evolutionary 

process). For the sensor module, it controls the infrared pulses, calculates the sensor 

readings, and selects which sensors are active according to the chromosome. For the motor 

drive module, it interprets the command from the neural network and generates the pulse-

width signals that will control the motor high-current drivers. For the communication 

module, it produces and identifies a series of commands and the standard RS232 signals 

necessary to establish the communication protocol with the other robots and the monitor 

computer. 
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Figure 4.25 – Diagram of the computing system, showing how the processor 
interfaces the memory, the radio, and the sensor and motor packs. 
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• Computing Module Requirements 

  The main concerns when designing such a system are: i) will the 

microprocessor be fast enough to perform all subroutines of the modules and still 

manoeuvre the robot smoothly and with good clearance from obstacles? And ii) will the 

memory size be large enough to store all programs and variables? Basically, to guarantee a 

smooth control of the robot speed and direction, the navigation controller must provide at 

least 100 iterations a second. It means that the processor must be able to perform a sensor 

reading, choose the appropriate command, and control the motors accordingly in less than 

10ms. It needs to execute not only these routines, but also the higher-level layers of fitness 

evaluation and radio monitoring. 

  The available memory needs to be enough to contain the programs of the 

modules and store the contents of the neurons and the chromosome. This is one of the 

reasons why a RAM neural network is so attractive. It is a binary architecture, what 

facilitates its implementation in a processor-based design. Considering the configuration 

presented in Figure 4.9, it is only necessary to have 1050 bits of memory to store the 

contents of all neurons. However, the current implementation needs 1050 bytes of memory, 

since the bits cannot be accessed individually and the chosen memory works with eight 

bits. It is still only a reasonably small amount of the memory required. 

 

 

4.3.4 Communication Module 

 

  The communication module comprises a transmitter radio and a receiver 

radio, connected to an RS232 converter, which forms the serial communication link to the 

other robots and to the monitor computer (see Figure 4.26). The corresponding software is 

implemented in the microprocessor. It is a routine that monitors the radio for messages 

while the robot navigates. In case a message is detected, the communication module 

identifies which robot it was sent to, stopping the robot navigation to deal with it if the 

robot is the addressed one. 

  A radio board was also manufactured to be connected to the monitor 

computer via its serial port COM2. It contains the basic units shown in Figure 4.26, with a 
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slightly different RS232 converter. Therefore, the PC can be seen by the other robots as 

another of their kind. It is also possible to communicate to the monitor computer via a 

cable, allowing a faster 9.6Kbps connection (see Figure 4.26). This cable is more often 

used when developing new software for the robots, because it allows the process of 

downloading, controlling the execution, and debugging software to be done much faster. 

  The robots communicate with each other via messages. The communication 

module also enables access to the monitor computer, which takes no part in the evolution, 

but monitors the communication among the robots. The messages are a sequence of bytes 

containing data and codes that identify which robot is calling, the receiver of the message, 

and coordinate the transmission. Table 4.4 presents a list of the codes of the robot language 

and their meaning. 

  The robots exchange many messages during the evolutionary process. They 

all follow one of the two structures shown in Figure 4.27. The long message in (a) is a data 

transmission formed by a heading (Start) followed by a code that in this case must be Z to 

indicate that data will be transmitted. Then, the codename of the robot to which the 

message goes is followed by the codename of the robot sending the message. A string of 

data bytes is sent next, followed by three hexadecimal bytes (7F, FF, FF). These bytes 

indicate the end of the data string and must be followed by the End code (W), marking the 

end of the message, and the checksum of the transmitted bytes. Figure 4.27 (b) shows a 
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Figure 4.26 – Diagram of the Communication System, showing how two 
radios, a transmitter and a receiver, form the RS232 interface to the 
processor. 
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short message or command, used to give orders (N, O, V, S, and M) or query other robots 

about the last transmitted message (P).  

  As an example of communication between two robots, consider the cyclic 

procedure described in Figure 4.11. When the robots finish their working phase, they try to 

find a partner to breed with by sending a mating call. Figure 4.28 exemplifies a 

communication between Robot 1 and Robot 2 (see also Table 4.4). The figure shows the 

contents of three messages using the ASCII codes and the corresponding hexadecimal 

bytes. Message 1 is a command from Robot 1 to order all robots to stop by the end of the 

working season. When this message is received, the robots stop navigating and start 

transmitting their fitness and chromosomes one by one, coordinated by Robot 1. Robot 2 is 

the first to send its data, and message 2 in the figure shows how it does that. Robot 1 then 

acknowledges having received the message, telling Robot 2 that it was transmitted without 

problems. If any problem occurred during the transmission (e.g., interference in the radio 

waves), Robot 1 would indicate it had problems receiving it, sending the message: 

“UUUUUUUUUU-X-N-B-A”. 

 

Table 4.4 – The codes used in the robot messages and their translation. 

Code Hex Translation 
A 41 Robot ID: Message to/from Robot n°. 1 
B 42 Robot ID: Message to/from Robot n°. 2 
C 43 Robot ID: Message to/from Robot n°. 3 
D 44 Robot ID: Message to/from Robot n°. 4 
E 45 Robot ID: Message to/from Robot n°. 5 
F 46 Robot ID: Message to/from Robot n°. 6 
Y 59 Robot ID: Message to/from PC 
T 54 Robot ID: Message to all Robots 
U 55 Start: sent to clear noise in the radio receiver 
X 58 Start: code to start message reception 
Z  5A Code: start data reception 
N 4E Code: data transmission error, retransmit 
O 4F Code: message received OK – checksums correspond 
V 56 Code: abort listening for messages 
S 53 Code: stop navigating 
M 4D Code: resume navigation 
P 50 Code: Was last message received OK? 
W 57 End: message terminator (last Byte before checksum); 
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     Start-Code-AddressedRobot-Robot ID-Data-End-Checksum
Data Transmission

          Start-Code-AddressedRobot-Robot ID
Order/Query

(a)

(b)

 

Figure 4.27 – Structure of the messages sent by the robots via the radio. 
Where: Start – Initialises the message. It contains a string of 10 Us to clear 

noise in the radio receiver, followed by X that initialises a 
transmission; 

Code – A code that orders the receiving robot to start the message 
reception (Z) or a command that gives another order (see other 
“Codes” in Table 4.4); 

AddressedRobot – Identifies to which robot the message goes (see 
“Robot ID” in Table 4.4); 

Robot ID – Identifies which robot is sending the message (see 
“Robot ID” in Table 4.4); 

Data – The body of the message. It is a string of data bytes 
followed by 7E, FF, FF (bytes in Hexadecimal); 

End –A code indicating the end of the message. It is the byte W; 
Checksum – Is 1 byte containing the sum of all transmitted bytes. 

 

Robot 1 Robot 2

  Codes:          UUUUUUUUUU-X-S-T-A
  Hex:  55,55,55,55,55,55,55,55,55,55,58,53,54,41

Message 1

  Codes:          UUUUUUUUUU-X-O-B-A
  Hex:  55,55,55,55,55,55,55,55,55,55,58,4F,42,41

Message 3

        Codes:          UUUUUUUUUU-X-Z-T-B-Fitness&Chromossome-W-Checksum
        Hex:  55,55,55,55,55,55,55,55,55,55-58-5A-54-42-Data,7F,FF,FF-W-Checksum

Message 2

 

Figure 4.28 – Example of three messages sent by Robot 1 and Robot 2. 
Message 1 orders all robots to stop. In message 2, Robot 2 sends its fitness 
and chromosome to all other robots. Robot1 sends message 3 to 
acknowledge that message 2 was received without problems. 
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• Communication Module Requirements 

  The speed of the radio link between the robots needs to be at least 1.2Kbps 

or the time wasted in communication will disturb the evolutionary process too much. 

Considering that six chromosomes containing about 1050 genes (considering the neural net 

configuration of Figure 4.9) need to be transmitted together with other codes, roughly 12 

seconds will be wasted by communication alone during the mating season. Considering a 

generation time of one minute, it means that the robots will stop working for at least 1/6 of 

their lifetime. That is the reason why a good data transmission speed is so important. It also 

needs a safe protocol to ensure that data will not be lost in communication, unless a few 

wrong bits in the received chromosome can be considered as another form of mutation.  

 

 

4.3.5 Sensor Module 

 

  In the sensor module, each analogue signal from the sensor is converted into 

two bits by the signal conversion block (S/C block) and selected to be connected to the 

navigation control in the central control module. Figure 4.29 shows how each sensor is 

selected according to two genes in the chromosome. If these two control bits are “0”, then 

the 2-bit signal from the S/C block is connected to the sensor output. The figure illustrates 

If (C1=0 and C1=0)
    Output0 = Bit0
    Output1 = Bit1
Else
    Output0 = 0
    Output1 = 0

Sensor n
S/C

Block
Bit0

0  1  0  1  0  1  1  1  0  0  0  1  1  1  0  0

Chromosome

C1  C2

      Sensor n
Enable

Bit1
Output0
Output1Pulses

Neuron
Input
Lines

 

Figure 4.29 – Illustration of how each sensor reading is converted into a 2-bit 
signal by the analogue to digital block (S/C block) and selected to be 
connected to the neuron inputs. 
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how “having a sensor enabled” is a recessive feature and illustrates the implementation of 

the “dominance” strategy described in Section 4.2.3. 

  Each sensor in the sensor module is connected to an S/C block and a sensor 

enable block. The S/C block converts the signals coming from the sensors into a 2-bit 

digital input to the sensor enable block. With two bits, this digital input can have four 

levels (“00”, “01”, “10”, and “11”) representing the distance to the obstacle: “00” means no 

obstacle; “01” means that the obstacle is far; “10” means the obstacle is at medium 

distance; and “11” means that the obstacle is close to the robot. The sensor enable block is 

implemented in software into the microprocessor. It has a simple algorithm that only 

outputs the sensor reading (Bit0 and Bit1) if the control bits in the chromosome (C1 and 

C2) are both equal to zero.  

 

• Sensor Module requirements 

  To allow the neural network to drive the robot safely through the obstacles 

and the supervisor algorithm to evaluate when it is performing the right manoeuvre, the 

sensors need to discriminate the obstacles with at least four levels of range. Figure 4.30 

illustrates how the proximity sensors are displayed around the robot and shows three 

consecutive curves representing the range of the sensors: far = 27cm; medium = 15cm; and 

close = 6.5cm. The curves were measured for the minimum distance that a sensor could 

detect the presence of a black pencil. That configuration was very efficient during 

preliminary tests of robot navigation. All sensors but one are positioned in the front of the 

robot. Considering that the robot will be moving when it is manoeuvring, there is no 

situation where a robot can approach an obstacle without seeing it. One sensor is placed in 

the back to allow the robot to detect when a faster robot approaches it from behind.  

  Figure 4.31 shows the position of four round bumpers and their collision 

sensors. Also shown in the figure is the position of four hypothetical collisions with the 

obstacle in different positions. The placement of the sensors on the bumpers permits the 

detection of a collision in 12 different positions. Each bumper is connected to the chassis 

by two independent sensors. Consider now bumper 1. If the collision occurs in the middle 

of the bumper (collision 1 in the figure), both sensors Cs1 and Cs8 will be activated. If the 

collision occurs to the right of the bumper (collision 2 in the figure), only Cs8 will be  
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27cm6.5cm 15cm

 

Figure 4.30 – Illustration of the position of the sensors in the robot periphery, 
showing approximately the range of each sensor relative to the minimum 
distance they can detect a white wall. 

 

activated; if it occurs to the left, only Cs1 will be activated. Therefore, collision 1 is 

detected by Cs1 and Cs8; collision 2 is detected by Cs8 only; collision 3 is detected by Cs7 

only; and collision 4 is detected by Cs7 and Cs6. This is required to give the necessary 

accuracy to the supervisor algorithm in detecting the position of a collision around the 

robot. It can then calculate the appropriate manoeuvre and drive the robot away from the 

obstacle, returning the control to the navigation control circuit afterwards. 
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Figure 4.31 – The four round bumpers with collision sensors and the position 
of four possible collisions with obstacles. Collision 1 is detected by Cs1 and 
Cs8; collision 2 by Cs8 only; collision 3 by Cs7 only; and collision 4 by Cs7 
and Cs6. 

 

 

4.3.6 Motor Drive Module 

 

  Controlled by the chromosome, the motor drive module is implemented 

mostly in software by the microprocessor, including the pulse-width modulation signals 

that control the motors (see Figure 4.32). The speed levels Fast, Medium, and Slow are 

specified by ten bits in the chromosome, as described in Section 4.2.3.  

  The command interpretation block has a set of predefined routines to drive 

both motors that are selected by the command from the neural network. These routines are 

sequences of commands containing speed levels, directions, and delays for both motors. 

They are able to manoeuvre the robots according to predefined commands (e.g., S, FS, FM, 

FF, TRS, TRL, TLS, and TLL considering the example of Figure 4.9). 

 

• Motor Drive Module Requirements 

  The pulse-width modulation is performed by three internal counters of the 

microprocessor, controlled by interrupt sub-routines. The selected speed can be generated 
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by controlling the width of a 12V pulse to the motor over a fixed period. It was observed 

that low frequencies cause the motor to vibrate in low speeds, disturbing the proximity 

sensor readings. Preliminary tests determined a minimum frequency of at least 1000 pulses 

per second. This frequency is necessary for a smooth control of the motors for any speed 

level. 

  The robots must be able to control their speed with at least 32 levels 

between zero and maximum speed. The faster the robots go, the more challenging 

situations they are going to face during the generation time, making it easier to spot poorly-

adapted controllers. Considering the dimensions of the workspace and the relative size of 

the robots, they should be able to move at 0.26m/s at least. 

 

 

Medium SlowFast
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Figure 4.32 – The motor drive module. The speed levels Fast, Medium, and 
Slow are specified by the chromosome. The command interpretation 
block has a set of predefined routines to drive both motors. The 
microprocessor implements most of this module, including the pulse-
width modulation signals that control the motors. 
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4.3.7 Power Management 

 

  The power requirements for an open-ended embedded evolutionary system 

demands a constant delivery system. In most of the work with real robots, such as Brooks 

in [Bro92], Jakobi in [Jak98b] and [Jak98a], Harvey in [Har97b], or Floreano and 

Mondada’s experiments with Khepera robots [Flo98b], battery power does not usually last 

for more than a couple of hours. To keep the robots going for longer evolutionary runs 

many alternative power sources have been proposed. The most common is tethering the 

robots directly to a power source, as in [Mon96]. Another solution is to provide recharge 

stations and contacts in the robots that enable them to dock periodically. However, the 

amount of time the robots must spend docked (that is, not performing the task) is usually a 

considerable part of the process. If one robot stops to recharge its batteries, and therefore 

preventing the station being used by another one, it cannot take part in evolution and may 

force the others to stop and wait. A good solution used by Watson et al. [Wat99a] involves 

the construction of a powered floor to feed the robots throughout contact points on the 

underside of their bodies. 

 

• Power Management System Requirements 

  All the above-mentioned solutions consider a fixed rechargeable battery that 

demands substantial technology. The developed solution is much simpler: it relies on an 

exchangeable battery, and a strategy to protect memory and the state of the robot hardware 

when it is replaced. The chosen batteries can sustain continuous operation of the robot for 

eight hours or more, which are enough to perform the evolutionary runs of the experiments. 

A monitoring circuit supervises the battery charge and will interrupt the operation of the 

robot if it drops below a threshold. The program counter and all other internal variables are 

preserved by a small fixed back-up battery, and the robot can resume its operation as soon 

as the main battery is replaced. Replacing the battery is considerably faster than providing 

power stations to recharge it, avoids tethers that may get tangled, and is considerably 

simpler and easier to implement than a powered floor. 
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5 ROBOT DESIGN 
 

 

  This chapter describes how the developed evolutionary system is embedded 

in the robots. It introduces the robot mechanics, the hardware and software developed to 

implement the sensors, the control circuit, the motor drive circuit, and the communication 

circuit of the robots. The software referred to in this chapter can be found in Appendix A, 

and the schematic diagrams of the complete robot circuit and radio board, together with a 

list of the used components, can be found in Appendix B. 

  The robot was designed in three phases: the first prototype; the second 

prototype; and the final robot. Figure 5.1 shows the first and the second prototypes. The 

first prototype was developed on a wire-up protoboard, so that the necessary modifications 

to the circuit could be easily rearranged. It can be seen in the figure that this design made 

use of two circuit boards, arranged in two layers. The first layer contained the processor, 

memory, and peripherals, and the second layer contained the sensors and motor drivers. 

 

 

Figure 5.1 – The first (left) and the second (right) prototypes of the robot 
development. 
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Once a satisfactory performance was obtained, these two layers were combined into a 

single printed circuit board (PCB) layout containing the complete robot circuit. This was 

implemented in the second prototype, manufactured using a double-sided circuit board, 

which served to evaluate this compact design before it was reassembled into an even 

smaller final layout, which had the circuit board industrially manufactured.  

 

 

5.1 The Chassis Design 

 

  The motors have to have small dimensions because of the small size of the 

robots. However, small motors do not have a very high-level of torque. Batteries of high 

capacity will be required to power two electric motors and the printed circuit board for a 

minimum of four hours without recharging. Therefore, because of the large weight of a 

suitable sized battery pack, extra torque needed to be produced by a gearbox so that the 

motors are able to move the robot at a reasonable speed. It is expected from the nature of 

the proposed experiments that actual contact between robots will occur. Therefore, the 

selected material must be able to support the robot weight and resist damage from contact 

with other robots, obstacles, and walls. As many robots are necessary for the experiments, 

simplicity of design and low cost are imperative. In that case, aluminium is the most 

suitable material to build the robot chassis, since it offers the lightness and strength needed, 

and is easily manipulated with the given resources of the mechanical workshop of the 

University. 

 

 

5.1.1 Shape and Size 

 

  A rectangular robot provides a more useable shape in terms of mounting 

components, but the likelihood of the robot being stuck would be greatly increased, since it 

is not able to turn around within its perimeter, which can cause it to strike other robots and 

the surrounding walls. A circular chassis is more advantageous for the robots because it is 

less likely to be stuck in corners than a rectangular one. This design results in a robot that is 
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highly manoeuvrable and able to turn around on its own centre of gravity and within its 

own perimeter. There is a reduced chance of the act of turning causing the robot to strike a 

wall or another robot. However, this results in a reduced usable space at the base. There is 

a need for a low centre of gravity to reduce the risk of the robot turning over because of its 

high mobility and fast directional changes. To provide a low centre of gravity, the heaviest 

parts (e.g., the battery pack and motors) need to be mounted as low as possible, but this 

leaves a lot of unusable space.  

 

 

5.1.2 The Adopted Solution 

 

  Despite the advantages in space, leading to a smaller and lighter chassis, the 

rectangular base is more difficult to drive in tight, crowded spaces. As it can be inferred 

from the proposed experiments, initially, the robots will not have a proper trained 

controller, so that collisions are more likely to happen. When a collision is detected, the 

simple rescue algorithm will turn and drive the robot away from the obstacles before 

returning the control back to the main algorithm. This rescue program would be more 

complicated to design for the rectangular base, strongly suggesting a round chassis that can 

safely turn around its centre, leaving the robot facing back to the obstacles. However, 

designing and manufacturing circular printed circuit boards could also prove more difficult 

than the traditional rectangular ones. Therefore, as shown in Figure 5.2, the final solution 

was obtained by using a square base surrounded by round bumpers that produced a circular 

chassis.  

  This decision allowed the drive mechanism to be achieved by a differential 

steering system, consisting of two drive wheels and two non-pivoting casters. Each wheel 

can be driven independently and steering is achieved by changing the speed of each wheel. 

The castors are used to maintain balance. This solution is mechanically simple to 

implement and easy to control and steer. The motors are required to have enough torque to 

move the robot at 0.26m/s and to be small enough to fit into the chassis. The chosen motors 

are 12V DC with a built-in gearbox. The drive ratio with this gearbox is 1:42, which gives 

enough torque and drains a small current. The motors are connected to a set of plastic 

wheels available from electronic suppliers with a replaceable rubber tyre.  
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  The rechargeable batteries are mounted between the motors to keep a low 

centre of gravity. If the battery charge runs low, these two 6V batteries can be exchanged 

for other two fully charged ones. This allows the robot to keep moving while the extra pair 

of batteries is charged. Figure 5.3 shows how the circular chassis was constructed using a 

square base to accommodate the batteries and motors. 

 

 

5.2 Computing System 

 

  The computing system consists of the microprocessor, memory, and 

peripheral support circuitry. These devices should provide the necessary environment to 

allow a suitable autonomous motion for the robot and interfacing to other robots. The 

computing system should offer the necessary hardware and software for the processing of 

the infrared proximity sensors and should also provide the waveforms and direction signals 

required for controlling the motor drive circuit. To drive the motors, the processor should 

produce pulse width modulated (PWM) outputs. A means of sending and receiving 

 

Figure 5.2 – Top view of the robot chassis showing the position of the motors 
and wheels, the batteries, and the round bumpers. 
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asynchronous serial data to communicate with other robots and the monitor PC is also 

required from the computing system. The schematic diagram of the complete robot circuit 

can be found in Appendix B, together with a list of the components used. Most of the 

information presented here originated from the Motorola 68HC11 reference manual 

[Mot96]. It provided vital information and technical data that allowed the design of the 

robot computing system.  

  The Electronics Laboratories of the University of Kent currently use the 

Motorola 68HC11 microprocessor as the basis of their embedded designs. This is an  

8-bit micro-controller that is very versatile and well-suited for embedded computer 

systems. It has a limited instruction and register set; hence, the processing tasks able to be 

undertaken are of limited scope. The 68HC11 was chosen for it is a low-cost well-known 

microprocessor that could deliver the necessary functionality to support the operation of 

other peripheral circuits, as well as providing the means for carrying out the main system 

processing. The main functionality provided by the 68HC11 is: timing signals for the 

infrared proximity sensing and processing of the responses of the sensors; power and 

direction output signals to the motor drive circuits; and serial communications. 

  As well as providing the means for interfacing the external circuitry, the 

computing system contains the necessary circuits to support the operation of the processor 
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Figure 5.3 – Circular chassis construction and placement of the motors and 
batteries. 
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itself: power regulation; power supervision; and system clock generation. These circuits are 

illustrated in the schematic diagram presented in Appendix B. 

 

• Regulated Power Supply 

  The processor and all the other circuits in the robot printed circuit board 

require a 5V DC (150mA) power supply, plus a non-regulated 12V DC supply connected to 

the output buffers that drive the motors. The 12V DC (named VCC2 in the schematic) is 

provided by connecting together two 6V batteries on board the robot. The first battery also 

supplies approximately 6V that is regulated via a 5V DC (500mA) low dropout voltage 

regulator. This battery produces a variable voltage dependent on the current load. 

Therefore, a low voltage dropout regulator such as the Maxim MAX603 can extend the 

usage of the battery down to 5.3V. Other regulators typically need the supply to be at least 

1.5V higher than its output. This chip supplies 5V DC (VCC1 in the schematic) to the robot 

board. 

 

• Power Supervision  

  The 68HC11 needs 5V DC to operate properly and the system clock is 

generated from the same supply. If the board voltage supply drops from 5V, then the state 

of the processor and data in memory can become indeterminate. Therefore, the function of 

the power supervisory circuit is to ensure that the processor is in a known state below this 

voltage. The system external memory requires no management during the system reset and 

low voltage conditions, since it makes use of a memory chip that incorporates a static 

RAM to store the program and data, an internal 3V rechargeable lithium cell, and the 

necessary management circuit. This chip alone provides control and a standby voltage that 

allows the program to be retained during power off periods.  

  The supervisor circuit also provides the ability to deselect memory 

operations during low power conditions, so that the processor cannot write to the program 

memory during periods of indeterminate conditions. The Motorola 68HC11 processor has 

an active low reset line (RST) that can force the processor into reset state. The MAX691 

device is used to provide the supervisory reset signal (/RST) necessary to control the 

68HC11 reset and disable the external memory during reset and power-down events. 
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• System Clock Circuit 

  The system clock signal (E) is generated by the 68HC11 using an internal 

oscillator circuit. The necessary 2MHz reference signal is generated from an 8MHz crystal 

oscillator circuit connected to the processor EXTAL and XTAL pins.  

 

• System Memory 

  The 68HC11 reduces the complexity of on-board memory support circuitry, 

since it provides internal chip select decoding to address the program and data memories. 

The memory configuration has an 8-bit wide 64Kbyte memory that is shared by the 

program and data. The program area starts at $1000 (“$” represents a number in 

hexadecimal) and data can use all available memory from the end of the program to 

$FDFF. The interrupt vectors occupy the area from $FF00 to $FFFF, and a small area for 

program variables is left from $0000 to $0FFF as shown in Figure 5.4. The addresses 

between $FE00 to $FEFF are reserved to be used by the port expansion chip, the VIA 

(Versatile Interface Adapter).  

  The battery backed-up RAM memory works as a pseudo ROM, providing a 

non-volatile memory for storing the program. Instead of using a PROM or EEPROM to 

provide the program memory, the battery backed-up RAM allows new programs to be 

installed much faster by just downloading them via the serial port from the computer where 

68HC11

RAM
64K x 8

______________
$0000 to $0FFF

(Program Variables)
______________

$1000 to "End Program"
(Program Memory)
_______________

"End Program" to $FDFF
(Data Memory)

_______________
$FE00 to $FEFF
(VIA I/O Ports)

_______________
$FF00 to $FFFF

(Interrupt Vectors)

Address:
[15:0]

Data:
[7:0]

 

Figure 5.4 – Configuration of the system memory. 
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the software is developed and compiled. A problem arising from this approach is that there 

is no protection against unintentional changes or corruption of the program memory via 

stack overflow or other runtime failure. Therefore, extra care must be taken in 

programming to avoid this problem.  

 

• Serial Communication 

  Serial communication is provided by the 68HC11 internal Serial 

Communication Interface (SCI). It can be configured to eight data bit, no-parity, 1200 

baud, CMOS voltage level. A wired RS232 serial link was made available by the use of a 

cable containing a CMOS-RS232 conversion interface that can be attached to the IBM PC 

COM ports and connected to the RXD and TXD pins available in the microprocessor. This 

allows the downloading of the program software to the robots and permits runtime 

debugging of program variables and data exchange via a specially designed terminal 

program resident in the PC. This program was written in Borland C++ and provides a 

virtual screen where the 68HC11 can output data. The program is called 

VIRTUALSCREEN.CPP and is listed in Appendix A.  

  The serial port is also connected to a peripheral AM radio that provides a 

wireless link to the other robots and to the monitor computer. A DIP-switch defines if the 

serial communication will come from the cable or the radio link. The radio circuit is 

explained in Section 5.5.  

 

• Discrete Input and Output Ports 

  Discrete I/O is available via two different sources: from the 68HC11 

specialised I/O ports that can be pin-configured as input or output; or from the peripheral 

VIA that connects to the address and data busses. The 68HC24 is the device that works as a 

port expansion, providing two extra I/O ports that can be read from or written to as data in 

the memory. Each one of the pins has a control function and a corresponding I/O pin 

mapping that can be selected by setting register values through runtime routines in the 

program software.  
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5.3 Motor Drive Circuit 

 

  The most complex part of the motor drive system is the generation of the 

PWM signals, which is provided by the 68HC11 Timer Processor Unit (TPU) interface. 

The motor drive circuit constitutes a power driver that converts the low current CMOS 

signals provided from the processor to high current 12V pulses. This circuit is required to 

supply 12V to the motors and move the robot motors independently with proper speed and 

direction, according to the logical inputs from the processor.  

  The 68HC11 TPU interface can provide time-based functions by sequencing 

together match and compare operations. Many pre-programmed functions are provided in 

the TPU ROM mask, including PWM output, discrete I/O and input capture. As the drive 

motors are DC voltage controlled, the pulse-width modulation waveforms generated by the 

processor provide the necessary speed control by varying the average power of the signal. 

The 68HC11 generates these signals by combining the real-time clock system with output 

compare counters. The appropriate counters are set at the correct intervals during normal 

processing to generate the desired waveforms. This introduces a degree of complexity to 

the software design, since the main program is run in parallel with the waveform 

generation.  

  A push-pull driver is the main device of the motor drive circuit. The L239E 

was chosen because it has the ability to drive the two motors in two different directions 

separately. The L239E can output a maximum current of 1A that is more than enough to 

drive the chosen DC motors, which drain an average current of 65mA at maximum speed. 

The motor drive circuit operates by buffering two signals from the TPU interface in the 

86HC11 chip for each motor. These signals control the speed and direction of the motors. 

The variable speed of the motors is generated by using a pulse width modulated signal with 

a period of 1.025ms to control the chip enable line of the L293E. The signal is switched on 

in the beginning of the 1.025ms period and stays on until the corresponding counter 

reaches the specified value t1. Then, it is switched off and stays like that until the next 

period. The average power transferred to the motor is maximum when t1 = 1.025ms and the 

signal is never switched off. With t1 = 0.5125ms, the transferred power is 50%, as 

illustrated in Figure 5.5.  
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5.4 Sensors Circuit 

 

  The sensors enable the robot to interpret the external environment in two 

ways: providing the distance between the robot and the obstacles and indicating where the 

collisions have occurred. The infrared proximity sensors allow the robot to determine 

object locations remotely and simple touch sensors in the bumpers can tell whether the 

robot is in contact with an object and where the collisions occurred. The proximity sensors 

can detect other robots, obstacles and walls without physical contact, so that they can be 

avoided.  

  Infrared sensors were chosen to implement the detection of obstacles 

because they are a simple low-cost solution that can provide a fairly accurate distance 

sensing. The standard infrared emitter-detector combinations were studied. They work by 

continuously emitting IR light and detecting the intensity of the received energy to indicate 

how far away the robot is from other objects. This method requires too much power, since 

to allow a good range the eight infrared LEDs (light-emitting diodes) would drain more 

current than the motors moving at full speed (180mA). Therefore, a more economic 

solution is to output a pulsed waveform of a known duration and then look at the detectors 

to see if anything was received. If the detector is activated, it means that the waveform had 

enough energy to reach an obstacle and bounce back to the robot. If nothing is received by 

the detector, the power of the pulse is gradually increased until some detection is achieved 

and the distance to the object will be proportional to the level of power in the emitter. 

Figure 5.6 shows how the current through the emitter is gradually increased to vary the 

energy of the output until an obstacle is detected.  
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Figure 5.5 – PWM signal with 50% power transferred to the controlled motor. 
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  The necessary variation in the current that excites the IR emitters is obtained 

by using transistors to connect different resistors in parallel to the emitters. With more than 

two robots using infrared in the same area, there could be confusion about the source of the 

detected infrared. This approach was expected to present problems when the robots emit 

infrared at the same time, but this did not happen often and the robots could take again the 

correct manoeuvre after one iteration with correct sensor readings. This approach uses far 

less power than the previous solution, because the LEDs are only activated when the robot 

is sensing the environment. As the LEDs are working for a very short duration, the actual 

current that they can support is much higher than their nominal current and the average 

current used in this process is very low (0.5mA). The disadvantage of this solution is that it 

is more complex to implement in software, but this is a small price to pay when compared 

to the amount of power saved. The simple touch sensors in the bumpers that determine 

where the robot is in contact with objects are simple de-bounced microswitches mounted 

between the bumpers and the chassis. They work normally in the open position, but are 

closed when the bumpers are compressed. 

 

 

5.5 Communication Circuit 

 

  The communication circuit provides a link among the robots and between 

the robots and the monitor PC. It enables the implementation of the embedded distributed 

evolutionary system and allows the monitor computer to produce a data record of the 

evolutionary experiment. The communication software developed specifically to deal with 
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Figure 5.6 – The current through the emitter is progressively increased to allow 
the detection of obstacles with four ranges. 
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the interference of noise suffered by the radio link can distinguish between valid and 

corrupt data packets in real time. The baud rate of the radios of the robots and the PC was 

set to 1200bps to match the baud rate of the AM radios used.  

  The communication circuit consists of two AM radios, a transmitter and a 

receiver, on board of all robots and a radio board specially made to be connected to the 

serial port of the monitor PC. The chosen transmitter and receiver devices are the AMT21 

and AMRW4, each connected to different antennas to avoid interference. These devices 

comprise modulation, filtering, and amplification of the signals and their logic levels are 

computed internally, where logic “0” is indicated by the presence of radio energy in the 

specified frequency and “1” is indicated by the absence of energy. The transmitter radio is 

connected to the TXD pin and the receiver to the RXD pin of the 68HC11 and a specific 

routine was implemented to handle communication and deal with noise immunity.  

  All radios on board the robots work at the same frequency: 418MHz. 

Therefore, a communication protocol is necessary to avoid having more than two robots 

emitting at the same time. Each experiment had different objectives and, therefore, 

different communication protocols were developed. Figure 5.7 shows an example of one of 

these protocols used by the robots to communicate and exchange data and messages. The 

robot can be interrupted while executing the main program if a “U” is received by the 

radio. This event transfers the control to the GETDATA subroutine. “get byte” is a 

command that reads the serial port to get a byte. From this subroutine, if the received byte 

is “X”, it goes to SKIP1 and waits for an “Y” to go to SKIP2 or a “V” to ABORT. In 

SKIP2, it can be ordered to abort (“V”), end communication and go back to the main 

program (“O”), transmit the stored data (“N”), or enter the RECEIVE routine (“Z”). 

Receiving noise in both SKIP1 and SKIP2 will bring the robot back to GETDATA. After 

transmitting data, the robot waits for the reply of the receiving robot and can be ordered to 

transmit again if there was any problem in the received data (“N”) or to go back to the main 

program if the transmission was OK (“O”). After receiving data, if the check sum 

comparison is OK, it sends “O” to indicate the sender that the data was received without 

problems. If noise is detected, it sends “N” and goes back to GETDATA to receive the next 

transmission.  

  A stand-alone radio board is connected to the monitor PC to allow it to 

communicate with all the robots. It has a transmitter and a receiver radio connected to a 

MAX233 chip that converts the CMOS signals (0V and +5V) to the RS232 voltage levels  
 



 

 110 

(-15V and +15V). These are then connected to the RX and TX lines in the PC serial ports 

COM1 or COM2. Appendix B also includes the schematic diagram and a list of the 

components of this radio board.  
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Figure 5.7 – The communication protocol used by the robots. 
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6 PRELIMINARY EXPERIMENTS 
 

 

  This chapter reports experiments that tested the effects of different lifetimes 

(the duration of each generation); determined the best sensor configurations; tested the 

capacity of the evolutionary system to evolve the configuration of the sensors with different 

mutation rates; and evaluated the evolution of an unstructured navigation control circuit 

with a simple and a biasing fitness functions. All the experiments but the first one were 

performed in environments of medium complexity, because a simple one does not provide 

the necessary selection pressure to distinguish between similar configurations in short 

lifetimes. In addition, in a complex environment, the robots tend to get too close to each 

other and unfit robots collide too much into the fit ones, causing their fitness to drop even 

though their configuration is well-adapted to the environment.  

  This chapter also introduces the workspace where the experiments were run. 

The workspace forms the environment where the robots operate and are evolved by the 

developed evolutionary system, which trains the controllers to behave according to the 

selected task: collision-free navigation in a constrained space with obstacles. It describes 

how the workspace was arranged to support the experiments and collect data from the 

evolving robots.  

  The experiments described here are just a small portion of a greater number 

of tests that were performed to provide the necessary insights that allowed the development 

of the evolutionary system. The results presented are the most important ones, the ones that 

evaluated new ideas that proved essential to the design. Many other experiments were run, 

providing more complementary information to the development of the system. Although 

most of these experiments are not described here for the simple reason of space, the 

information they generated is always present in the discussions, comments, and 

justifications described in this chapter. Therefore, this chapter shows only the most relevant 

experiments, chosen for representing the typical case and, in specific situations, the ones 

nearest to the average result. Appendix C contains the average results of many experiments 
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that could not be included in the body of the thesis. For Chapter 6, it includes data related 

to Section 6.3. 

 

 

6.1 Environment Organisation 

 

  To guarantee the random initialisation of all the variables involved in the 

experiments, it is essential to make sure that the robots start an experimental run at a 

different random position every time. This was made possible by using a positioning 

program, written to generate a random position, orientation, and initial speed for all robots. 

This program is called INITIALISE.CPP and can be found in Appendix A. Table 6.1 

presents the resultant initialisation table produced by this program. Centre X, Y marks the 

position of the centre of the robot from the left lower corner of the workspace in 

centimetres. Orientation is the angle (between zero and 360o) between the robot and the 

lower edge. Speed M1 and Speed M2 are the initial speeds for both motors of the robots (a 

value between zero and 255 that is later normalised to the 32 speed levels of the robot 

motors). If the position of the robot, which has 20cm diameter, overlaps the position of any 

other robot or the edges of the environment, then the coordinates are automatically 

discarded and calculated again. 

  After the initial position and orientation is obtained, the robots are placed by 

hand at their corresponding location. The dimensions of the environment were fixed 

(250cm × 250cm) throughout all experiments, but the position and form of the obstacles 

may vary. To make it possible, many round obstacles of various sizes were manufactured 

together with a set of 1m-long wall blocks, which can be combined to form many different 

configurations, as shown in Figure 4.19. Figure 6.1 shows some of the available forms.  

Table 6.1 – Initial position and orientation of the robots in the environment. 
Robot ID Centre X 

(cm) 
Centre Y 

(cm) 
Orientation 
(0 to 360o) 

Speed M1 
(parameter) 

Speed M2 
(parameter) 

Robot 1 190 208 85 10 21 
Robot 2 112 145 70 223 118 
Robot 3 141 47 352 56 3 
Robot 4 166 179 87 61 144 
Robot 5 13 19 318 187 47 
Robot 6 194 122 60 112 193 
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  Unlike the position of the robots, the configuration of the environment is not 

determined randomly by a program. On the contrary, it was specified by the user when the 

experiment was set up. Even though some of the user’s prejudices would always interfere, 

it was set up as randomly as possible for each experiment. An automatic generator could 

not be used because it is very difficult to achieve a valid layout, where the robots would not 

be stuck in corners or small passages that would be seen as obstacles. The complexity of 

the walls and the obstacle configuration, however, play an important role in how evolution 

produces the controllers, so that selected experiments were performed just to evaluate this. 

Yet, many experiments were performed with the environment configuration unchanged. 

The reason for this was to concentrate effort on understanding the effects of other 

important characteristics, such as the mutation rate, crossover strategy, or the selection 

technique. 

 

6.1.1 Data Monitoring 

 

  The monitor computer keeps a complete data record of the robot 

chromosome, fitness value, and other important parameters that change in every generation 

 

Figure 6.1 – The different shapes of the obstacles and walls. 

 



 

 114 

for all experiments. This computer does not influence the evolutionary process and can 

only be used to start or stop the robots, avoiding making the user run after the robots one 

by one to switch them off! As the data exchanged among the robots varied from 

experiment to experiment, so did the software running in the monitor computer, but it 

basically listened and identified the transmitted data and created an ordered data store. So 

there is practically a different program for each experiment. They are all named 

EXPxx.CPP and are listed in Appendix A. Figure 6.2 shows a typical screenshot of the 

monitor computer generated by the program EXP20.CPP. 

 

Figure 6.2 – Data displayed on the screen of the monitor computer for one of 
the experiments at generation 24. 

 

  Data are obtained by the monitor computer and stored in a file called 

GENE.TXT. Every experiment in Appendix A has its own data file with this name. Figure 

6.3 shows an example of how a data file looks. Data are a sequence of hexadecimal codes, 

 
 Experiment: 20   Software: GEN20.asm 
 
 Parameters:   Reward increases Fitness by +1 after 1 second 
               Collision Penalty Decrement  = -8                            
               Turning for more than 5 seconds Penalty = -10 
               Mutation Rate = 1% 
   Speed Level: Fixed -- (1111111111) 
   Chromosome Size: 1050 bits 
 

Generation: 0024 
Fittest Robot: Robot 4  Fitness: 0059 
 

Robot 1 Fitness: 0034  Sensors Enable: 10001000      Speed Levels: 1111111111 
Robot 1 Chromosome (1st Block - 80 bits): 
 01000100010001000100000000010000000101000100010100000000000101000100010110001110 
 

Robot 2 Fitness: 0044  Sensors Enable: 10100000      Speed Levels: 1111111111 
Robot 2 Chromosome (1st Block - 80 bits): 
 01000100010101000101000100010001010101010001010101000001010101000000010111000100 
 

Robot 3 Fitness: 0051  Sensors Enable: 00001100      Speed Levels: 1111111111 
Robot 3 Chromosome (1st Block - 80 bits): 
 00000000000000010000010100000100010100010100000100000000010100000100010111110011 
 

Robot 4 Fitness: 0059  Sensors Enable: 10001100      Speed Levels: 1111111111 
Robot 4 Chromosome (1st Block - 80 bits): 
 00000000000001000100000101010000010101010000010000000101000101010001010110011000 
 

Robot 5 Fitness: 0023  Sensors Enable: 10001000      Speed Levels: 1111111111 
Robot 5 Chromosome (1st Block - 80 bits): 
 00000000010001000100000100010000010101010000010100000001000101000000010100011110 
 

Robot 6 Fitness: 0043  Sensors Enable: 00001000      Speed Levels: 1111111111 
Robot 6 Chromosome (1st Block - 80 bits): 
 00000000010001000100000100010000010101010000010100000001000101000000010100100100 
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beginning with “Gxx” that specify the current generation, followed by “a” that marks the 

beginning of the parameters of Robot 1 plus its chromosome, and so on. To save space, the 

bits in the robot chromosomes are grouped eight by eight and stored as bytes in 

hexadecimal.  

 

G01a10700101010000010001010100000001000000010001010100000011110001000000010 
010100000101010001010101000000000000010100000001000101010001010100010000010 
00010101010001000000000101010000010000001000001000010100000101000100014AFA 
8D27C014AFA8D27CD6BED87613DDB01F44A8EE8E09575000101000100042CFFFDFD 
 

. . . 
 
000100010000000100010100000100010000010100010000000010001000001010001000100 
000100000001010110001010000000000B3C17FB32DB789E72CF4B7F3153FABC0986719 
1597156463D6B8581F39720B55488038421100010100010001435D8BA2C13DB690235DA 

Figure 6.3 – Data obtained by the monitor computer stored in GENE.TXT. 

 

  Another program is then necessary to convert that information into a file that 

can be opened by Microsoft Excel. This software is called GRAFxx.CPP and is also listed 

in Appendix A for every experiment. It produces a file called GRAF.TXT. Figure 6.4 

shows an example of the output generated by the program GRAF20.CPP. Data is displayed 

in rows containing the generation (Gen), followed by the current fitness value of all robots 

(R1 to R6), plus the average fitness (Av) and the fitness of the fittest robot (F). Then, the 

information in this file can be displayed graphically. 

 

  Gen: 1 R1= 3928 R2= 3449 R3= 3922 R4= 4377 R5= 3390 R6= 4005 Av= 3845 F= 4377  
  Gen: 2 R1= 3671 R2= 4023 R3= 3525 R4= 3954 R5= 2806 R6= 3598 Av= 3596 F= 4023  
  Gen: 3 R1= 3899 R2= 4047 R3= 3893 R4= 4028 R5= 2966 R6= 2778 Av= 3601 F= 4047  
  Gen: 4 R1= 3870 R2= 3716 R3= 2861 R4= 4381 R5= 3824 R6= 2778 Av= 3571 F= 4381  
  Gen: 5 R1= 3411 R2= 3716 R3= 2777 R4= 3791 R5= 3852 R6= 2777 Av= 3387 F= 3852  
 

. . .  
 
  Gen: 147 R1= 4329 R2= 4364 R3= 4359 R4= 4354 R5= 4333 R6= 4360 Av= 4349 F= 4364  
  Gen: 148 R1= 4327 R2= 4327 R3= 4351 R4= 4097 R5= 4301 R6= 4327 Av= 4288 F= 4351  

Figure 6.4 – Data converted into a file called GRAF.TXT, containing the 
fitness of the robots for every generation. 
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6.2  Experiment 1: The Influence of the Lifetime 

 

  In this first experiment, the influence of the robot lifetime, or the duration of 

a generation, is analysed. To differentiate between individuals with the same degree of 

adaptation that produce similar fitness values, the duration of a generation needs to be 

carefully specified to submit these individuals to the right selection pressure [Sim99] 

[Wat99a]. A possible alternative is to increase the duration of the generations at the end of 

the evolutionary experiment, to introduce more selection pressure when the robots start to 

behave similarly. This experiment intends to perform a qualitative analysis of the effects of 

the generation time on the evaluation of the robots. 

 

• Aim of the Experiment 

  This experiment aimed to find the correct duration for a generation and to 

set reference standards to future experiments. To achieve this, the controller circuit was 

fixed and robots with different sensor configurations were tested continuously for a long 

period. Then, their fitness curves could be compared to indicate the optimal duration of a 

generation that is able to inflict the correct selection pressure and discriminate between two 

similar robots. During the evolutionary process, the robots were not allowed to reproduce 

and did not suffer any kind of mutation. The initial control circuit and morphology were 

preserved during the complete test.  

 

• Experimental Setting 

  To produce a fixed controller that could navigate the robot during the 

experiment, the neural network that was implemented as the navigation control circuit of 

the robots was trained to behave according to a hand-designed controller. This controller 

operates according to the following algorithm:  
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   - If (All Sensors=0) then Command = FF; 

  P If (Sensor2=1) then Command = TRS1; 

  r If (Sensor3=1) then Command = TRS1; 

  i If (Sensor4=1) then Command = TRS1; 

  o If (Sensor6=1) then Command = TLS1; 

  r If (Sensor7=1) then Command = TLS1; 

  i If (Sensor8=1) then Command = TLS1; 

  t If (Sensor1=1) then Command = TRS2;  

  y If (Sensor1=1 and Sensor4=1) then Command = TRS1; 

  + If (Sensor1=1 and Sensor6=1) then Command = TLS1; 

 

  In the experiment all sensors were set to operate at medium range, detecting 

obstacles closer than 15cm (see Figure 4.30). Sensor S5 in the back of the robot has not 

been connected to the neural network, so it does not matter if it is selected or not by the 

sensor module. The sensor positions around the robot are presented in Figure 6.5. 

  The neural network used four commands to control the motor drive module: 

Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); and Turn Right 

Short2 (TRS2). Front Fast means “move forward with maximum speed”. To turn left/right 

short, the robot moves with reverse direction in one of its motors (with both motors at 

maximum speed), causing a spin around its own axis. The difference between TRS1 and 

TRS2 is that in the later, the robot keeps turning for 200ms, while the duration of the other 
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Figure 6.5 – Position of the sensors on the robot and their angle in relation to 
the central line of the robot. 
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three commands is just one iteration (10ms more or less). Using only four output 

commands means that the neural network needs only two bits to encode them and four 

classes of discriminators to work. The neural network architecture shown in Sections 3.2.5 

and 4.1.1 is preserved and its configuration has four groups of seven neurons (m=4 and 

n=7) with two inputs each (the neuron size is four bits). Figure 6.6 shows how this 

configuration is connected to all seven sensors. Differently from other experiments, the 

interconnections between sensors and neurons are fixed, not random. Each neuron has four 

bits of memory to store its contents. The neural network has 28 neurons with a total 

memory size of 112 bits. This would also be the size of the corresponding bit string in the 

chromosome, if the neural network was to be evolved. The winner-takes-all block chooses 

the command that has more active neurons and encodes it with two bits, before sending it 

to the motor drive module. Other configurations are also possible, but this was the smallest 

network amongst the tested ones that could learn, without saturating, the right command 

for all possible 128 input combinations that the controller can face. 

  The neural network was trained for all input possibilities that it can face: for 

seven 1-bit sensors, it has 128 possibilities. For each input vector (0000000 to 1111111), 

the current output of the hand-designed controller was calculated and “1” was written to all 

neurons of the same class (the command output from the hand-designed controller) in the 

position addressed by the input vector. When the last input vector was trained, the network 

was able to respond exactly as the hand-designed controller. The contents of the neurons 

were not modified again in the experiment.  

  The speed of both motors was fixed at the maximum setting (Vmax = 32), 

enabling the robots the move at 0.26m/s. As the controller configuration and speed levels 

were fixed, the only feature that varied was the selection of the sensors. The sensor module 

can enable or disable each sensor according to two bits stored in the chromosome. For each 

robot tested, these bits were manually initialised so that different sensor configurations 

could be tested in the same experiment. 

  The experiments were run in two different environments: a simple one, with 

just the outer walls; and a complex one, containing many round obstacles of different sizes. 

Figure 6.7 shows the configuration of the simple environment and Figure 6.11 shows the 

complex one. All experiments were run for 30 minutes, so that the results could be 

compared.  
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Figure 6.6 – Configuration of the neural net with four groups of seven neurons. 

 

  The data in these experiments were sampled by the program EXP01.CPP 

and converted to a Microsoft Excel file by the program GRAF01.CPP, both written 

specially for this experiment using the Borland C++ environment version 5.01. These 

programs are listed in Appendix A. 
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  The strategy for rewarding and punishing the robot fitness function for every 

test in this experiment was:  
 

   1- Start with 4096 points; 

   2- Reward: increase fitness by 5 points every 3 seconds of forward 
movement; 

   3- Punishment: decrease fitness by 10 points every collision. 
 

  Each robot is given 4096 points ($1000 in hexadecimal) at the beginning of 

the test. According to the reward rule, the maximum that a robot can score if it does not 

crash during the 30 minutes of the test is 7096 points. Therefore, it can be observed in the 

following charts that even the best-adapted robots still collide sometimes.  

  The robot sensors can be enabled by fixing their control bits in the 

chromosome. In this way, the corresponding pair of bits in the chromosome is set to “11” 

to disable the sensor, and “00” to enable it (see Section 4.3.5). The legend of the charts 

indicates the colour of the curve of the robot that has the corresponding sensor(s) enabled. 

For example, S1,S2 indicate that the sensors S1 and S2 are enabled, and all the others 

disabled. The corresponding 16 bits in the chromosome are: 11-11-11-11-11-11-00-00 

(observe that the order of the sensor control bits is: S8-S7-S6-S5-S4-S3-S2-S1). The 

position of the sensors in the robot is indicated in Figure 6.5. 

 

Figure 6.7 – Configuration of the simple environment for the experiments in 
this section. 
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6.2.1 Experiment 1.1: the Simple Environment 

 

  To facilitate comparison of the curves in the tests with the simple and 

complex environments, the robots with the same sensor configurations are represented by 

the same colours. Even in this simple environment, where there are no obstacles, the 

interaction among the robots was intense, causing many collisions [Set97]. This happened 

because a fit robot, with the most important sensors enabled, for example, can be crashed 

into by a “blind” robot, which has all sensors disabled. Therefore, the results would be 

different if the robots were tested alone in the environment, but this will not be the case in 

the developed evolutionary system, so the presence of other unfit robots is very important 

for evolution and must be considered. Figure 6.7 shows the configuration of the simple 

environment. Table 6.2 presents a summary of the settings for this experiment. 

 

Table 6.2 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +5 points every 3s moving forward 

–10 points each collision 
Initial Fitness Value: 4096 points 
Maximum Fitness Value: 7096 points 
Generation Time: Population fixed at the first generation: 30 minutes 
Mutation Rate: Not present 
Speed Levels: Fixed at maximum speed (Vmax=32) 
Sensors Enable: All sensors but S5 can be enabled independently 

S5 is permanently disabled 
Navigation Controller: Fixed Neural Network (m=4, n=7, neuron size=4 bits) 
Software: EXP01.CPP and GRAF01.CPP  (in Appendix A) 

 

• Results 

  Two tests were performed with the simple environment. In the first one, 

Robot 1 had the sensors S1 and S4 enabled; Robot 2 had S1 enabled; Robot 3 had S1, S4 

and S6; Robot 4 had S3; and Robot 5 had S1, S3 and S7 enabled. Robot 6 was not used in 

the test. Figure 6.8 shows the fitness results from the first test. 

  The second test was performed with all six robots. Robot 1 had sensors S1, 

S2, and S8 enabled; Robot 2 had S4 and S6; Robot 3 had S3 and S7; Robot 4 had S2 and 

S6; Robot 5 had S2 and S8; and Robot 6 had the sensors S2 and S7 enabled. Figure 6.9 

shows the curves of the second test. 
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• Discussion 

  As expected, both charts showed that robots with two sensors collided less 

than robots with just one of their sensors active. In the first test (Figure 6.8), the robots 

with only S1 and S3 performed less fit than S1,S4,S6, S1,S4, and S1,S2,S7. Contrary to 

expectation, S3 behaved better than S1 in this experiment. This has happened because S3 

can actually pick some IR reflection from the front as well as from the left side of the 

robot, and, in this way, protected the robot from colliding into a greater range of possible 

obstacles. 

  The robots with S1,S4,S6, and S1,S3,S7 were able to avoid most of the 

obstacles with almost full cover of their surroundings. As expected, S1,S4 was not better 

than S1,S4,S6 or S1,S3,S7, and the later was the best configuration in this test. This can be 

explained by the fact that the sensors S3 and S7 with an angle of 60o are better in detecting 

obstacles than S4 and S6, with an angle of 90o. Nevertheless, the robots with sensors 

S1,S4,S6 and S1,S3,S7 had roughly the same behaviour, showing that the combination of 

S4 and S6 is almost as effective as S3 and S7.  

  Figure 6.8 also showed that having only two sensors is not a major problem 

in a simple environment, since the robots can spot the walls in most situations with only 
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Figure 6.8 – Experiment 1.1a: Comparison of five different sensor 
configurations evaluated in the simple environment during 30 minutes. Both 
controller and morphology are fixed during the experiment. The tested 
configurations are: S1,S4; S1; S1,S4,S6; S3; and S1,S3,S7. 
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one or two sensors. The major cause of collisions in this case was the approach of another 

robot. This demonstrates the importance of using real robots rather than simulation, since 

this sort of interaction would be difficult to model [Set97] [Jak98b].  

  Figure 6.9 shows that robots that only have lateral sensors (S4 or S6) could 

not sense obstacles in their front and hence gave bad performance. The figure suggests that 

sensors in the front are more important than lateral ones. S3,S7 performed better than S4,S6 

in the figure, since the robot had the ability to sense obstacles in the front as well as lateral 

ones. S2,S7, S2,S8, and S2,S6 showed excellent performance, behaving roughly in the same 

way until more or less 16 minutes and 30 seconds, when S2,S7 started to improve on the 

others. This can be explained by the fact that robot S2,S7 was running out of battery and 

moving slower than the other two. The other two robots had fully charged batteries and 

were running faster than S2,S7. The battery charge is an important factor. If the robot is 

moving faster, it will have less time to manoeuvre after spotting an obstacle and has a 

greater chance of colliding. This was observed here for the first time and since then, all 

robots in future experiments had their batteries equally charged at the start of the tests to 

prevent this effect in their evaluation. 

  Figure 6.9 shows that, against what was expected, the robot with sensors S1, 

S2, and S8 active had the worst performance. This exemplifies how an evolutionary system 
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Figure 6.9 – Experiment 1.1b: Comparison of six different sensor 
configurations evaluated in the simple environment during 30 minutes. Both 
controller and morphology are fixed during the experiment. The tested 
configurations are: S1,S2,S8; S4,S6; S3,S7; S2,S6; S2,S8; and S2,S7. 
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can contribute to robot design, where the general idea would be fitting as many sensors as 

possible to the robots. In this case, however, the experiment showed that there is a problem 

with the S1,S2,S8 configuration and a conflict between sensors S1 and S8 was observed. It 

only happens because of the way the controller was designed.  

  There is an instruction (If (Sensor1=1) then Command = TR2) in the 

algorithm of the hand-designed controller (see experimental settings) that orders the robot 

to turn right if sensor S1 is activated. As S1 and S8 are close to each other, in the front of 

the robot, sometimes in the corners both sensors can sense an object at the same time and 

as sensor S1 would tell the robot to turn right, sensor S8, in the other hand, would make it 

turn left with a conflicting command. Figure 6.10 shows when this interference can 

happen. The infrared beam from sensor S8 can reflect back to the sensor (the regular 

arrows in the figure), but can also be detected by another sensor, such as sensor S1 in the 

figure. The same interference can happen between sensor S1 and sensor S2, but as both of 

them turn the robot to the right, it does not generate a problem. As the command line of 

sensor S1 has greater priority in the algorithm than the command line of sensor S8, if 

sensor S1 detects interference, it will order the robot to turn right. Then, sensor S8 orders it 

to turn left, only to be turned right again by another interference, causing the robot to 

oscillate many times until it escapes that trap in the controller design. Every time an 

evolutionary system is designing a robot controller for an environment where this problem 

S2 S1 S8

 

Figure 6.10 – The reflected infrared beam (regular arrows) from one sensor 
interferes (dotted arrow) with another. 
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can happen, that configuration of sensors will have a lower fitness value, and will be 

discarded as a good solution or a controller will be produced that can deal with this 

situation.  

 

 

6.2.2 Experiment 1.2: the Complex Environment 

 

  The robots were also tested in a complex environment. Figure 6.11 shows 

how the complex environment was obtained by including many round obstacles of different 

sizes. The obstacles increase selection pressure because there are more collision 

possibilities and the population needs to manoeuvre much more. This increases the 

“temperature” of the system, since the population is much more agitated. Since the 

selection pressure was increased by the addition of obstacles, less time is expected to 

differentiate between fit and unfit sensor configurations. The same scale from the charts of 

the simple environment was preserved to facilitate comparison between the performances 

of the robot with the same sensor configuration. The same colours were also preserved 

from the curves of the previous charts, allowing the robots using the same sensors to be 

 

Figure 6.11 – Configuration of the complex environment for the experiments in 
this section. 
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displayed with the same colours. All robots that were tested for the simple environment 

were also tested in the complex one. This experiment, though, tested some other 

configurations as well. As only the configuration of the environment changed, the same 

experimental settings presented in Table 6.2 can also be applied here. 

 

• Results 

  This section presents four tests with the complex environment. The first, 

shown in Figure 6.12, presents the same sensor configurations of Figure 6.9. The second 

test was performed with six robots. Two of them, Robot 2 using sensor S1 and Robot 5 

using sensor S3, were tested before in the simple environment in Experiment 1.1a. Other 

configurations were tested by Robot 1, which had all sensors disabled; Robot 3 using only 

S4; Robot 4 using S6; and Robot 6, which had only sensor S7 enabled. Figure 6.13 shows 

the curves of this second test. 

  The third test was performed with five robots. Two of them, Robot 1 using 

sensors S1, S3 and S7 and Robot 2 using sensors S1 and S4, were tested before in the 

simple environment in Experiment 1.1a. Other configurations were tested by Robot 3 

having sensors S1 and S3 enabled; Robot 4 using only S1 and S6; and Robot 1, which had 
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Figure 6.12 – Experiment 1.2a: Comparison of six different sensor 
configurations of Experiment 1.1b now tested in a complex environment 
during 30 minutes. Both controller and morphology are fixed during the 
experiment. The tested configurations are: S1,S2,S8; S4,S6; S3,S7; S2,S6; 
S2,S8; and S2,S7. 
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the sensors S1 and S7 enabled. Figure 6.14 shows the curves of the third test. The fourth 

test in Figure 6.15 shows the performances of five different sensor configurations that are 

combinations of sensor S1 with some other sensors.  

 

• Discussion 

  Figure 6.12 shows a greater selection pressure than the one experienced by 

the robots in Experiment 1.1b. It indicates that S1,S2,S8 and S4,S6 were still the worst 

configurations, colliding even more in this more complex environment. S2,S7 was still the 

best one, proving the power of the frontal sensors in spotting the obstacles in the way of the 

robot.  

  Generally, all performances were degraded by the inclusion of more 

obstacles in the way of the robots. S2,S8 repeated a good performance, but S2,S6 dropped 

to fourth place, behind S3,S7. This happens probably because of S6 deficiency in detecting 

the obstacles that approach the robot, if compared to S7. This showed once more that a 

more forward placement of the sensors, such as S3 and S7, or even as S2 and S8, is better 

than a more lateral one, such as S4 and S6. 
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Figure 6.13 – Experiment 1.2b: Comparison of six different sensor 
configurations evaluated in the complex environment during 30 minutes. 
Both controller and morphology are fixed during the experiment. The tested 
configurations are: All off; S1; S4; S6; S3; and S7. The configurations S1 and 
S3 were tested before in Experiment 1.1a. 
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  Figure 6.13 compared single sensor solutions to a “blind” robot, which had 

all its sensors disabled. Robot 1, using S1, and Robot 2, using S3, were evaluated before in 

the simple environment of Experiment 1.1a (see Figure 6.8). S3 showed roughly the same 

performance even with the addition of more obstacles, but S1 performed better. Actually, 

S1 performance in this experiment was more consistent with its sensing capability. It 

showed that a frontal sensor is more important than a lateral one when the environment is 

full of obstacles, and its bad performance in Experiment 1.1a was probably because of its 

fully charged battery, which made it travel faster.  

  Figure 6.14 shows three similar configurations differing only by the 

presence of sensors S3 or S7: S1,S7; S1,S3; and S1,S3,S7. The robot that had three sensors 

activated, understandably, had better performance than S1,S7 and S1,S3, which had roughly 

the same fitness value, indicating that a robot with a right sensor has the same probability 

of success as a robot with the corresponding left sensor. The same can be said of S1,S4 and 

S1,S6 that had similar performances, with S1,S4 colliding much more than in the previous 

experiment in the simple environment. 

  Figure 6.15 shows a tight competition of three sensor configurations: 

S7,S6,S4,S3,S2,S1; S7,S6,S3,S1; and S7,S3,S2,S1. This once more illustrated the 
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Figure 6.14 – Experiment 1.2c: Comparison of five different sensor 
configurations evaluated in the complex environment during 30 minutes. 
Both controller and morphology are fixed during the experiment. The tested 
configurations are: S1,S3,S7; S1,S4; S1,S3; S1,S6; and S1,S7. The 
configurations S1,S3,S7 and S1,S4 were tested before in Experiment 1.1a. 
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importance of S7 and S3 angled 60o in both sides of the robot. S7 and S3 showed again 

superior to S6 and S4, which form a 90o angle with the robot central line. The S6,S4,S3,S1 

curve started to show a lower performance after three minutes, suggesting that a shorter 

generation time would not be enough to make any distinction between these two groups of 

sensors. The sensor configuration S4,S3,S2,S1 was very powerful, but not as much as the 

others. Its curve started to differ from the others in the first minutes of the experiment, 

suggesting that a short lifetime would be enough to differentiate among these simple sensor 

combinations and richer ones, containing at least one sensor in the front, and one at each 

side of the robot. 

 

 

6.2.3 Discussion of the Experimental Results 

 

  Evolution can be used to determine the best sensor configuration for the 

population of robots, since it was possible to differentiate between fit and unfit sensor 

configurations in the experiments. It was shown that the robots with just a few well-placed 
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Figure 6.15 – Experiment 1.2d: Comparison of five different sensor 
configurations evaluated in the complex environment during 30 minutes. 
Both controller and morphology are fixed during the experiment. The tested 
configurations are: S7,S6,S4,S3,S2,S1; S7,S6,S3,S1; S6,S4,S3,S1; 
S7,S3,S2,S1; and S4,S3,S2,S1.  
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sensors performed better than the ones with conflicting, badly-placed sensors. As fit sensor 

configurations had very similar curves according to the selected fitness function, it was 

observed that this function could not discriminate between some of the best configurations, 

even after 30 minutes of evaluation. The implication of this is that using these settings, the 

optimal solution may never be found by the evolutionary technique with this fitness 

evaluation function. However, an optimal solution may not even exist for this problem, 

since even different battery charges can influence the performance of some solutions more 

than the configuration of their sensors. Small fitness differences (e.g., less than 100 points) 

after 30 minutes must be regarded as the same performance. 

  The aim of this experiment was to judge the amount of time that can safely 

discriminate between a good and a bad performance. It was observed that a generation that 

lasts at least one minute is enough to differentiate between fit and unfit sensor 

configurations. However, five or ten minutes may be necessary to choose the best among 

similar good solutions. In this case, an evaluation strategy that considers the gradual 

increase of the duration of the generations towards the end of the evolutionary experiment 

seems very attractive. This permits a better evaluation of the fitness of the solutions, where 

the robots must navigate for many minutes until the best performances can be selected.  

  This experiment showed so far that there might not be an optimal solution to 

the best sensor configuration. The scores of the best sensor configurations were very close 

and if a short generation time is applied, the noise of a real embedded evolutionary system 

will probably obscure these scores, making it very difficult, if not impossible, for evolution 

to find a definitive solution. What can be expected, however, is an evolutionary process 

that will converge to a group of best solutions, containing at least three sensors, one frontal, 

and two lateral ones. A short lifetime, and even a much longer one, will not apply the 

necessary selection pressure to differentiate among them. If mutation is active, the final 

result will probably be a population where all these best solutions coexist and keep 

reappearing in the population every now and then.  
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6.3 Experiment 2: Evolving the Sensor Configuration 

 

  In this experiment, an embedded evolutionary system was allowed for the 

first time to evolve the morphology of a robot population. To date, no other author has 

attempted this using a fully embedded evolutionary controller [Pol00]. Evolution could 

manipulate the specific genes in the robot chromosome that define the sensor 

configuration: the first eight pairs of bits. By evaluation, selection, and recombination, 

evolution was expected to be able to select the best sensor configuration to navigate the 

robots according to a small variation of the hand-designed controller described in 

Experiment 1. This hand-designed controller operated according to the following 

algorithm: 

   Left = Right = 0; 

   - If (Sensor4=1) then Left = Left + 1; 

  P If (Sensor3=1) then Left = Left + 1; 

  r If (Sensor2=1) then Left = Left + 1; 

  i If (Sensor6=1) then Right = Right + 1; 

  o If (Sensor7=1) then Right = Right + 1; 

  r If (Sensor8=1) then Right = Right + 1; 

  i If (Sensor1=1) then Command = TRS2; 

  t If (Left > Right) then Command = TRS1; 

  y If (Left = Right) then Command = FF; 

   If (Left < Right) then Command = TLS1; 

  + If (Sensor1=1 and Sensor4=1) then Command = TRS1; 

   If (Sensor1=1 and Sensor6=1) then Command = TLS1; 

 

  The Left and Right variables were created to prevent the robot from turning 

left when more left sensors are detecting obstacles than the right sensors, as it was 

happening in the previous hand-designed controller from Experiment 1. This did not 

happen in this controller, since the robot will turn to the side where fewer sensors are 

detecting obstacles. 

  In this experiment, all sensors could be enabled by their controlling pair of 

bits in the chromosome. It will be recalled that both controlling bits need to be “0” to 

enable the corresponding sensor. Any other combination (e.g., “01”, “10”, and “11”) 
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disables it. Therefore, to select sensors S1 and S2 only, the corresponding 16 bits must be 

for example 01-11-10-10-11-01-00-00. Observe that the first pair of bits in the 

chromosome controls sensor S8, followed by S7, S6, S5, S4, S3, S2, and S1. The phenotype 

with only sensors S1 and S2 enabled has many corresponding genotypes. As three 

combinations of both control bits disable each one of the other six sensors (e.g., “01”, “10”, 

and “11”), this phenotype can be produced by 36 or 729 genotypes. This genetic system is 

presenting some neutrality [Ler76] and the reason for this is that the sensors have a higher 

probability (75%) of being disabled than enabled. This helps co-evolving the sensor 

configuration and the controller, since once a sensor is enabled it gives more time for the 

controller to learn how to use it before another sensor appears, forcing the controller 

configuration to adapt again [Shi00].  

 

• Aim of the Experiment 

  This experiment aimed to test if the embedded evolutionary controller 

described in Chapter 4 was able to evolve part of the robot morphology: the sensor 

configuration. To achieve this, the controller circuit was fixed by training the neural 

network, the same architecture used in the previous experiment, to behave according to the 

hand-designed controller described above. The neural network was shown in Figure 6.6 

and was trained as described in Experiment 1. It used the same four commands to control 

the motor drive module: Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 

(TRS1); and Turn Right Short2 (TRS2). 

 

• Experimental Setting 

  A population of robots with different sensor configurations was evaluated in 

30-second generations. The robots were allowed to reproduce and mutate, but only with the 

first 16 bits that enable the sensors. The initial control circuit was preserved during the 

complete experiment.  

  The chosen selection strategy for this evolutionary experiment was:  
 

!" Select the robot with the highest fitness value in the generation to breed 

with all other robots and survive to the next generation. 
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  This strategy means that the robot with the highest fitness is selected, and 

will send its chromosome to the other five robots. Each one of the remaining five robots 

then combines its own chromosome with the one received from the best robot to produce a 

resultant chromosome. Next, the bits of this resultant chromosome are randomly selected to 

be mutated (logically inverted) according to the selected mutation rate. Then, the remaining 

five robots reconfigure themselves with the mutated chromosomes and the robots continue 

in the next generation. This tries to make sure that in the next generation the best fitness 

will be at least similar to the present one, since, at least, the surviving best robot has the 

same chances of repeating its good performance. 

  In the crossover phase, where the two chromosomes are combined to form a 

resultant offspring, each bit is randomly chosen from the corresponding location in the 

chromosome of the parents. Then, in the mutation phase, a random number r is generated 

between zero and 100 for each bit in the chromosome, and the bit will be flipped (from “0” 

to “1”, or “1” to “0”) each time the r is smaller than the mutation rate. 

  Sensor S5 in the back of the robots has not been connected to the neural 

network, so it does not matter if it is enabled or not by the sensor module. In this 

experiment, all sensors have only one bit of precision and they were set to work at medium 

range (see Figure 4.30). The velocity of the motors in this experiment was again set to the 

maximum speed. 

  The selected fitness function, for every test in this experiment was:  
 

   1- Start with 4096 points; 

   2- Reward: increase fitness by 5 points every 1 second of forward 
movement; 

   3- Punishment: decrease fitness by 10 points every collision. 
 

  The maximum that a robot can score if it does not crash during the 30 

seconds of the generation is 4246 points. Figure 6.16 shows the environment where this 

experiment was run. It was built with medium complexity, containing a few round 

obstacles of different sizes. 

  This experiment selected the best possible combinations of the eight sensors 

S1, S2, S3, S4, S5, S6, S7, and S8. The number of possible combinations of the eight 

sensors is: 28 = 256 combinations. It is a relatively small search space. Hence, fast 

convergence was expected, since many combinations present very similar good 

performances (as demonstrated in Experiment 1) with fitness values near to the maximum 
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score. For all four tests in this experiment, the population was initialised with all sensors 

disabled (i.e., with “10-01-10-01-10-01-10-01” written to the chromosomes of all robots). 

“10-01-10-01-10-01-10-01” was chosen instead of “11-11-11-11-11-11-11-11” to include 

more variety in the chromosomes (i.e., a chromosome containing different combinations of 

“0” and “1” has more variety of genes than one with all bits set to “1” or “0”, because it can 

produce more different combinations). Therefore, it is easier to produce a pair of zeros, 

enabling the sensor. The system would have to rely entirely on mutation to produce zeros, 

if the combination “11-11-11-11-11-11-11-11” had been chosen. Table 6.3 presents a 

summary of the settings for this experiment. 

 

Table 6.3 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +5 points every 1s moving forward 

–10 points each collision 
Initial Fitness Value: 4096 points 
Maximum Fitness Value: 4246 points 
Generation Time: 30 seconds 
Mutation Rate: 0%, 5%, 10%, 20%, and 40%  
Speed Levels: Fixed at maximum speed (Vmax=32) 
Sensors Enable: All sensors can be enabled independently 
Navigation Controller: Fixed Neural Network (m=4, n=7, neur. size=4 bits) 
Initial Sensor Configuration: “10-01-10-01-10-01-10-01” 
Initial Speed Configuration: “1111111111” 
Initial Controller Configuration: Fixed from trained neurons. 
Software: EXP07.CPP and GRAF07.CPP  (listed in Appendix A) 

 

Figure 6.16 – Configuration of the environment used in this experiment. 
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• Results 

  This experiment shows three charts representing three different evolutionary 

experiments, run in the same environment with six robots and different mutation rates: 0%, 

5%, 10%, 20%, and 40%. To facilitate comparisons, all five evolutionary experiments run 

for 25 generations. Figure 6.17 shows the first evolutionary experiment with mutation rate 

of 5%. A good solution with a high fitness value was found by evolution much faster than 

expected. After the first two or three generations, a solution that scored at least 90% of the 

total possible points was found in all four evolutionary runs. The fitness values of the 

population dispersed more as the mutation rate increased. 

  Figure 6.17 shows that Robot 4 was the best robot in this experiment at the 

end of the second generation, and was selected to breed with all other robots. It was 

preserved to the third generation with the same sensor configuration, but could not repeat 

the same good performance. It is a good example of how much noise and interactions with 

other robots and different obstacles can influence the performance of the same robot, when 

it is tested again for the same period [Set97]. Robot 6, in the same figure, from generation 
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Figure 6.17 – Experiment 2.1: Evolution of the sensor configuration in an 
environment of medium complexity, mutation rate of 5%, sexual 
reproduction, and generation time of 30s. The controller and speed levels are 
fixed during the experiment. Here, Robotn is the fitness of Robot n in the 
generation. 
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5 to 6, and 6 to 7, was selected as the best robot. This robot had a better sensor 

configuration, and was able to repeat the same good performance twice.  

  During the experiments, the most important factor that interfered with the 

performance of the system was the stochastic noise arising from the interactions of real 

physical systems. The encountered noise in the experiments was:  
 

1- The infrared signals reflected by the walls in every direction (e.g., two point 

reflection from one emitter in two walls and back to another sensor receiver);  

2- The dust on the floor can make the wheels slide differently, sometimes turning the 

robot differently than expected – this generates problems in performing 

programmed high-level actions, since a slide or two during the manoeuvre may 

take the robot away from the expected final position; 

3- Although exhaustively refined, the sensors are still affected by environment 

conditions (such as intensity of illumination, colour of the walls, texture of the 

obstacles and floor, etc); 

4- The inertia of motors and body, which vary with the robot speed causing 

difficulties to perform the expected turning routines. 
 

  In the next experiment, shown in Figure 6.18, the mutation rate was fixed at 

0%, so that it was possible to analyse how much noise and interactions with other robots 

and obstacles can influence the performance of the robots [Set97]. All conditions from 

Experiment 2.1 were preserved with the exception of the new mutation rate and that 

instead of initialising the population with all sensors disabled, the robots now were 

randomly initialised. This was necessary because since mutation was set to 0%, the 

population relied only in crossover to produce new individuals. To do this, random bits 

were written to the 16 bits related to selecting the sensor configuration. As the population 

worked with a limited variety of genotype, the smaller phenotype range resulted in fast 

convergence. 

  Figure 6.19 shows a summary of the performance of the five mutation rates 

of 0%, 5%, 10%, 20%, and 40%, overlapping two curves for each mutation, one displaying 

the average fitness of all robots, and the other displaying the fitness of the best robot in 

each generation. This last curve was obtained by plotting the fitness of the winner robot, 

the one selected to reproduce with all the others, for every generation. Five colours were 
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used, one for each mutation rate. Although the same colour was used to display the curves 

of the average fitness and the best robot, there is no possibility of mistaking them, since the 

best robot curve (m%Best, in the chart) is well above the average curve (m%Average, in the 

chart) for all five experiments. By the indicated mutation rate (m%), it is possible to 

identify to which chart the curves belong. Higher mutation rates introduce variation in the 

population and force the individual fitness to search the fitness landscape for other local 

optima. With these rates, the population was expected to present very different fitness 

values in each generation, even late in the evolutionary experiment. 

 

• Discussion 

  Figure 6.18 shows that the population fitness still oscillates even without 

mutation. This represents all the noise in the system together with the interactions among 

the robots and among the robots and different obstacles for every generation. It generates a 

high degree of uncertainty in the process that would be difficult to simulate, highlighting 

once more the importance of employing a real physical system in evolutionary 

computation.  
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Figure 6.18 – Experiment 2.2: Evolution of the sensor configuration in an 
environment of medium complexity, mutation rate of 0%, sexual 
reproduction, and generation time of 30s. The controller and speed levels are 
fixed during the experiment. Here, Robotn is the fitness of Robot n in the 
generation. 
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  For the experiment with 0% mutation, the random values that initialised the 

population were: 0,0,S6,0,0S3,S2,S1;  S8,0,S6,S5,S4,S3,S2,0;  S8,S7,0,0,S4,S3,0,S1;  

S8,S7,0,S5,S4,S3,0,0;  S8,S7,S6,0,S4,0,S2,S1;  and S8,S7,S6,S5,S4,0,S2,0. Sensor S5 is not 

connected to the neural network, so it did not matter if it was enabled or not. It is important 

to observe that initialised in this way, the population had the potential to generate any 

combination of the sensors. The system converged to S8,0,S6,0,S4,S3,S2,0 in generation 

16, so that all members of the population held this configuration to the end of the process. 

Therefore, the different performances of the same configuration from generation 17 on 

showed the influence of uncertainty on the robots. This experiment showed high fitness 

values right from the beginning of the process (generations 1 and 2). This happened 

because the randomly initialised configurations gave better performances than the robots 

with all sensors disabled from the experiments with non-zero mutations. 

  As predicted by Experiment 1, there was no optimal solution, since the best 

robot place was occupied by a series of different candidates with different sensor 

configurations, almost in every generation until the end of the experiment. Robots 6 and 4 

were the best ones in the chart of Figure 6.17, repeating consistent performances all the 
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Figure 6.19 – Experiment 2.3: Comparison of five mutation rates (0%, 5%, 
10%, 20%, and 40%) for the evolution of the sensor configuration in an 
environment of medium complexity, with sexual reproduction, and 
generation time of 30s. Here, Average is the average fitness of all robots in 
the generation and Best is the fitness of the best robot in the generation for 
the respective mutation rate. 
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way until the last generation. The experiment with 10% mutation, in Figure 6.19, showed a 

slightly more dispersed population according to the fitness value, but the system behaviour 

was stable again, producing a group of well-adapted robots right after the fifth generation. 

Again, the best robot place was occupied by different sensor configurations during the 

process.  

  The experiments with 20% and 40% mutation, show a very disperse 

population, but the fitness of the best robot is nevertheless as high as in the previous charts. 

This demonstrated that preserving the best robot, allowing it to survive to the next 

generation, was a good idea, which could keep the fitness of at least the best robot high 

during the whole process. A high mutation tends to degrade substantially the average 

performance, so the best robots that are selected to survive and do not suffer mutation have 

more chances of dominating the population, being selected as the best robot most of the 

time. 

  From the comparison of the average results shown in Figure 6.19, it is 

possible to observe that the lower mutation rates of 0% and 5% had the best averages 

(displayed in pink and red in the chart), the ones nearest to the best robot curve. As 

mutation increased, the average fitness reduced and the corresponding curves became more 

distant from the best robot fitness. Therefore, the distance between the average fitness 

curve and the best robot fitness curve can tell how dispersed the population was, or give an 

idea of the mutation rate used.  

  It can be observed in Figure 6.19 how the 0% mutation curves started with 

high fitness in the first generations, while the others climbed from much lower values. The 

rise of the average curves showed how the population got progressively better as the 

generations passed and evolution gradually tuned their sensor configurations.  

 

 

6.3.1 Discussion of the Experimental Results 

 

  It can be concluded by the performed experiments that the implemented 

evolutionary system can produce a better population out of evaluation, selection, and 
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recombination. It was able to evolve the sensor configuration of the robots in real time, in a 

physical environment with real robots. The aim of this experiment was therefore satisfied.  

  From the total search space of 28 sensor combinations, the evolutionary 

system was not able to find an optimal solution, but many efficient solutions containing at 

least three sensors, one in the front and two lateral ones in each side of the robot, were 

produced. The evolutionary system could not choose one amongst these solutions, which 

were alternately selected as the winner as the system tried to converge in the end of the 

process. This fact was predicted by Experiment 1, where it was shown that it was very 

difficult to differentiate the good solutions and establish a winner even in relatively long 

generation times of ten minutes or more. 

  This experiment established a relationship between mutation rate and the 

distance between the average fitness and the best fitness curves. It demonstrated that a 

higher mutation rate increases this distance, although some of this distance is due to noise 

and the interactions among the robots and obstacles, as it can be seen in Figure 6.18. It was 

shown that this uncertainty might never allow these two curves to meet in a real physical 

environment such as the one used for development. 

 

 

6.4 Experiment 3: Evolving an Unstructured Controller 

 

  In this experiment, the embedded evolutionary system attempts to evolve a 

completely unstructured control circuit (i.e., a controller that has an unconstrained logic 

circuit, which can produce any binary function of its inputs). The eight sensors were 

permanently enabled and the speed of the motors was fixed at maximum speed. Therefore, 

the navigation control circuit was the only one under evolutionary control. This experiment 

did not use a structured, modular neural network (which can produce limited functionality, 

since only the contents of the neurons can be modified) to implement the navigation 

control circuit as shown in the previous experiments. Instead, it attempted to evolve an 

unstructured, undefined architecture, which was called the black box [Sim94] [Bot96] 

[Sim96].  
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  Evolving unstructured architectures for robot control has been attempted 

before by Thompson in [Tho94c] [Tho96a] [Tho96c], where he evolved a dynamic state 

machine to drive a small mobile robot and in [Tho96b], where he tried to evolve an FPGA 

connected directly to the motors to produce a pulse modulated signal. Both attempts 

employed simulation, and one real robot to evaluate the solutions. To date, no work has 

been reported where the evolution of an unstructured controller has been attempted with a 

real robot population in real time. Therefore, this experiment provides the first results 

obtained from the evolution of an unstructured control architecture by an embedded 

evolutionary system. 

  In this experiment, all sensors have only one bit of precision and they were 

set to work at medium range. Differently from the previous experiments, sensor S5 in the 
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Figure 6.20 – The Black Box controller connected to eight sensors with 1-bit 
resolution. It produces a 3-bit signal to command the motor drive module 
according to the encoded commands. “111” is not used and is interpreted as 
FF by the motor drive module. 
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back of the robots has been connected to the black box controller, and this time it can be 

used as any other sensor by the evolvable controller. 

  The controller used seven commands to control the motor drive module: 

Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); Turn Right Short2 

(TRS2); Turn Left Short2 (TLS2); Turns Right Long (TRL); and Turn Left Long (TLL). 

These first four commands were explained in Experiment 1. In TRL and TLL, the robot 

turns right/left by breaking one wheel and turning around it with the other one in maximum 

speed in a wide arch of one wheel span of diameter. Figure 6.20 shows how the black box 

is connected to the sensors and the motor drive module.  

  The concept of the black box controller started when Simões et al. published 

a strategy of implementing a neural network in VHDL (VHSIC Hardware Description 

Language) (VHSIC – Very High Speed Integrated Circuit) by converting the neuron 

behaviours into lookup tables [Sim94] [Sim96]. Then, the mnemonics of each neuron were 

converted into VHDL language. To achieve this, after the neural network was trained, each 

one of its 8-input neurons was stimulated with all possible combinations of the input 

vector, from “00000000” to “11111111”. Then, each output for all input possibilities was 

written to a lookup table, representing the neuron combinational circuit. Next, these tables 

were used to convert the neuron behaviours into the VHDL symbols. 

  The same strategy used to implement the circuit of the neurons in [Sim96] 

as lookup tables is applied here to implement the navigation control circuit. The controller 

was represented by a black box that can generate any binary logic function of its eight 

binary inputs. Which logic circuit is actually used inside the black box to implement this 

logic function does not matter in this case, since only its behaviour is relevant to the 

problem. To adapt this strategy to be used as the navigation control circuit of the robot, it 

should be able to produce a 3-bit output. 

  Figure 6.21 shows how three lookup tables can be used to implement the 

black box circuit. Using three 256-bit memories to store the information of the three 

lookup tables is just one way to implement the black box circuit. The 8-bit signal from the 

sensors forms the address to the memories that output the corresponding content (1 bit). 

The outputs of the three memories form the 3-bit command that controls the motors. 

  Another way to implement the black box circuit is to use a 256-byte 

memory, which has enough space to store eight lookup tables of eight inputs. Figure 6.22 

shows how this solution works. The 8-bit signal from the sensors is directly connected to 
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the address lines of the memory. The output of the black box controller is a byte that has 

eight bits that can store the contents of eight lookup tables. In the figure, b0, b1, and b2 are 

used to form the 3-bit command that controls the motors. The other bits are ignored, but 

they can be used in the future to give other parameters to the robots, such as speed levels 

for both motors. The five spare bits (b3 to b7) can be used to define the 32 levels of the 

robot speed (25 = 32). 

  Considering that the robot computing system already has a 64Kbyte 

memory, the natural way to implement the black box controller is by using the robot RAM 

memory to store the contents of the lookup tables. Since the robot microprocessor can 

access only one byte at a time of the memory, only the first three bits of this byte are used 

to form the command to the motors; the remaining bits are ignored. This strategy resulted 

in a powerful and fast controller, since only a single step or command line of the C++ 

language is necessary to implement the whole controller: Command = Memory[Sensors]. 

Considering that Sensors is a 1-byte long variable containing the sensor readings (8 bits) 

converted to an integer that address the memory array. Memory[256] is an array of 256 

bytes that stores the contents of the lookup tables, and Command is the variable that holds 

the memory content for that address. In the robots, the black box was implemented using 
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Figure 6.21 – The black box containing three 256-bit lookup tables that form 
the 3-bit command to the motor drive module. 
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the microprocessor (68HC11) assembler code. The corresponding part of this algorithm is 

shown below: 

 

; Addressing Black Box in Memory according to the Sensor Readings 

 ldab sensors      ; b receives content of variable sensors 

 ldx #$8000 ; x receives Base Address 

 abx   ; Add b to x 

 ldaa 0,X  ; Retrieve the Data from memory 

 anda #%00000111 ; Filter the first 3 bits containing the Command 

 staa command ; Store the result to variable command 

 

  In this program, the variable sensors is a single byte that holds the sensor 

readings. Each bit of the byte corresponds to one sensor and is set to “0” if the sensor does 

not detect any obstacle, or “1”, if an obstacle is being detected. The base address $8000 in 

hexadecimal is the address in memory of the first byte of the 256 locations of the black box 

memory. The variable sensors is directly added to it to point to any one of the 256 bytes 

stored in memory. The variable command is one byte that stores the command that 

corresponds to the sensor readings. These simple six lines of assembler code illustrate how 
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Figure 6.22 – The Black Box controller implemented using a 256-byte memory. 
Three bits from the output form the 3-bit command to the motor drive 
module. 
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fast the part of the robot software corresponding to the navigation control circuit works. 

The complete assembler program is called EVOLUTION.ASM and is listed in Appendix 

A. When compared to the 87 lines of assembler code that implement the hand-designed 

controller described in Experiment 2, the simpler black box strategy is at least 100 times 

faster. The assembler program that contains the hand-designed controller is called 

HANDCONTROL.ASM and is also listed in Appendix A.  

  In this experiment, instead of using the black box memory to implement a 

previously trained neural network or any other circuit as the previous work that inspired it, 

evolution was allowed to manipulate the memory contents directly, until a navigation 

control circuit emerged. Therefore, every byte of the memory was ordered in the 

chromosome to form a 2048-bit string. Crossover and mutation can affect each one of these 

bits as a normal binary chromosome. After these operations are completed, the 2048 bits in 

the chromosome are grouped again into 256 bytes and stored in the black box memory. 

Only the first three bits in the byte (b0, b1, and b2) are relevant for this experiment, and the 

other ones (b3 to b7) are ignored by the robot. Therefore, from the 2048 bits corresponding 

to the eight lookup tables, only 768, which correspond to the first three tables (b0, b1, and 

b2) are relevant to evolution. Hence, this is the size of the genotype of the robots, and 

considering that any one of them can produce a different phenotype (i.e., there is no 

neutrality in this case), the current search space is considerably large: 2768 = 1.55×10231. 

 

• Aim of the Experiment 

  This experiment aimed to test if the embedded evolutionary controller 

developed in Chapter 4 was able to evolve the navigation control circuit until the collision-

free navigation behaviour emerges, while having the robot morphology (the sensor 

configuration and motor speeds) fixed. To achieve this, the sensor configuration was fixed 

with all sensors enabled and the velocity of both motors was fixed at maximum speed. The 

navigation control circuit is composed of only 256 bytes in the robot RAM memory and 

evolution is allowed to manipulate any bit of these bytes. The robots were allowed to 

reproduce and suffer mutation, but only with the 2048 bits in the chromosome that 

correspond to the navigation control circuit. The initial morphology remained fixed during 

the complete experiment. 
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• Experimental Setting 

  A hand-designed controller was developed as a reference to compare the 

results of the evolutionary system. It is a variation of the previously described ones, which 

includes the new commands for the motor drive module. In this experiment, the hand-

designed controller operated according to the following algorithm: 

 

   Left = Right = 0; 

   If (Sensor4=1) then Left = Left + 1; 

   - If (Sensor3=1) then Left = Left + 1; 

   If (Sensor2=1) then Left = Left + 1; 

  P If (Sensor6=1) then Right = Right + 1; 

  r If (Sensor7=1) then Right = Right + 1; 

  i If (Sensor8=1) then Right = Right + 1; 

  o If (Sensor1=1) then Command = TRS2; 

  r If (Left > Right) then Command = TRS1; 

  i If (Left = Right) then Command = FF; 

  t If (Left < Right) then Command = TLS1; 

  y If (Sensor1=1 and Sensor4=1) then Command = TRS2; 

   If (Sensor1=1 and Sensor6=1) then Command = TLS2; 

  + If (Sensor4=1 and All other Sensors=0) then Command = TRL; 

   If (Sensor6=1 and All other Sensors=0) then Command = TLL; 

 

  The black box controller can be trained to behave as the hand-designed 

controller by stimulating it with all possible combinations of the input vector (from 

“00000000” to “11111111”). Then, for each possible input, the output of the hand-

designed controller is written in the corresponding addressed position in the black box 

memory. To do so, the 3-bit output of the hand-designed controller was converted to a byte 

by adding five zeros: byte equals to “00000” plus the 3-bit output from the hand-designed 

controller. Therefore, the black box is able to behave exactly as any controller that has 

eight binary inputs and produces up to eight binary outputs.  

  The selection, crossover and mutation strategies used here were explained in 

Experiment 2. This experiment was run in the same environment with medium complexity 

used by Experiment 2 (shown in Figure 6.16). In some tests in this experiment, the 

configuration of the controller of the robots was randomly initialised, but others started 
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with a population trained according to the hand-designed controller described above. As 

explained before, simulations were done for a range of values and examples were selected 

out for a matter of presentation. Therefore, the mutation rate of 3% was chosen for this 

experiment because it produced the best results with the proposed settings (Appendix C 

contains the average results of many experiments that could not be included in the body of 

the thesis). Table 6.4 presents a summary of the settings for this experiment. 

 

Table 6.4 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: To be defined in the experiments 
Initial Fitness Value: 4096 points 
Maximum Fitness Value: 4696 points 
Generation Time: 60 seconds 
Mutation Rate: 3% 
Speed Levels: Fixed at maximum speed (Vmax=32) 
Sensors Enable: Fixed with all enabled 
Navigation Controller: Evolving Black box with 256 bytes 
Initial Sensor Configuration: “00-00-00-00-00-00-00-00” 
Initial Speed Configuration: “1111111111” 
Initial Controller Configuration: Random and as the hand-designed controller 
Software: To be defined in the experiments 

 

 

6.4.1 Experiment 3.1: Evolving with a Simple Fitness Function 

 

  This experiment used a very simple fitness function in an attempt to prevent 

biasing evolution to any preconceived idea of an ideal controller. The selected fitness 

function for this test was:  
 

   1- Start with 4096 points; 

   2- Reward: increase fitness by 10 points every 1 second without 
collision; 

   3- Punishment: decrease fitness by 30 points for every time 
command is not FF for more than 15 seconds; 

   4- Punishment: decrease fitness by 10 points for every collision if 
command = FF, TLL, or TRL. 

 

  Rule 2 changed from Experiment 2 and constantly rewards the robot with 

five points for every second of the generation time. This attempted to solve a problem 
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where a robot that turned frequently was making fewer points, since the fitness function 

rewarded only the FF command. Rule 3 was introduced to prevent evolution from 

producing a solution that keeps turning around itself and never collided. This rule punishes 

the robots that keep turning for more than 15 seconds, encouraging them to move forward. 

Rule 4 was modified to prevent punishing the robots that are turning around themselves 

and are crashed by another robot. If a robot is executing any command but FF, TLL, or TRL 

its centre is not moving, so the collision cannot be its fault. The results in this experiment 

were acquired by the program EXP08.CPP and were converted by the program 

GRAF08.CPP, both listed in Appendix A. 

 

• Results 

  Figure 6.23 shows results from an evolutionary experiment run in a medium 

complexity environment with six robots and a mutation rate of 3%. This experiment used a 

simple fitness function that did not bias evolution towards a preconceived solution. The 

chart displays the fitness of the six robots and the average fitness of the population 

(PopAv). 
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Figure 6.23 – Experiment 3.1a: Evolution of the black box controller using a 
simple fitness function in an environment of medium complexity, mutation 
rate of 3%, sexual reproduction, and generation time of 60s. The population 
was randomly initialised. Here, Robotn is the fitness of Robot n and PopAv is 
the average fitness of all robots in the generation. 
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  The experiment in Figure 6.24 was performed to investigate if the robot 

population, once initialised with a well-trained controller, could hold this configuration or 

would degenerate. The robots were initialised with a previously trained black box, which 

was taught to behave exactly as the above described hand-designed controller. The 

population was then allowed to mate and mutate with the same parameters of the previous 

evolutionary experiment to determine if it would ever get to such a good solution if the 

experiment was allowed to continue for more generations. The results presented in this 

figure can be compared to the ones obtained from the evolution of a randomly initialised 

population in Figure 6.23. 

 

• Discussion 

  Figure 6.23 showed that the evolutionary system succeeded in evolving the 

population towards the expected behaviour, producing solutions that practically did not 

collide after 35 generations. It was observed in this experiment that one could not rely only 

on the fitness of a robot to know how well-adapted it is. A simple solution can be lucky 

enough to start its lifetime in a safe part of the environment, away from obstacles and other 
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Figure 6.24 – Experiment 3.1b: Evolution of the black box controller using a 
simple fitness function in an environment of medium complexity, mutation 
rate of 3%, sexual reproduction, and generation time of 60s. The population 
was initialised as the hand-designed controller. Here, Robotn is the fitness of 
Robot n and PopAv is the average fitness of all robots in the generation.  
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robots, which would produce a very high performance. This was observed in some robots 

during the evolutionary experiment (e.g., Robot 2 that scored 4644 in generation 10, or 

Robot 1 that scored 4621 in generation 8). Therefore, the human judgement was the best 

way to evaluate the abilities of the robots and the performance of the evolutionary system. 

  In Experiment 3.1a in Figure 6.23, all sensors were enabled from the 

beginning of the evolutionary experiment. The controller had information from all the 

sensors and needed to learn what to do with it. Based on observation, some robots learned 

how to use the frontal sensor, S1, which gave them an advantage early on in the process. 

This was the case for Robot 2 that could avoid obstacles detected by S1 from generation 8. 

Robot 2 quickly became the best robot and throughout the crossover operation transferred 

to Robot 5 the ability of using S1. Robots 2 and 5 dominated the population until 

generation 23, where they were overtaken by Robot 3 and Robot 4. Robot 3 learned how to 

use S1, S4, and S7 from generation 29, and was able to avoid most of the obstacles very 

well thereafter. From generation 47 on, all robots acquired the necessary skills to employ at 

least three sensors and the average performance was much better. From generation 50, 

Robot 2 was well-adapted to the environment, and could use S1, S2, S4, S6, and S7 to 

avoid collisions with most of the obstacles and other robots. 

  The major observed problem was the instability of the system, where there 

was no guarantee that a good solution, such as Robot 2 in generation 50, would be selected 

as the best robot until it is outperformed by better robots. The population performance 

dropped when a robot with a poorly-adapted controller (Robot 1) was lucky enough to be 

selected as the best robot and spread its bad genes through the population. Robot 1 had a 

poorly-adapted controller that made it move forward each time S6 detected an obstacle, 

independently of having something in its way. The average performance dropped, but after 

a few generations, the fitness of the population recovered.  

  The average of the population fitness is a good parameter to determine if the 

system is converging to the desired behaviour. The population performance oscillated, but 

kept improving through the evolutionary experiment. With such a large search space 

(1.55×10231), a perfect robot that can deal with all sensors should take a very long time to 

obtain with this evolutionary approach. Nevertheless, the system succeeded in producing an 

even population of robots that can successfully avoid the obstacles in most of the situations 

faced and produces a fitness near to the maximum performance (4696). 
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  Figure 6.24 shows how the system behaves after the population has been 

initialised with a black box trained according to the hand-designed controller. The aim of 

this test was to show that if such a good solution happen to be produced by evolution, it 

would be preserved in the process. If the evolutionary experiment cannot keep such a 

solution, it is unlikely that it will ever be produced by evolution under these circumstances. 

Unfortunately, the figure showed that the evolutionary system, as set in this experiment, 

could not keep a good solution for more than ten generations and the performance of the 

system degenerated. Although it was possible to recover and continue to improve 

performance after the loss of the hand-designed controller genes, this test indicated that it is 

unlikely that such a good solution will be produced by the process as it was configured for 

this experiment. Maybe a more biasing fitness function can produce a better result. 

 

 

6.4.2 Experiment 3.2: Evolving a Biasing Fitness Function 

 

  This experiment intended to use a more biasing fitness function than the one 

presented in Experiment 3.1. It investigated whether a biased evolution could produce a 

better solution (such as the hand-designed controller) for the collision-free navigation task. 

  A new fitness function was designed taking in consideration the information 

of the infrared sensors to reward or punish the robots. This function rewards the robot 

when the command is FF and there are no obstacles around the robot. It also rewards it if 

the robot detects an obstacle on one side and turns to the other side. The robot is punished 

if it turns against the obstacle. To make it easier to use the sensor information, the variables 

Left and Right were used again as in the hand-designed controller. As it was described 

before, Left is increased by one each time one of the sensors S2, S3, and S4 detect an 

obstacle and Right is increased by one each time S8, S7, and S6 detect an obstacle. The 

selected fitness function, for this test was:  

 

   1- Start with 4096 points; 

   2- Reward: increase fitness by 10 points every 1 second if All 
Sensors=0 and command=FF; 

   3- Reward: increase fitness by 10 points if Left > Right and 
command=TRS1, TRS2, TRL; 
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   4- Reward: increase fitness by 10 points if Left < Right and 
command=TLS1, TLS2, TLL; 

   5- Punishment: decrease fitness by 10 points if Left < Right and 
command=TRS1, TRS2, TRL; 

   6- Punishment: decrease fitness by 10 points if Left > Right and 
command=TLS1, TLS2, TLL; 

   7- Punishment: decrease fitness by 20 points for each collision if 
command = FF, TLL, or TRL. 

 

  This fitness function is biasing because it takes consideration of not only 

what the evolving controller is doing, but also how it does it. It practically tells the 

controller how it should control the robot, limiting the possible solutions arising from the 

evolutionary process. The results in this experiment were acquired by the program 

EXP10.CPP and converted by the program GRAF10.CPP, both listed in Appendix A. 

 

• Results 

  The system was allowed to evolve for a long period (more than three hours), 

to show if solutions as good as the hand-designed controller could be produced. Figure 

6.25 shows a chart representing the evolutionary experiments in the medium complexity 
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Figure 6.25 – Experiment 3.2a: Evolution of the black box controller using a 
biasing fitness function in an environment of medium complexity, mutation 
rate of 3%, sexual reproduction, and generation time of 60s. The population 
was randomly initialised. Here, Robotn is the fitness of Robot n and PopAv is 
the average fitness of all robots in the generation. 
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environment. It ran for 190 generations with a biasing fitness function and 3% mutation. 

The same test shown in Figure 6.24 was repeated here. It is shown in Figure 6.26 and 

examined whether the robot population, once initialised with a well-trained controller, such 

as the hand-designed controller, could hold this configuration or would degenerate. 

 

• Discussion 

  Once more, the system succeeded in producing efficient solutions to the 

collision-free navigation task. This time, however, the biasing fitness function could itself 

almost drive the robot. One may ask why the designer should bother in applying evolution 

if almost the complete controller has to be specified in the fitness function. It was still valid 

as an experiment to see how close to a more refined solution, such as the hand-designed 

controller, the evolutionary system could get by means of a more biasing fitness function. 

Nevertheless, rule 7 in the fitness function included a new dimension to biasing the 

solution towards a preconceived controller. This rule punishes the robots for each collision, 

so that it is still being evaluated. Therefore, if evolution reaches the targeted controller and 

it still does not guarantee collision-free behaviour, it will keep modifying it until a better 
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Figure 6.26 – Experiment 3.2b: Evolution of the black box controller using a 
biasing fitness function in an environment of medium complexity, mutation 
rate of 3%, sexual reproduction, and generation time of 60s. The population 
was initialised as the hand-designed controller. Here, Robotn is the fitness of 
Robot n and PopAv is the average fitness of all robots in the generation. 
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solution is found. The targeted controller is actually just a guideline to help evolution to 

reach a better solution faster. 

  Despite the fact that good solutions were in fact produced early on in the 

evolutionary experiments, the system still lacked stability as in Experiment 3.1. Robot 2 

was a good example of an efficient solution that learned how to use the front sensor as 

soon as generation 20, but could keep this configuration for only five generations. This was 

due to it finding itself in a crowded area of the environment where it repeatedly collided 

with three other robots. It can be seen in Figure 6.25 that until these instability problems 

are solved, the system will still oscillate, while good solutions continue to be replaced by 

worse, but luckier ones. A final optimal solution could not be found in 190 generations and 

more than three hours of evolution. The process resulted in a group of competing efficient 

configurations that used at least three sensors, one in the front and two lateral ones on both 

sides of the robot. From generation 100 on, these solutions were alternately selected as the 

best robot.  

  The evolutionary experiment shown in Figure 6.26 could not keep a good 

solution for long when it had all members of the population replaced by a copy of the hand-

designed controller. After 11 generations, Robot 6 mutated in an unfit configuration but 

was lucky enough to be selected as the father of the next generation and the average 

performance of the population degraded. It was a good sign that the population could 

recover after ten generations, where Robots 2, 3, and 4 combined their genetic information 

to produce once more a good solution that dominated the population until generation 27. 

Then, an unfit Robot 2 managed to score high enough to be selected to mate with all the 

other robots twice, erasing some important genetic information from Robot 3, and the 

performance of the population degraded once more between generations 30 and 40. 

 

 

6.4.3 Experiment 3.3: Evolving a Strongly Biasing Function 

 

  This experiment examined the effects of punishment by collision on the 

stability of the evolutionary system. Rule 7 was erased from the fitness function in an 

attempt to take chance out of the system. In fact, without punishing the robots each time 
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they collide, a fully trained robot (e.g., one that behaves similarly to the black box) is 

expected to have always the same score, in spite of where it is placed in the environment. 

This is since its collisions, or more importantly the collisions it suffers from other robots, 

will not decrease its fitness. However, a chance factor still exists since an unfit robot (e.g., 

one that has only part of its controller well-developed) will be favoured if it faces obstacles 

from the side with which its controller can deal. This may seem a useless application of 

evolution, since its only benefit is training the black box controller to behave according to a 

preconceived solution. Nevertheless, these experiments are important because they help to 

evaluate the evolutionary system performance. The new fitness function was obtained by 

deleting rule 7 from the fitness function shown in Experiment 3.2. The software used for 

this experiment were EXP09.CPP and GRAF09.CPP. Both programs are listed in 

Appendix A. 

 

• Results 

  Figure 6.27 represents the evolutionary experiments in the medium 

complexity environment, running for 89 generations with six robots, a strongly biasing 
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Figure 6.27 – Experiment 3.3a: Evolution of the black box controller using a 
strongly biasing fitness function in an environment of medium complexity, 
mutation rate of 3%, sexual reproduction, and generation time of 60s. The 
population was randomly initialised. Here, Robotn is the fitness of Robot n 
and PopAv is the average fitness of all robots in the generation. 

 



 

 156 

fitness function, and a mutation rate of 3%. The experiment shown in Figure 6.28 

examined whether the robot population, once initialised with a well-trained hand-designed 

controller, could hold this configuration or would degenerate. 

 

• Discussion 

  The experiment shown in Figure 6.27 presented fitness curves that differ 

from the ones in Experiments 3.1 and 3.2. The fitness values of the robots varied much less 

than in the previous experiments, since the collisions were not taken into account. The 

population performance was more stable as well. However, the average fitness of the 

population still oscillates. Therefore, some other mechanisms must be contributing to this 

instability. This will be further investigated in Chapter 7.  

  Figure 6.28 showed that even without counting collisions, the robot 

population could not keep a well-adapted solution. It can be observed that all six robots had 

similar performances in generation 1. This indicates, as expected, that if a robot is well-

adapted, it will present similar performances if tested in the environment for the same time. 

The figure also showed that the resulting average of the population fitness, around 4600 

points, was close to the one obtained with 89 generations in Figure 6.27, demonstrating 

that the system succeeded in producing an efficient solution very close to the hand-

designed controller. 

 

 

6.4.4 Discussion of the Experimental Results 

 

  The results so far demonstrated that the developed evolutionary system 

works and can evolve the navigation control circuit of the robots. The search space for a 

solution in this experiment was considerably large: 2768 = 1.55×10231. Even so, the 

evolutionary system was able to produce an acceptable solution that could drive the robots 

with very few collisions. It still could not produce, however, a solution as good as the 

hand-designed controller, even when biased.  
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  By biasing evolution with a complex fitness function, some of the noise and 

interactions among the robots have less influence in the fitness evaluation, helping the 

system to converge faster [Set97]. However, as it could not achieve a solution as good as 

the hand-designed controller, it is clear that there was some other factor making the system 

oscillate and degrading performance. Even though it was shown that the population could 

recover after such degradations, it prevented evolution from producing a better solution.  

  The presented experiments showed that even a biased evolution could not 

prevent a lucky unfit robot from being selected as the best robot, spreading its bad genes 

throughout the rest of the population and causing the average performance to drop. There 

must be a way to prevent this from happening so often in the evolutionary experiment. The 

next experiment will try to explore other strategies for selecting the individuals that 

provide more stability to the system. 
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Figure 6.28 – Experiment 3.3b: Evolution of the black box controller using a 
strongly biasing fitness function in an environment of medium complexity, 
mutation rate of 3%, sexual reproduction, and generation time of 60s. The 
population was initialised as the hand-designed controller. Here, Robotn is 
the fitness of Robot n and PopAv is the average fitness of all robots in the 
generation. 
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6.5 Experiment 4: Inheritance 

 

  This experiment developed a different selection strategy for evolutionary 

systems that was defined as Inheritance Strategy. From now on, the robots will be selected 

to breed based on not only their performance in the current generation, but also on their 

fitness in the previous generations. Therefore, the robots inherit part of the points scored by 

their predecessors. By considering the average fitness scored by the robot in the previous 

generations, this strategy attempts to reduce the effect of chance, that can produce bad 

performances if the robot is “unlucky”. This experiment tested this new approach, and 

evaluated if it could solve the instability problem pointed out by Experiment 3.  

 

• Aim of the Experiment 

  The aim of this experiment is to develop and test a novel selection strategy 

involving inherited scores. It evaluated whether this new strategy could solve the problems 

with instability presented by the previous selection strategy, where a lucky unfit robot can 

be selected as the best robot instead of better ones that by chance started in a more crowded 

area of the environment.  

 

• Experimental Setting 

  Apart from a different selection strategy, this experiment was set exactly as 

Experiment 3. It was run in the same environment used by the previous experiment, which 

is illustrated in Figure 6.16. It used the same biasing fitness function presented there with 

tests containing rule 7 and without it (this rule punishes the robot fitness each time it 

collides). The chosen selection strategy for this evolutionary experiment was:  

 

!" The score used to select the robot was the average of the robot fitness in 

the last three generations (i.e., inheriting the scores of its previous two 

generations). The robot with the best average survives, and breeds with 

all other robots.  
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  This approach favours the robots with the highest average, which are the 

ones that have performed well for the last three generations. If in the current generation one 

lucky unfit robot happens to achieve the highest score, it is still unlikely that it will have 

the best average score and will not be selected to mate. This was an attempt to improve the 

stability of the system and reduce the effect of noise and interactions among robots and 

obstacles. In some tests in this experiment, the configuration of the controller of the robots 

was randomly initialised, but others start with a population trained according to the hand-

designed controller described in Experiment 3. Table 6.5 presents a summary of the 

settings for this experiment. 

 

Table 6.5 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: To be defined in the experiments  
Initial Fitness Value: 4096 points 
Maximum Fitness Value: 4696 points 
Generation Time: 60 seconds 
Mutation Rate: 3% 
Speed Levels: Fixed at maximum speed (Vmax=32) 
Sensors Enable: Fixed with all enabled 
Navigation Controller: Evolving Black box with 256 bytes 
Initial Sensor Configuration: “00-00-00-00-00-00-00-00” 
Initial Speed Configuration: “1111111111” 
Initial Controller Configuration: Random and as a hand-designed controller 
Software: EXP13.CPP and GRAF13.CPP  (listed in Appendix A) 

 

 

6.5.1 Experiment 4.1: Inheritance and a Biasing Fitness Function 

 

  This experiment applied the inheritance strategy to an evolutionary system 

using a biasing fitness function, the same one described in Experiment 3.2. The charts 

display the fitness of the six robots in the current generation as well as the average fitness 

value (AvRn) scored by each robot in the current and the previous two generations. For 

each robot: 

 

   AvRn = (FitnessRnG0 + FitnessRnG-1 + FitnessRnG-2)/3 
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  In the equation above, n is the number of the robot; FitnessRnG0 is the 

fitness of the Robot n in the current generation; FitnessRnG-1 is the fitness scored by Robot 

n in the previous generation; and FitnessRnG-2 is the fitness scored by Robot n two 

generations before. 

 

• Results 

  Figure 6.29 shows the first test of the new selection strategy where the 

population was initialised as the hand-designed controller. The experiment did not succeed. 

It could not keep the good performance of the initial population. By analysing the 

information in the figure, it was concluded that it did not work well because it did not 

protect a fit robot in the current generation that scored more than the best robot (the one 

with the highest average). The current selection strategy would mistake it for a lucky unfit 

robot and would not protect it from breeding with the best robot and mutating. This can 

destroy the precious good genes of this robot and evolution will lose this better 

performance. This fact can be observed in the figure, where, for example, Robot 4 was a 
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Figure 6.29 – Experiment 4.1a: First test of the evolution of the black box 
controller using inheritance selection and a biasing fitness function in an 
environment of medium complexity, mutation rate of 3%, sexual 
reproduction, and generation time of 60s. The population was initialised 
as the hand-designed controller. Here, Robotn is the fitness of Robot n 
in the generation and AvRn is the average fitness scored by robot n in the 
current and the previous two generations.  
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potentially better solution that performed better than Robot 2 in generation 12, but was not 

protected and mated with Robot 2, which was potentially worse. After mating and 

mutating, Robot 4 could not perform as well and this possible better individual was 

discarded by the process. Therefore, this strategy needs to be modified to protect the robots 

that score more than the average of the best robot. A modified selection strategy is 

described below: 

 

!" The score used to select the robot is the average of the robot fitness in 

the last three generations (i.e., inheriting the scores of its previous two 

generations). The robot with the best average survives, but only breeds 

with the robots with the fitness in the present generation lower than its 

own fitness.  

 

  This approach protects new robots that are actually better than the one with 

the highest average, but need to be evaluated for more generations to be selected by their 

average. If one of these protected robots has a better configuration, it will probably repeat 

its good performance, and within one or two generations its average fitness may be the 

highest and the robot will be chosen to reproduce. If the protected robot is in fact a lucky 

unfit one, it may not repeat its good performance and, if so, will be allowed to breed in the 

next generation. Figure 6.30 shows another test with the updated selection strategy. 

 

• Discussion 

  The new selection strategy presented in Figure 6.30 succeeded in improving 

system stability. The fitness of the population dispersed mostly because of mutation, but 

the performance of the best robot did not degrade as much as in the previous attempts. It 

now protects the potentially better configurations, as happened with Robot 2 in generation 

53. It outperformed Robot 6 and was given the chance to repeat its better performance, and 

did just that in generation 54, when its average became finally higher than Robot 6 and it 

was selected as the best robot of the generation, breeding with all the other robots. In the 

next experiment, presented in Figure 6.31, this new selection strategy is applied to evolve a 

randomly initialised population.  
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Figure 6.31 – Experiment 4.1c: Evolution of the black box controller using 
inheritance selection and a biasing fitness function in an environment of 
medium complexity, mutation rate of 3%, sexual reproduction, and 
generation time of 60s. The population was randomly initialised. Here, 
Robotn is the fitness of Robot n in the generation and AvRn is the average 
fitness scored by robot n in the current and the previous two generations.  
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Figure 6.30 – Experiment 4.1b: Evolution of the black box controller using a 
corrected inheritance selection and a biasing fitness function in an 
environment of medium complexity, mutation rate of 3%, sexual 
reproduction, and generation time of 60s. The population was initialised as 
the hand-designed controller. Here, Robotn is the fitness of Robot n in the 
generation and AvRn is the average fitness scored by robot n in the current 
and the previous two generations. 
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Figure 6.32 – Summary of Experiment 4.1c: Summary showing the average 
fitness (Average) of all robots and the fitness of the best robot (BestRob) in 
the generation.  

 

  Figure 6.32 shows that the system still suffered from instability. Evolution 

was able to produce efficient solutions and converged faster than in Experiment 3, but the 

population performance still oscillated despite the general upward trend. The interactions 

among the robots still made them collide [Set97].  

 

 

6.5.2 Experiment 4.2: Inheritance and a Strongly Biasing Function 

 

  The next test intended to analyse if a strongly biasing fitness function 

together with the new inheritance selection can produce a more stable evolution. This is 

obtained by cutting rule 7 from the fitness function, as explained in Experiment 3.3. This 

experiment uses the same settings presented in Table 6.5. 
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• Results 

  The results presented by Figure 6.33 and Figure 6.34 show the behaviour of 

the robot population when initialised with a random and a hand-designed controller, using 

a strongly biasing fitness function. 

 

• Discussion 

  It can be seen in Figure 6.33 that without punishing the robots for their 

collisions, the system is much more stable. The population performance did not degrade 

and the system did not oscillate much during the whole process. Evolution kept improving 

the population performance with a good rate and seemed to be converging towards an 

optimal solution. The question now is how long it would take to get there. The next test 

investigated what would happen when the population was initialised with a hand-designed 

controller. The results of this new test are shown in Figure 6.34. 

  Figure 6.34 shows that even now the evolutionary system could not prevent 

the population performance from degrading. This figure showed that in 50 generations, the 
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Figure 6.33 – Experiment 4.2a: Evolution of the black box controller using 
inheritance selection and a strongly biasing fitness function in an 
environment of medium complexity, mutation rate of 3%, sexual 
reproduction, and generation time of 60s. The population was randomly 
initialised. Here, Robotn is the fitness of Robot n and PopAv is the average 
fitness of all robots in the generation. 

 



 

 165 

population performance degraded to a level similar to the one where the experiment of 

Figure 6.33 stopped, showing that it is unlikely that it will improve the population much 

more than this level. 

 

 

6.5.3 Discussion of the Experimental Results 

 

  This experiment showed that the new inheritance selection helped to 

improve system performance, but did not completely solve the instability problem. The 

system does not seem to be able to produce an optimal solution to the collision-free 

navigation task. The experiments demonstrated that even using a strongly biasing fitness 

function, evolution still can take a considerable amount of time to achieve a solution as 

good as the hand-designed controller and may not even be able to get there. 

3900
3950
4000
4050
4100
4150
4200
4250
4300
4350
4400
4450
4500
4550
4600
4650
4700

1 6 11 16 21 26 31 36 41 46
Generation

Fitness

Robot1
Robot2
Robot3
Robot4
Robot5
Robot6
PopAv

 

Figure 6.34 – Experiment 4.2b: Evolution of the black box controller using 
inheritance selection and a strongly biasing fitness function in an 
environment of medium complexity, mutation rate of 3%, sexual 
reproduction, and generation time of 60s. The population was initialised with 
a hand-designed controller. Here, Robotn is the fitness of Robot n and PopAv 
is the average fitness of all robots in the generation. 
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  The suggested inheritance selection is a powerful strategy to prevent much 

of the chance factor from affecting the system. It succeeded in preventing most of the unfit 

individuals being mistaken as the best robot and protected the better robots from being 

erased by reproduction, giving them a chance to survive and repeat their better 

performance, until their average performance overcame the one of the current best robot. 

  The evolutionary system needs to be evaluated more extensively to show the 

optimal parameters that can tune it to work at its maximum capacity. A simulator can 

provide fast long-term evolution that can exhaustively test the capacity of the system. 

Simulation can be an important tool to help finding the best mutation rates, selection 

strategies, and crossover parameters. Simulation can also provide an ideal environment, 

without noise and where the interactions among the robots can be carefully specified. It can 

take complexity away from the system, allowing the correct tuning of some important 

parameters. The next chapter will analyse the developed evolutionary system in simulation. 
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7 SIMULATED EXPERIMENTS 
 

 

  To provide a more comprehensive analysis of the evolutionary system in an 

ideal environment, where the interactions among the robots can be treated individually, a 

simulator was designed to take away the complexity of the physical robotic system. It was 

not an attempt to reproduce a detailed experimental environment. It was actually an attempt 

to discard all these details and concentrate on how the evaluation, selection, and crossover 

operators work. This is different to the normal use of simulation in evolution, where the 

real evaluation process is abstracted and reproduced in a computational environment. This 

simulator generated a completely different evaluation process. Instead of trying to 

reproduce how the performances of the robots are evaluated in the real environment, this 

simulator only compares the response of the evolving controller to a certain input to the 

response of a targeted hand-designed controller to the same input. Every time the two 

responses coincide, the evolving controller scores one point. This is clearly the strongest 

way to bias the fitness function. It tries to direct evolution towards a specific solution, 

rewarding more the solutions as they get closer to it. All the other phases of the 

evolutionary system were carefully reproduced in the simulator. The selection, crossover, 

and mutation operators are still the same algorithms used in the robots 

  This chapter presents the experiments that made use of this simulator to 

produce data much faster than using real robots. A simulator was applicable for two 

reasons: it can test the performance of the evolutionary system in the long-term; and it 

provides an ideal environment, without noise and where the interactions among the robots 

can be carefully specified. Simulated evolution can also take much of the complexity of the 

system away and provide important insights on the specification of mutation rates, 

selection strategies, crossover parameters, and population size. 

  It is acknowledged that there is no substitute for experimenting with real 

robots and simulation is not included as a permanent phase of the evolutionary system. 

Therefore, this chapter does not attempt to use simulation to train the robots in a computer 

program before transferring them to the real environment. Simulation is only applied to 
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abstract complexity from the robots and the environment, to allow different characteristics 

of the system to be analysed individually and provide understanding of the complex 

evolutionary system. This study, it is hoped, may indicate better configurations and genetic 

operators to be applied later to the evolution of real robots with an improved system. 

Appendix C contains the average results of many experiments that could not be included in 

the body of the thesis. For Chapter 7, it includes data related to Sections 7.2, 7.3, 7.4, 7.5, 

7.6, and 7.7. 

 

 

7.1 The Simulator 

 

  The simulator was written in Borland C++ and different versions of the 

main routine were used for each experiment. The corresponding programs are all listed in 

Appendix A and will be referred to when each experiment is introduced. Figure 7.1 

overviews how the simulator works. 
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Figure 7.1 – General view of the evaluation phase of the simulator. 
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  The sensor configuration for all the experiments in this chapter fixed all the 

16 control bits of the eight sensors to “00-00-00-00-00-00-00-00”, enabling every sensor 

permanently. All sensors have only one bit of precision. In the evaluation phase, the 

simulator works by generating all the possible input combinations, which are the simulated 

sensor readings from “0,0,0,0,0,0,0,0” to “1,1,1,1,1,1,1,1”. Both the evolving controller and 

the hand-designed controller input signals are stimulated with the same 256 possible 

combinations of the sensor states (“0” means the sensor is not detecting anything and “1” 

means it is detecting an obstacle). Each time both controller outputs coincide, the fitness of 

the simulated robot is increased by one. This means that the maximum score that a robot 

can make if it behaves exactly as the hand-designed controller is 256 points. 

  After the evaluation phase, the robots are selected to breed according to the 

inheritance selection strategy described and evaluated in Section 6.5. The inheritance 

selection rule is reproduced below:  

 

!" The score used to select the robot is the average of the robot fitness in 

the last three generations (i.e., inheriting the scores of its previous two 

generations). The robot with the best average survives, and breeds only 

with the robots with fitness in the present generation lower than its own 

fitness.  

 

  All the experiments in this chapter use this selection strategy, which 

considers not only the performance of the robots in the current generation, but also the 

score of their predecessors. Using the above criteria, only one robot is selected to be the 

best robot, the one that supplies its chromosome to be combined with the other robots to 

form the next generation. Robots are protected if they have a score higher than the score of 

the best robot. All other robots will combine their chromosomes with the best robot and 

reconfigure afterwards with the resultant genes. The best robot and the protected ones do 

not change and survive to the next generations. The crossover phase combines the two 

chromosomes from the parent robots to form a resultant offspring; each bit is randomly 

chosen from the corresponding location in the chromosome of the parents. Then, in the 

mutation phase, a random number is generated between zero and 100 for each bit in the 

chromosome, and the bit will be flipped (from “0” to “1”, or “1” to “0”) each time the 

generated random number is smaller than the mutation rate. Different forms of mutation 
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and crossover will also be tried in the experiments in this chapter and they will be 

explained each time.  

 

 

7.2 Experiment S1: Simulated Evolution 

 

  This experiment is intended to provide an estimative of how long it would 

take for the real evolution of Section 6.5.1 to produce a solution similar to the hand-

designed controller. It tried to provide understanding on why the experiment reported in 

that section was taking so long to evolve the robots. It was also carried out with different 

mutation rates, to provide a comparison of the effects of mutation in the system 

performance and indicate the most effective mutations.  

  The evolving controller is the black box look-up table described in Section 

6.4 that consists of 256 bytes of memory (see also Figure 6.22). The commands that it can 

produce are encoded in the first three bits of the byte. These commands are: Front Fast 

(FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); Turn Right Short2 (TRS2); Turn 

Left Short2 (TLS2); Turns Right Long (TRL); and Turn Left Long (TLL). These commands 

were explained before in Section 6.4. Table 7.1 shows how these commands are encoded 

with three bits. 

 

Table 7.1 – Encoding of the Black Box Commands. 

Command Encoding 
FF 0,0,0 

TLS1 0,0,1 
TRS1 0,1,0 
TRS2 0,1,1 
TLS2 1,0,0 
TRL 1,0,1 
TLL 1,1,0 

Not used, interpreted as FF 1,1,1 

 

• Aim of the Experiment 

  The aim of this experiment is to run a simulated evolution for as long as 

30,000 generations to see how close the hand-designed controller could become to the 

evolving controller. It also evaluated the simulator to see if it can be used to train a 

programmable architecture, such as the black box controller, to behave exactly as a targeted 
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circuit, the hand-designed controller. Both the evolving controller and the targeted circuit 

can be other architectures. This simulator can be used to train a neural network, for 

example, to behave as a PID controller or a fuzzy logic system. Virtually anything that can 

be programmed can be trained using the same principle if both circuits can be described in 

Borland C++ language.  

 

• Experimental Setting 

  In these experiments, the hand-designed controller operated according to the 

following algorithm: 

 

   Left = Right = 0; 

   If (Sensor4=1) then Left = Left + 1; 

   - If (Sensor3=1) then Left = Left + 1; 

   If (Sensor2=1) then Left = Left + 1; 

  P If (Sensor6=1) then Right = Right + 1; 

  r If (Sensor7=1) then Right = Right + 1; 

  i If (Sensor8=1) then Right = Right + 1; 

  o If (Sensor1=1) then Command = TRS2; 

  r If (Left > Right) then Command = TRS1; 

  i If (Left = Right) then Command = FF; 

  t If (Left < Right) then Command = TLS1; 

  y If (Sensor1=1 and Sensor4=1) then Command = TRS2; 

   If (Sensor1=1 and Sensor6=1) then Command = TLS2; 

  + If (Sensor4=1 and All other Sensors=0) then Command = TRL; 

   If (Sensor6=1 and All other Sensors=0) then Command = TLL; 
 

  These experiments used a biasing fitness function that directs evolution to 

produce a solution that behaves like the hand-designed controller. This fitness function 

works according to the following rules:  

   1- Start with 4100 points; 

   2- Reward: increase fitness by 1 point every time the outputs from 
both controllers are the same; 

   3- Each robot is evaluated 256 times to test all possible input 
combinations; 
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  The fitness functions used in simulation were directly imported from the 

robot software and preserved the original parameters. This means that they still start with 

4100 points, even though the robot score cannot decrease in the simulator, but this 

facilitates comparison of the results to the ones obtained with real experiments, since they 

have similar scales. The maximum that a robot can score if it responds to all 256 input 

combinations exactly as the hand-designed controller is 4356 points. The 2048 bits of the 

chromosome are randomly initialised before the simulated evolution starts. Table 7.2 

presents a summary of the settings for this experiment. 

 

Table 7.2 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +1 point each time both outputs are the same 
Initial Fitness Value: 4100 points 
Maximum Fitness Value: 4356 points 
Generation Time: Simulated evolution 
Mutation Rate: 0.0%, 0.1%, 0.5%, 1%, 3%, 10%, 20%, 50%, 80% 
Selection Strategy: Inheritance 
Crossover Strategy: Sexual 
Speed Levels: Simulated evolution 
Sensors Enable: Fixed with all enabled 
Navigation Controller: Evolving Black box with 256 bytes 
Initial Sensor Configuration: “00-00-00-00-00-00-00-00” 
Initial Speed Configuration: Simulated evolution 
Initial Controller Configuration: Random. 
Software: SIM01.CPP and GRAFSIM01.CPP  (listed in Appendix A) 

 

• Results 

  The chart shown in Figure 7.2 presents a comparison of three evolutionary 

experiments simulated for 30,000 generations with a population of 6, 50, and 100 robots. 

For these tests, the robots were initialised with a random black box controller and went on 

evolving with mutation rates of 0.1% and 0.5%. The simulator showed that the closer 

evolution gets to the optimal solution, the longer it takes to improve the solutions. This 

happens because evolving a black box look-up memory involves searching in a search 

space of size 2768. This made the problem intractable by the evolutionary system, since 

30,000 generations of one minute each would last almost 21 days of non-stop evolution and 

so far would not solve the problem.  
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Figure 7.2 – Experiment S1.1: Simulated evolution of the black box controller 
using inheritance selection, and sexual reproduction for two different 
mutation rates: 0.1% and 0.5%. Here, AvnRobMrm% and BestnRobMrm% 
are the average fitness of all the robots and the fitness of the best robot in the 
generation for the tests with n robots and mutation rate of m%. 

 

  The experiments shown in Figure 7.2 were simulated for 30,000 generations 

and gave much insight into the way the evolutionary system works. They demonstrated 

why the real evolution presented in Section 6.5 was taking so long in producing a solution 

like the hand-designed controller: this is not so easy to find. It can be seen in the figure that 

even after 30,000 generations in an idealised virtual environment, where the robot 

evaluation does not suffer the effects of noise and interactions among robots, evolution still 

did not get close to the optimal solution. For a population of six robots, the maximum 

fitness after 10,000 generations was 4317 points for 0.1% mutation and 4302 points for 

0.5%, still far from the fitness of the optimal solution, which is 4356 points. After running 

the program for a further 20,000 generations, 0.1% mutation only increased one point, 

resulting in 4318 points. The 0.5% mutation curve increased only 11 points. Even when the 

number of robots in the population was increased to 100, the system still could not reach to 

maximum score in 30000 generations. This shows that the long time necessary for the 

system to evolve is probably a consequence of the large search space. 

  Evolution gets slower when the population converges because when 

mutation modifies genes in a chromosome that has more than 50% of good genes, the 

chance of changing a good gene to a bad one is greater than changing a bad gene to a good 
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one. When the chromosome has 99% of good genes, the chance of having a positive 

mutation is only 1%. Figure 7.3 shows a comparison of the previous curves in the first 

4500 generations. For a small population of six robots, in the long term, a 0.1% mutation is 

better than 0.5%, which helped to evolve faster in the beginning of the process, until 

generation 810, when 160 genes in the chromosome, from a total of 256, were already 

correct. Then, a higher mutation had more chances to change good genes to bad ones and 

0.1% mutation began to show a better performance. For larger populations, these effects 

are less prominent. Both curves for 100 and 50 robots evolve quickly up to 4280 points, 

when 100 robots start to make a greater difference. 

  Although the current configuration of the system deals with a large search 

space and was very slow in finding an optimal solution, it may still be useful to test the 

effects of different mutation rates. The simulator is good for such a task because it is less 

stochastic than the real world and the effects of mutation can be analysed individually. It is 

actually only mutation and the randomly initialised population that cause its non-

determinism. Figure 7.4 shows a comparison of four small mutation rates: 0.1%; 0.5%; 

1%; and 3%. Figure 7.5 shows a comparison of four higher mutation rates: 10%; 20%; 

50%; and 80%. 
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Figure 7.3 – Experiment S1.2: First 4500 generations of Experiment S1.1, 
showing more details of the simulated evolution of the black box controller 
using inheritance selection, and sexual reproduction for two different 
mutation rates: 0.1% and 0.5%. Here, AvnRobMrm% and BestnRobMrm% 
are the average fitness of all the robots and the fitness of the best robot in the 
generation for the tests with n robots and mutation rate of m%. 
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  The last two figures show that with such a small population, after the first 20 

generations or so the population relies only on mutation to increase its performance. Higher 

mutations help evolving in the beginning of the process, when there are more bad than 

good genes in the chromosome. It can be seen in Figure 7.4 that 3%, 1%, and 0.5% 

mutation evolved faster than 0.1% in the beginning of the process, but as the genes in the 

robot chromosomes became better, 0.1% mutation outperformed 1% and 3%. The best 

mutation was 0.5%, which showed a good performance during the whole process. It can be 

observed how the curves of the average fitness and the fitness of the best robot got more 

distant from each other when mutation was increased, showing that higher mutations make 

the population more disperse according to the fitness of the robots. 
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Figure 7.4 – Experiment S1.3: Simulated evolution of the black box 
controller using inheritance selection, and sexual reproduction for four 
different mutation rates: 0.1%, 0.5%, 1%, and 3%. Here, Av is the 
average fitness of all the robots and Best is the fitness of the best robot 
in the generation.  
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Figure 7.5 – Experiment S1.4: Simulated evolution of the black box controller 
using inheritance selection, and sexual reproduction for four different 
mutation rates: 10%, 20%, 50%, and 80%. Here, Av is the average fitness of 
all the robots and Best is the fitness of the best robot in the generation. 

 

  The chart in Figure 7.5 shows that the same trend of small mutations is true 

for higher rates: the higher the mutation rate, the faster the system evolves in the first 

generations, but the slower it becomes in the end of the process. Higher mutations also 

increase the distance between the curves of the average fitness and the fitness of the best 

robot. Figure 7.6 shows that without mutation, the population relies only on its diversity to 

increase performance and after the initial convergence in the first ten or 20 generations, the 

population stopped evolving. 

 

 

7.2.1 Discussion of the Experimental Results 

 

  This experiment suggested that unstructured evolution generates a very large 

search space that makes the problem intractable for the developed evolutionary system as it 

is set. The black box controller, containing 2768 possibilities is just too complex to be 

treated even by an ideal simulated environment, and seems practically impossible to be 

evolved towards an optimal solution in a real environment. Even when the population is 
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increased to 100 robots, the system still could not reach the maximum score. An 

unstructured evolvable controller avoids the designer’s prejudices. It does not restrict the 

possibilities that evolution needs to investigate, slowing down the evolutionary process. 

  This experiment showed that for 300 generations with six robots, 0.5% 

mutation was the most effective one, improving system performance considerably in 

relation to other settings. Even though the system worked much better with the right 

mutation level, after 300 generations the fitness of the best robot was just 4230 points, only 

50.78% of the maximum score (4230 – 4100 = 130, which is 50.78% of the maximum 

score: 4356 – 4100 = 256). The smaller the mutation, the higher the chance of changing 

only bad genes when the chromosome has more good than bad ones. 

  Concluding, this experiment showed two important things: choosing the 

right mutation rate drastically improves the speed of the system; and the unstructured black 

box controller makes evolution look for the optimal solution in a very large search space, 

which slows down the process too much, making it almost intractable for the evolutionary 

system in a physical environment. Another possibility of obtaining a better operation 

without increasing the population and preserving the large search space of an unstructured 
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Figure 7.6 – Experiment S1.5: Simulated evolution of the black box controller 
of the six robots using inheritance selection, sexual reproduction, and 
mutation rate of 0.0%. Here, Robotn is the fitness of Robot n in the 
generation. 
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controller is to change how the system works, with new selection, mutation, or crossover 

strategies. The following experiments explore these possibilities. 

 

 

7.3 Experiment S2: Asexual Reproduction 

 

  This experiment used exactly the same settings as the previous experiment, 

with the exception of the crossover strategy. This experiment makes use of a simple 

strategy that uses inheritance to select the fittest robot, allows it to survive, and 

reconfigures all the others with a small variation of the fittest robot chromosome. This is a 

form of asexual reproduction, where the robots do not cross over their chromosomes. The 

selection operator has not changed from the previous experiment. The only operation that 

was modified was the crossover of the genes. The combined inheritance-asexual 

reproduction operator is defined below:  
 

!" The score used to select the robot is the average of the robot fitness in 

the last three generations. The robot with the best average survives, and 

the robots with the fitness in the present generation lower than the 

fitness of the best robot overwrite their chromosome with a copy of the 

chromosome of the best robot, and then suffer mutation in a few genes. 

 

• Aim of the Experiment 

  The aim of this experiment is to determine if the combined inheritance-

asexual reproduction operator is more efficient than the one used in the previous 

experiment. This experiment explored an attempt to make the evolution search faster for a 

solution amongst the large number of possibilities of an unstructured controller such as the 

black box. 

 

• Experimental Setting 

  This experiment used the same settings of Experiment S1 with a different 

selection-crossover strategy. Table 7.3 presents a summary of the settings for this 

experiment. 
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Table 7.3 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +1 point each time both outputs are the same 
Initial Fitness Value: 4100 points 
Maximum Fitness Value: 4356 points 
Generation Time: Simulated evolution 
Mutation Rate: 0.1%, 0.5%, 1%, 10% 
Selection Strategy: Inheritance 
Crossover Strategy: Asexual 
Speed Levels: Simulated evolution 
Sensors Enable: Fixed with all enabled 
Navigation Controller: Evolving Black box with 256 bytes 
Initial Sensor Configuration: “00-00-00-00-00-00-00-00” 
Initial Speed Configuration: Simulated evolution 
Initial Controller Configuration: Random. 
Software: SIM02.CPP and GRAFSIM02.CPP  (listed in Appendix A) 

 

• Results 

  The experiment presented in Figure 7.7 shows the long-term evolution of the 

robot population for 30,000 generations. In the figure, the new selection-crossover strategy 

behaved better than the one used by the previous experiment, but was still very slow and 

would take a long time to converge towards the optimal solution in a real experiment. It 

still did not solve the problem. The figure shows a comparison between two mutation rates: 
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Figure 7.7 – Experiment S2.1: Simulated evolution of the black box controller 
using inheritance selection, and asexual reproduction for two different 
mutation rates: 0.1%, and 0.5%. Here, Av is the average fitness of all the 
robots and Best is the fitness of the best robot in the generation. 
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0.1% and 0.5%. The most relevant point when comparing the information in this figure to 

Figure 7.2 is that here, 0.1% mutation is not better than 0.5% in the long term, which is 

contrary to the results of Experiment S1. An explanation for this is that in sexual 

reproduction, evolution would employ mutation and crossover to manipulate the bits in the 

chromosome. With asexual reproduction, only mutation can change the bits in the 

chromosome. For each possible input, one byte of the black box look-up memory is 

chosen. The first three bits in this byte form the command to the motors. The evolving 

controller is evaluated by comparing this command with the one produced by the hand-

designed controller. If the black box is outputting the wrong command for a specific input, 

FF for example, which is encoded by “0,0,0”, instead of TRL, encoded by “1,0,1”, 

evolution cannot generate “1,0,1” from “0,0,0” by changing only one bit each generation. 

With sexual reproduction, the robot can, for example, inherit “0,0,1” from the chromosome 

of one of the parents and mutate the first “0” to “1”, producing the “1,0,1” combination and 

the TRL command.  

  Figure 7.8 shows a comparison among four different mutation rates (01%, 

05%, 1%, and 10%) with the new inheritance selection and asexual reproduction operators. 

This solution lacks the opportunity of exploring combinations of the population diversity, 
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Figure 7.8 – Experiment S2.2: Simulated evolution of the black box 
controller using inheritance selection, and asexual reproduction for four 
different mutation rates: 0.1%, 0.5%, 1%, and 10%. Here, Av is the 
average fitness of all the robots and Best is the fitness of the best robot 
in the generation. 
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but worked faster than the strategy chosen by Experiment S1. As it was observed in 

Experiment S1, the curves with higher mutations evolved faster in the beginning, where 

mutation operated on chromosomes predominated by bad genes. However, when the 

population improved, lower rates showed the best performances, with 0.5% presenting the 

best result for 300 generations.  

  The experiment in Figure 7.9 shows a comparison between two selection-

crossover strategies: the inheritance selection plus sexual reproduction from Experiment S1 

and inheritance selection with asexual reproduction from this experiment. It compares the 

two best mutation rates from each strategy: 0.1% and 0.5%. Although sexual reproduction 

worked faster in the beginning of the process, in the long term it was outperformed by 

asexual reproduction. This can be explained by the ability of sexual reproduction to 

combine the best genes of the robot population in the beginning of the process. Once the 

initial diversity of the population was reduced by convergence and the population relied 

only in mutation to evolve, asexual reproduction was the best strategy.  

  Sexual reproduction applies mutation on a population of robots resultant 

from the combination of the chromosome from the best robot and the chromosome from an 

average robot. Therefore, after the population converges in the initial generations, mutation 

is applied on a resultant chromosome that is potentially worse than the best robot. After the 

original randomly initialised population has converged to similar configurations, asexual 

reproduction behaved better because it applies mutation directly on copies of the best 

chromosome.  

 

 

7.3.1 Discussion of the Experimental Results 

 

  The combined inheritance selection and asexual reproduction, in this 

experiment, was a better strategy for the developed evolutionary system to evolve in the 

long term. In this experiment, Sexual reproduction was better only in the beginning of the 

process, when evolution can still work with the original diversity of the population.  
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  In the long term, the best mutation rates are still the smaller ones in these 

experiments. The best rate is the one that has the highest probability of changing only a few 

bits of the chromosome each generation. In these experiments, the robot chromosome 

contained 2048 bits, but only 768 were relevant to evolution, since only the first three bits 

of the byte in the controller output contained the encoded command. The right mutation for 

this case was the one able to modify only one or two of these 768 bits, because it can 

produce all other six commands from the current one. For sexual reproduction, a mutation 

rate of 0.5% has the probability of changing 3.84 bits each time, and is better early on in 

the process. The mutation rate of 0.1% has the probability of changing 0.768 bits. Hence, 

0.1% is the closest probability of changing only one bit and showed the best results, since 

another bit or two can be changed by the crossover operation. For asexual reproduction, 

only mutation manipulates the bits, so 0.4% or 0.5% produce better results.  

  This solution, however, is still too slow to be applied to an unstructured 

controller such as the developed black box controller in a real environment containing a 

small population. To allow the developed evolutionary system to reach an optimal solution 

with these setting, another possible way is to change the crossover operator, as the next 

experiment will demonstrate.  
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Figure 7.9 – Summary: Comparison between the results of Experiments S1.1 
and S2.1 for the mutation rates of 0.1%, and 0.5%. The experiments tested 
the simulated evolution of the black box controller using inheritance 
selection for sexual and asexual reproduction. Here, Av is the average fitness 
of all the robots and Best is the fitness of the best robot in the generation.  
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7.4 Experiment S3: A Different Way to Evolve 

 

  This experiment attempted to evolve the bits in the chromosome that specify 

the controller behaviour in a different way that had not been attempted by any of the 

previous experiments. Here, the bits in the chromosome are grouped in small portions. 

From the analogy to nature, as every amino acid that forms the proteins is encoded by three 

nucleotides [Ler76] [Cam99], the first three bits (b0, b1, and b2) in the byte that represent 

the commands (this experiment is using the same settings of Experiment S1) are grouped 

and treated as an entity. It can be seen from Table 7.1 that this encoding still presents some 

neutrality, since the command FF can be coded by “0,0,0” and “1,1,1”. In this experiment, 

when the robots mate, they do not exchange or mutate single bits in the chromosome, they 

exchange the 3-bit entity that represents the commands. This developed technique was 

called command exchanging. 

  In this new strategy, the robots do not exchange bits in the crossover phase, 

they exchange commands. In the mutation phase, the bits are not inverted one by one, 

instead, the 3-bit entities that form the commands mutate together. In the crossover phase, 

the resulting command in the chromosome (the 3-bit entity) is randomly chosen from one 

of the parent chromosomes to occupy its corresponding position in the offspring 

chromosome. Mutation generates a random number r between zero and 100 for each one of 

the 256 commands (the 3-bit entity) and mutates it if r is smaller than the mutation rate. If 

the command is to be mutated, it is substituted by another command chosen randomly to 

occupy its position. 

 

• Aim of the Experiment 

  The aim of this experiment is to evaluate a new strategy to deal with the bits 

in the robot chromosome. It tested how evolution performed in the long term, to indicate if 

the optimal performance could be obtained using this new approach.  

 

• Experimental Setting 

  This experiment used the same settings of Experiment S1 and examined the 

new strategy of manipulating the bits with the selection-crossover strategy from 
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Experiment S1: inheritance with sexual reproduction. Table 7.4 presents a summary of the 

settings for this experiment. 

 

Table 7.4 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +1 point each time both outputs are the same 
Initial Fitness Value: 4100 points 
Maximum Fitness Value: 4356 points 
Generation Time: Simulated evolution 
Mutation Rate: 0.5% 
Selection Strategy: Inheritance 
Crossover Strategy: Sexual 
Speed Levels: Simulated evolution 
Sensors Enable: Fixed with all enabled 
Navigation Controller: Evolving Black box with 256 bytes 
Initial Sensor Configuration: “00-00-00-00-00-00-00-00” 
Initial Speed Configuration: Simulated evolution 
Initial Controller Configuration: Random. 
Software: SIM04.CPP and GRAFSIM04.CPP  (listed in Appendix A) 
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Figure 7.10 – Experiment S3: The results of Experiment S3 compared to 
Experiment S1.1 for the mutation rate of 0.5%. The experiments tested 
the simulated evolution of the black box controller using inheritance 
selection and sexual reproduction with and without command 
manipulation. Here, Av is the average fitness of all the robots and Best is 
the fitness of the best robot in the generation. 
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• Results 

  Figure 7.10 compares two experiments with the same mutation rate (0.5%) 

and sexual reproduction, but with the original strategy of bit-by-bit manipulation in the 

chromosome assumed in Experiment S1, against the new approach, that manipulates the 

commands directly. They started with the same performance until generation 330 from 

where the new approach showed a much superior performance evolving the population all 

the way to the optimal solution in 8500 generations. 

 

 

7.4.1 Discussion of the Experimental Results 

 

  This strategy of manipulating the whole command each time was much 

faster and reached the optimal solution, being able to evolve the robot population all the 

way from random to the hand-designed controller. The most interesting fact is that the 

search space did not change. It is still the same large number of possibilities that seemed 

impossible to overcome in the previous experiments. Before, evolution needed to find the 

right position for 768 bits in the chromosome, and this imposed a search space of 2768 that 

equals to 1.55×10231 possibilities. Here, evolution needed to find the right command from a 

set of eight for 256 positions in the chromosome corresponding to all possible input 

combinations, and the imposed search space was 8256, which is also equal to 1.55×10231 

possibilities. Therefore, the size of the search space did not change and is still very large. 

  This strategy is the most effective until now. However, it is still very slow if 

it is to be applied to the evolution of a real system, since it took 2500 generations to reach 

90% of the maximum performance. This would correspond to more than 40 hours of 

continuous evolution with a generation time of one minute. Therefore, there is still room 

for improvement in this approach. 
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7.5 Experiment S4: Disabling Back Mutation 

 

  In the previous experiments, mutation was randomly choosing which bits in 

the chromosome to change. This meant that any bit in the chromosome could mutate to a 

different value and later mutate back to its original value. In the scope of this work, these 

events were called back mutations [Ler76] [Cam99]. This fact was causing evolution to 

waste time trying to find a good solution by testing some configurations that have been 

tested before. Consider a chromosome that has 99% of its bits set to the correct ones. If any 

bit can be changed by mutation, the chance of changing the bad ones is only 1%. This 

means that 99% of the time, this strategy produces configurations that are potentially worse 

than the current chromosome, and many generations are wasted in evaluating them.  

  To prevent evolution from wasting time in evaluating configurations that 

have been tested before, a new strategy that prevents back mutations is developed in this 

experiment. It consists of marking each bit in the chromosome that suffered mutation and 

only allowing the bits that are not marked to mutate. To achieve this, a binary array was 

created in memory with the same size of the chromosome. It is initialised with zeros and 

when one bit in the chromosome is mutated, “1” is written to the corresponding position in 

the array. Only the bits in the chromosome that have zeros in the corresponding position in 

the array are allowed to mutate. Once all bits have mutated, the array will be full of “1s”. 

Then, the evolutionary system resets the array to “0s” and every bit in the chromosome will 

be allowed to mutate again. This strategy was called back-mutation prevention. 

  By preventing back mutations and mutating a single bit every generation, 

this strategy forces evolution to evaluate the effect produced by each bit in the 

chromosome. A problem that emerges from applying this strategy to an evolutionary 

system that uses asexual reproduction is that by changing only one bit per generation, 

mutation may not be able to produce all possible combinations of the bits in the 

chromosome. As explained in Section 7.4, if two bits needed to be changed to produce the 

correct command, changing one bit at a time will not increase performance and the change 

will be discarded.  

  This new strategy can be successfully applied to an evolutionary system that 

uses asexual reproduction if it can manipulate directly the 3-bit entities that define the 
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commands. Therefore, the same strategy for crossing over and mutating directly the 

commands presented in Experiment S3 was applied here. 

 

• Aim of the Experiment 

  The aim of this experiment is to apply a new strategy that prevents back 

mutation of the bits in the chromosome. It tested whether this strategy could be applied in 

sexual and asexual reproduction and provided data to analyse which is the best solution for 

evolving the robots in the long term. 

 

• Experimental Setting 

  This experiment used the same settings of Experiment S3 where the 

evolutionary system is able to manipulate the commands in the chromosome directly. It 

examined the new strategy of back-mutation prevention with both selection-crossover 

strategies from Experiments S1 and S2: inheritance with sexual and asexual reproduction. 

Table 7.5 presents a summary of the settings for this experiment. 

 

Table 7.5 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +1 point each time both outputs are the same 
Initial Fitness Value: 4100 points 
Maximum Fitness Value: 4356 points 
Generation Time: Simulated evolution 
Mutation Rate: Only 1 command (3 bits) is modified in the chromosome each time 
Back Mutation: Disabled 
Selection Strategy: Inheritance 
Crossover Strategy: Sexual and Asexual 
Speed Levels: Simulated evolution 
Sensors Enable: Fixed with all enabled 
Navigation Controller: Evolving Black box with 256 bytes 
Initial Sensor Configuration: “00-00-00-00-00-00-00-00” 
Initial Speed Configuration: Simulated evolution 
Initial Controller Configuration: Random. 
Software: SIM05.CPP and GRAFSIM05.CPP  (listed in Appendix A) 

 

• Results 

  Figure 7.11 compared the new back-mutation prevention strategy with 

sexual and asexual reproduction when mutation was allowed to modify only one command 

in the chromosome for each generation. The figure shows a considerable increase in 

performance for both sexual and asexual reproduction. As demonstrated by the previous 
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experiments, sexual reproduction worked better in the beginning of the process, but after 

600 generations, asexual reproduction dominated, reaching the optimal solution in less than 

2000 generations. Evolution with sexual reproduction was slower, but still efficient, 

reaching the optimal performance in 3700 generations.  

  The techniques developed so far succeeded in allowing the employment of 

the evolutionary system to control such a small population of robots. Figure 7.12 shows the 

effect in the performance of the system when the number of robots in the population is 

increased up to 100 individuals. The experiment indicates that a good gain in performance 

can be obtained by increasing the number of robots from 6 to 15. It can also be inferred 

from the experiment that increasing the population to more than 35 robots does not bring 

great improvements to the performance of the system until it reaches 90% of the maximum 

score. After this, the gain in performance is so small that it is difficult to justify the cost of 

doubling or tripling the number of robots. 
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Figure 7.11 – Experiment S4.1: Simulated evolution of the new strategy of 
back-mutation prevention for sexual and asexual reproduction. The 
experiment tested the simulated evolution of the black box controller using 
inheritance selection with command manipulation. Only one command (3 
bits) is allowed to mutate each time. Here, Av is the average fitness of all the 
robots and Best is the fitness of the best robot in the generation.  
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7.5.1 Discussion of the Experimental Results 

 

  Preventing back mutation was very efficient in speeding up the process of 

finding a solution. Evolution was able to reach 90% of maximum performance in less than 

950 generations for asexual reproduction and 1300 generations for sexual reproduction. 

These results allow the evolution of a real system in 15 hours. The combined strategies of 

preventing back mutations and manipulating the commands made viable the use of an 

unstructured controller such as the developed black box. 

  If the number of robots in the population is increased up to 35, the system 

can present a very good performance, reaching 90% of maximum performance in about 

500 generations. This is almost half of the time the six robots take to evolve to the same 

point. Figure 7.12 demonstrates that building six or ten more robots would improve 

considerably the performance of the system. More robots though will not bring an 

important gain and would probably just generate more interference between the robots, 
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Figure 7.12 – Experiment S4.2: Simulated evolution of the strategy of back-
mutation prevention with asexual reproduction for different population sizes. 
The experiment tested the simulated evolution of the black box controller 
using inheritance selection with command manipulation. Only one command 
(3 bits) is allowed to mutate each time. Here, Popn is the fitness of the best 
robot in the generation for the test with a population of n robots.  
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making the whole system slower. This experiment was intended to be a reference for future 

work with larger populations. 

  The strategy of back-mutation prevention tested in this experiment was very 

efficient in looking for a solution in a considerably large search space of 1.55×10231 

possibilities. It demonstrated the power of the developed evolutionary system for many 

other applications of genetic algorithms, not only in robotics. The performance of the 

system can be improved even more if the search space is reduced by using a neural network 

to implement a structured evolving controller. 

 

 

7.6 Experiment S5: The Neural Network Controller 

 

  In this experiment, a neural network is used to implement the evolving 

controller in order to impose some organization to evolution. It tried to propose a control 

circuit that can be configured by fewer bits than the black box, but one that is still able to 

drive the robot with a similar performance to the black box controller. 

  In this experiment, a neural network was designed according to the same 

architecture presented in Chapter 4. It has four groups of neurons (discriminators) with 

seven 2-input neurons each. This neural network is able to send four commands to the 

motor drive module: Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); 

and Turn Right Short2 (TRS2). These commands were explained before in Chapter 6, 

Section 6.2. Only two bits are necessary for encoding these four commands. Table 7.6 

shows how these commands were encoded with two bits. 

 

Table 7.6 – Encoding of the Neural Network Commands. 

Command Encoding 
FF 0,0 

TLS1 0,1 
TRS1 1,0 
TRS2 1,1 
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  The evolving neural network controller is evaluated in the same way as the 

black box controller, according to the strategy presented in Figure 7.1 and explained in 

Section 7.1. The sensors work with 1-bit precision in the medium range. Sensor S5 is not 

connected to the neural network, but still all possible 256 combinations of the eight sensors 

are used to evaluate the evolving neural network. Therefore, only 128 configurations are 

effectively relevant to evaluate the neural network. In the other 128 it will just repeat the 

same score obtained for the first 128 ones. Hence the neural network will score twice for 

the “x,x,x,0,x,x,x,x” and the “x,x,x,1,x,x,x,x” combinations. It was left this way because it 

facilitates the comparison of the results, since it still gives the same maximum score to the 

optimal solution: 4356 points. The evaluation proceeds by giving one point each time the 

commands coincide. 

  The optimal solution in this experiment is represented by a simplified hand-

designed controller similar to the one described in Section 6.3, which operates according to 

the following algorithm: 

 

   - Left = Right = 0; 

   If (Sensor4=1) then Left = Left + 1; 

  P If (Sensor3=1) then Left = Left + 1; 

  r If (Sensor2=1) then Left = Left + 1; 

  i If (Sensor6=1) then Right = Right + 1; 

  o If (Sensor7=1) then Right = Right + 1; 

  r If (Sensor8=1) then Right = Right + 1; 

  i If (Sensor1=1) then Command = TRS2; 

  t If (Left > Right) then Command = TRS1; 

  y If (Left = Right) then Command = FF; 

   If (Left < Right) then Command = TLS1; 

  + If (Sensor1=1 and Sensor4=1) then Command = TRS1; 

   If (Sensor1=1 and Sensor6=1) then Command = TLS1; 

 

  In the evaluation phase of the simulated evolution, the neural network 

controller is compared to the above hand-designed controller for all 256 possible input 

combinations and each time the two outputs are the same, the robot scores one point. The 

process of evaluation works similarly to the one shown in Figure 7.1, but with only two 

bits in the output of both controllers encoding the four possible commands.  
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• Aim of the Experiment 

  The aim of this experiment is to evaluate the performance of the neural 

network controller, determining if it can be evolved faster than the black box controller. It 

tested whether the structured neural network controller can accelerate the evolution of the 

system with four different mutation rates.  

 

• Experimental Setting 

  This experiment used the same evaluation strategy of Experiment S1 with 

the same selection-crossover strategy: inheritance with sexual reproduction. Differently 

from the last experiment, the neural network controller here was evolved without the 

strategy that prevented back mutation from occurring and by manipulating the bits in the 

chromosome, not the commands. This was necessary because the neural network does not 

allow evolution to manipulate directly the 3-bit entities that define commands. Table 7.7 

presents a summary of the settings for this experiment. 

 

Table 7.7 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +1 point each time both outputs are the same 
Initial Fitness Value: 4100 points 
Maximum Fitness Value: 4356 points 
Generation Time: Simulated evolution 
Mutation Rate: 0.5%, 1%, 3%, 15% 
Selection Strategy: Inheritance 
Crossover Strategy: Sexual 
Speed Levels: Simulated evolution 
Sensors Enable: Fixed with all but S5 enabled 
Navigation Controller: Evolving Neural Network (m=4, n=7, neuron size=4) 
Initial Sensor Configuration: “00-00-00-11-00-00-00-00” 
Initial Speed Configuration: Simulated evolution 
Initial Controller Configuration: Random. 
Software: SIMNEU01.CPP and GRAFNEU01.CPP  (listed in Appendix A) 

 

• Results 

  The results shown in Figure 7.13 compared four different mutation rates: 

0.5%, 1%, 3%, and 15%. The neural network controller evolved much faster than the black 

box controller did, even without manipulating the commands directly or preventing back 

mutations from occurring. It reached 90% of the best performance in the first 310 

generations, dropping the estimated experiment time from 15 hours (the best performance 
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obtained in Experiment S4) to 5.2 hours if the real robots are evolved with 1-minute 

generations.  

 

 

7.6.1 Discussion of the Experimental Results 

 

  According to Figure 7.13, the higher mutation rates of 3% and 15% 

produced better results in the beginning of the process, where there were more bad genes 

than good ones in the chromosomes. Therefore, mutating a greater number of genes in 

these chromosomes actually helped to evolve faster. Even then, the average fitness of the 

population was already lower than that produced by a lower mutation such as 1%. The 

mutation rate of 3% could reach 4320 points, which is 85.93% of the maximum result, in 

less than 120 generations, outperforming 1% mutation. The mutation rate of 15% reached 

4280 points, which is 70.31% of the maximum result, in less than 22 generations, 

outperforming all other rates. Therefore, the correct mutation rate depends on what is the 

desired behaviour of the system. If what is important is to converge quickly to a reasonable 
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Figure 7.13 – Experiment S5: Simulated evolution of the neural controller 
using inheritance selection and sexual reproduction for four different 
mutation rates: 0.5%, 1%, 3%, and 15%. Here, Av is the average fitness of all 
the robots and Best is the fitness of the best robot in the generation. 
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solution, a higher mutation is the best option. If a more solid performance is expected, a 

lower mutation rate should be chosen.  

  The neural network has fewer configuration bits than the black box 

controller does; four groups of seven neurons with four bits each, in a total of 112 bits. The 

search space is considerably smaller than the black box one: 2112 = 5.19×1033 possibilities. 

With 112 bits to adjust, 1% mutation performed better than 0.5%. As the relationship 

between inputs and commands is intrinsic to the neural network generalisation, there is no 

way to manipulate directly the commands, since it is not possible to identify which bits 

encode each command inside the neural network. Therefore, the same strategy used in the 

last experiment cannot be applied to increase the performance of the neural network.  

 

 

7.7 Experiment S6: Predation 

 

  As the direct manipulation of the commands cannot be applied to the neural 

network controller, a different approach was developed to increase its performance. It was 

called predation. In analogy to nature, the robot population can suffer regular attacks of a 

“predator” that selects the worst (“weakest”) robot in the specified generation and destroys 

(“kills”) it [Cam99], opening space in the population for the migration of new individuals, 

what brings more genetic diversity to the group [Ler76]. To achieve this, every 20 

generations, the robot with the smallest average fitness is selected and substituted by a 

robot with a random configuration.  

  It is important to give enough time to the population so that the attacked 

robot can recover from the “attack” and its new genetic material can be incorporated in the 

population. If the attacks occur in less than ten generations, the attacked robot will not have 

time to recover and will be selected as the worst one in the next attack. The necessary time 

for the attacked robot to recover depends on the complexity of the system.  
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• Aim of the Experiment 

  The aim of this experiment is to test the effects of the predation strategy on 

the evolving robot population. It tested whether this new strategy could make the neural 

network evolve faster. It also tested different mutation rates to indicate the one that 

provided the best performance. 

 

• Experimental Setting 

  This experiment used the same evaluation strategy of Experiment S1 with 

the same selection-crossover strategy: inheritance with sexual reproduction. The robots 

controlled by the neural network suffered predation every 20 generations. Table 7.8 

presents a summary of the settings for this experiment. 

 

Table 7.8 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +1 point each time both outputs are the same 
Initial Fitness Value: 4100 points 
Maximum Fitness Value: 4356 points 
Generation Time: Simulated evolution 
Mutation Rate: 0.5%, 1%, 3%, 15% 
Selection Strategy: Inheritance with Predation 
Crossover Strategy: Sexual 
Frequency of the Attacks: Every 20 generations 
Speed Levels: Simulated evolution 
Sensors Enable: Fixed with all but S5 enabled 
Navigation Controller: Evolving Neural Network (m=4, n=7, neuron size=4) 
Initial Sensor Configuration: “00-00-00-11-00-00-00-00” 
Initial Speed Configuration: Simulated evolution 
Initial Controller Configuration: Random. 
Software: SIMNEU02.CPP and GRAFNEU02.CPP  (listed in Appendix A) 

 

• Results 

  The results presented in Figure 7.14 show the effects of the attacks in the 

robot population that evolved with 0.0% mutation. After the initial improvement resultant 

from combining the population diversity, the system would stop evolving as shown by the 

curve from Experiment S5. However, the new genetic material produced by the attacks 

kept the population evolving up to 4300 points in 300 generations. It can be seen in the 

figure that the attacks in generations 40, 60, and 120 created a random robot that, combined 

with the best robot, produced a superior configuration that improved the population 



 

 196 

performance. If all robots converge to the same configuration, which would only happen if 

mutation is 0.0%, the worst robot is by default Robot 6. 

  It can be seen in Figure 7.15 that this strategy improved the system 

performance if compared to Experiment S5. With the mutation rate of 1%, it reached 90% 

of the maximum performance in 150 generations. A real system would then reach a good 

performance in less than 2.5 hours. Once again, 0.5% mutation performed worse than 1%, 

since it is not enough to modify at least one of the 112 genes every generation. The 

mutation rate of 1% has a higher chance of modifying only one or two of the genes, and 

behaved better in adjusting a chromosome that has most of its genes correct.  
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Figure 7.14 – Experiment S6.1: Simulated evolution of the predation strategy 
compared to evolution without predation. The experiments tested the 
simulated evolution of the neural controller using inheritance selection, 
sexual reproduction, and mutation rate of 0.0%. Here, Robotn is the fitness of 
Robot n in the generation in the experiment with predation and S5Best00% is 
the fitness of the best robot in the generation in the experiment without 
predation (Experiment S5). 
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7.7.1 Discussion of the Experimental Results 

 

  The predation strategy presented in this experiment was able to improve the 

performance of the evolutionary system. The purpose of predation in this experiment was 

not to eliminate unfit (weak) robots, since the fitness of the random configurations used to 

substitute the destroyed robot was often worse than the original one. Even though the 

resulting random configuration was, after many attacks, worse than the destroyed robot, the 

new genetic material that it contained, combined with the chromosome of the best robot, 

produced in many occasions a better performance. Therefore, the purpose of predation in 

this experiment was to bring more diversity to the population.  

  The instant of the attacks can be identified in the figures by the drop of the 

fitness of the attacked robot, occurring every 20 generations. This happened because the 

resulting fitness of the attacked robot, which is reconfigured by a random chromosome, is 

usually worse than the one that the original robot would produce. Therefore, the average 

performance of the population usually drops after the attacks. Nevertheless, after a few 
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Figure 7.15 – Experiment S6.2: Simulated evolution of the neural controller 
using inheritance selection, sexual reproduction, and predation for four 
different mutation rates: 0.5%, 1%, 3%, and 15%. Here, Av is the average 
fitness of all the robots and Best is the fitness of the best robot in the 
generation. 
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generations, the new genetic material is filtered by the selection-crossover operators and 

incorporated in the population, often increasing the average performance. By protecting the 

best robot and allowing it to survive to the next generation, the maximum fitness of the 

population did not change, and the chromosome resulting from the evolutionary process 

until the current generation was always protected. In the ideal environment of simulation, 

this chromosome is only overwritten when one of its descendants produces a better 

performance. In the real world of physical robots, however, protecting this chromosome is 

much more difficult, since the noise and interactions among the robots can make a lucky 

unfit robot outperform the best one. It is therefore necessary to use all means to protect the 

best configuration, and a selection strategy that considers even more than three generations 

may help it. 

  Predation is a powerful strategy to prevent the population from being stuck 

in local optima, since it introduces new genetic material that may help the population to 

crawl down the slope and explore new possibilities in the fitness landscape [Har93a]. 

Getting stuck in local optima is an intrinsic problem of most evolutionary systems 

[Har97b], since it is very difficult, and sometimes impossible, to know, from the point of 

view of the evolving individuals, if the population can be improved even more, or if the 

optimal solution was actually achieved. With the developed predation strategy, the 

population can depend on a steady supply of new genetic material to bring in more 

diversity, even after it completely converged to a local optima [Hus95].  

  This was the last experiment in simulation. The results obtained with the 

help of the simulator were essential in providing useful data on the performance of the 

system. The analysis of the obtained information provided vital insights on developing new 

strategies that improved considerably the performance of the system. The simulator also 

made possible the evaluation of different parameters such as different mutation rates, 

reproduction and selection strategies, and evolvable controllers. The next chapter makes 

use of the developed techniques, combining the best results to produce an evolutionary 

system able to evolve not only the navigation controller, but also the sensor configuration 

and robot speed, which form the morphology of the robot.  
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8 EMBEDDED EVOLUTION 
 

 

  This chapter incorporates the strategies developed and tested in the 

preliminary experiments and in simulation (Chapters 6 and 7) to design a fully embedded 

evolutionary system that is able to evolve not only the robot navigation control circuit, but 

also the morphology of the robot: the configuration of the sensors and the speed levels of 

the motors. It describes the implementation of two controllers: one is based on an 

unstructured black box (see also Section 6.4); and the other on a neural network (see also 

Section 7.6). Appendix C contains the average results of many experiments that could not 

be included in the body of the thesis. For Chapter 8, it includes data related to Sections 8.1 

and 8.2. 

  All the experiments shown in this chapter were evolved in the environment 

shown in Figure 8.1. It is an environment of medium complexity where the six robots could 

interact with each other and the obstacles. The robot sensors were set to have only one bit 

of precision and work in the medium range (15cm) (see Figure 4.30 and Figure 6.5). Sensor 

 

Figure 8.1 – General view of the six robots in the environment of medium 
complexity used in the experiments in this chapter. 
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S5 in the back of the robots can be used by the black box controller but has not been 

connected to the neural network controller. The position of the sensors around the robots is 

under evolutionary control. In the experiments shown in this chapter, all sensors can be 

selected by their controlling pair of bits. 

 

 

8.1 Evolving with a Black Box Controller 

 

  This experiment applies every strategy developed in the previous chapters 

that can improve the performance of an evolving black box controller. This is an 

unstructured, undefined architecture, which was described in Section 6.4 and was presented 

in Figure 6.22.  

  The controller used eight commands to control the motor drive module: 

Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); Turn Right Short2 

(TRS2); Turn Left Short2 (TLS2); Turns Right Long (TRL); Turn Left Long (TLL); and 

Front Medium (FM). The first seven commands were explained before in Chapter 7 and in 

the last one, the Front Medium command encoded by “111”, the robot moves forward with 

Medium speed. The speed levels of the robot Fast and Medium, activated by the commands 

FF and FM, are defined by ten bits stored in the robot chromosome as explained in Section 

4.2.3 and illustrated in Table 4.4. The speed of the robots is not fixed at the maximum 

speed as in the previous experiments and is now under evolutionary control. In this 

experiment, to keep the robots moving all the time with a reasonable speed, the first five 

bits that define the speed levels in the chromosome are fixed at “1”. These guarantee that 

both speeds Fast and Medium will have at least five bits on, so the lower speed that the 

robots can travel is 17 (from a total of 32 possible speeds) according to Table 4.4. The 

maximum that Medium can be is 20 and Fast is 32.  

  The eight commands are encoded by the first three bits (b0, b1, and b2) of the 

byte stored in the black box memory, as explained in Section 6.4. The black box lookup 

table is implemented using 256 bytes stored in the robot RAM memory. Every byte of the 

memory is arranged in the chromosome to form a 2048-bit string and crossover and 

mutation can affect each one of these bits. From the 2048 bits corresponding to the eight 

lookup tables, only 768, which correspond to the first three tables (b0, b1, and b2) are 
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relevant to evolution. This is the size of the genotype of the robots that correspond to the 

navigation control circuit, and considering that any one of them can produce a different 

phenotype (i.e., there is no neutrality in this case), the imposed search space is considerably 

large: 2768 = 1.55×10231. 

 

• Aim of the Experiment 

  The aim of this experiment is to provide the first experimental proof of an 

embedded evolutionary system that evolves an unstructured controller and the morphology 

of the robot. The 16 bits that control the sensor configuration, plus five of the ten bits that 

control the robot speed levels, and the 2048 bits of the black box are under evolutionary 

control. The total number of bits controlled by evolution is 2069 plus 5 fixed ones. 

 

• Experimental Setting 

  A new hand-designed controller was developed as a reference to compare 

the results obtained by the evolutionary system. It is a variation of the previously-described 

ones, which includes the new command FM for the motor drive module. In this 

experiment, the hand-designed controller operated according to the following algorithm: 
 

   Left = Right = 0; 

   - If (Sensor4=1) then Left = Left + 1; 

   If (Sensor3=1) then Left = Left + 1; 

   If (Sensor2=1) then Left = Left + 1; 

  P If (Sensor6=1) then Right = Right + 1; 

  r If (Sensor7=1) then Right = Right + 1; 

  i If (Sensor8=1) then Right = Right + 1; 

  o If (Sensor1=1) then Command = TRS2; 

  r If (Left > Right) then Command = TRS1; 

  i If (Left = Right) then Command = FM; 

  t If (Left < Right) then Command = TLS1; 

  y If (Sensor1=1 and Sensor4=1) then Command = TRS2; 

   If (Sensor1=1 and Sensor6=1) then Command = TLS2; 

   If (Sensor4=1 and All other Sensors=0) then Command = TRL; 

  + If (Sensor6=1 and All other Sensors=0) then Command = TLL; 

   If (All Sensors=0) then Command = FF; 
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  This hand-designed algorithm behaves as the ones explained in Chapter 6, 

but will only allow full speed (Fast) if all sensors are zero. If the robot detects obstacles in 

both sides, but the variable Left is equal to Right, the robot proceeds with caution: Front 

Medium. In this experiment, the first three bits (b0, b1, and b2) of the byte that represent the 

commands are grouped and treated as an entity, as explained in Section 7.4. Table 8.1 

shows how these commands are encoded with three bits in this experiment. 

 

Table 8.1 – Encoding of the Black Box Commands. 

Command Encoding 
FF 0,0,0 

TLS1 0,0,1 
TRS1 0,1,0 
TRS2 0,1,1 
TLS2 1,0,0 
TRL 1,0,1 
TLL 1,1,0 
FM 1,1,1 

 

  This experiment uses the strategy of back-mutation prevention developed in 

Section 7.5. A new inheritance selection that calculates the average fitness of the robots in 

the last six generations was adopted in this experiment. This strategy also protected up to 

two robots that score more than the fitness of the best robot, as explained in Section 6.5. 

This experiment makes use of asexual reproduction. As it was explained in Section 7.3, the 

robots do not cross over their chromosomes. The modified selection strategy is described 

below: 

 

!" The score used to select the robot is the average of the robot fitness in 

the last six generations (i.e., inheriting the scores of its previous five 

generations). The robot with the best average survives, but does not 

breed with up to two robots with the fitness in the present generation 

higher than its own fitness. The other robots overwrite their 

chromosome with a copy of the chromosome of the best robot, and then 

suffer mutation in the three bits that represent a command. 

 

  Two charts in this chapter display the average fitness value (AvRn) scored by 

each robot in the current and the previous five generations. For each robot: 
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  AvRn = (FitnessRnG0 + FitnessRnG-1 + FitnessRnG-2 + FitnessRnG-3 +  

      + FitnessRnG-4 + FitnessRnG-5)/6 

 

  In the equation above, n is the number of the robot; FitnessRnG0 is the 

fitness of the Robot n in the current generation; FitnessRnG-1 is the fitness scored by Robot 

n in the previous generation; and so on until FitnessRnG-5, which is the fitness scored by 

Robot n five generations before. 

  This experiment used a fitness function designed to take into consideration 

the information of the infrared sensors to reward or punish the robots. This function 

rewards the robot when the command is FF or FM and there are no obstacles around the 

robot. It also rewards it if the robot detects an obstacle in one side and turns to the other 

side. The robot is punished if it turns towards the obstacle. This algorithm does not punish 

the robot for colliding, only for making a bad manoeuvre. Table 8.2 presents a summary of 

the settings for this experiment. The selected fitness function for this test was:  

 

   1- Start with 4096 points; 

   2- Reward: increase fitness by 10 points every 1 second if (All 
Sensors=0 or Left=Right) and command=FF, FM; 

   3- Reward: increase fitness by 10 points if Left > Right and 
command=TRS1, TRS2, TRL; 

   4- Reward: increase fitness by 10 points if Left < Right and 
command=TLS1, TLS2, TLL; 

   5- Punishment: decrease fitness by 10 points if Left < Right and 
command=TRS1, TRS2, TRL; 

   6- Punishment: decrease fitness by 10 points if Left > Right and 
command=TLS1, TLS2, TLL; 

 

 

• Results 

  This experiment is described in three charts: Figure 8.2 shows the fitness 

values of the six robots; Figure 8.3 shows the fitness of the best robot in the generation and 

the average fitness of the population; and Figure 8.4 shows the average fitness of each 

robot in the previous six generations that is used to select the best robot according to the 

inheritance selection strategy.  
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Table 8.2 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +10 points every 1s if all Sensors=0 or Left=Right and command=FF 

or FM; 
+10 points if Left > Right and command=TRS1, TRS2, TRL or Left < 
Right and command=TLS1, TLS2, TLL 
–10 points if Left < Right and command=TRS1, TRS2, TRL or Left > 
Right and command=TLS1, TLS2, TLL 

Initial Fitness Value: 4096 points 
Maximum Fitness Value: 4696 points 
Generation Time: 60 seconds 
Mutation Rate: Only 1 command (3 bits) is modified in the chromosome each time 
Back Mutation: Disabled 
Selection Strategy: Inheritance (6 generations) 
Crossover Strategy: Asexual 
Frequency of the Attacks: Predation Disabled 
Speed Levels: Fast and Medium with first 5 bits fixed and the others evolving 
Sensors Enable: All sensors under evolutionary control 
Navigation Controller: Evolving Black box with 256 bytes 
Initial Sensor Configuration: Random 
Initial Speed Configuration: Random 
Initial Controller Configuration: Random. 
Software: EXP15.CPP and GRAF15.CPP  (listed in Appendix A) 
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Figure 8.2 – Experiment E1: Evolution of the black box controller and 
morphology using inheritance selection and a biasing fitness function in 
an environment of medium complexity, with sexual reproduction, 
command manipulation, back-mutation prevention, and generation time 
of 60s. Only one command (3 bits) is allowed to mutate each time. 
Here, Robotn is the fitness of Robot n in the generation.  
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Figure 8.3 – Summary of Experiment E1: Summary showing the average 
fitness (Average) of all robots and the fitness of the best robot (BestRob) in 
the generation. 
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Figure 8.4 – Details of Experiment E1: More details of the experiment 
showing the average fitness of each robot in the last six generations. Here, 
AvRn is the average fitness scored by robot n in the current and the previous 
five generations. 
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8.1.1 Discussion of the Experimental Results 

 

  The first chart shown in Figure 8.2 presents the behaviour of the six 

evolving robots in 200 generations of 60 seconds. They evolved from a random controller 

with random speed levels and sensor configuration to a group of competing efficient 

solutions containing four or five sensors (S1,S3,S4,S6,S8; S3,S4,S6,S8; S2,S3,S4,S7), and a 

controller that learned how to deal with them. Robot 5 started with four sensors enabled 

(S3,S4,S6,S8), and was an efficient combination that was soon transferred to the other 

robots in the first 20 generations. Next, their controllers had to adapt to work with small 

variants from this configuration. This took more than 80 generations. 

  The speed levels started at random values (“1111110011”), but were 

controlled by the evolutionary system and soon both levels (Medium and Fast) dropped to 

17. This was an emergent strategy used by evolution that made the robots travel slower in 

the beginning of the process, when their controllers were not well-developed to deal with 

all situations. Level Medium stayed at 17, varying very little during the process, but Fast 

was progressively increased after generation 100, when the robots were better-adapted to 

deal with a faster speed. Level Fast oscillated between 20 and 26 in the last 35 generations, 

averaging 23. The resultant configuration for the bits that define the robot speed was 

“1111101100”, which kept level Medium in the lower speed level (Medium = 17), but 

increased level Fast to 23. The first five bits were fixed at “1” to prevent the robots from 

going slower than 17, so evolution could control only the last five bits: “11111xxxxx”. The 

Medium level is calculated by counting the number of ones in the first six of these 

configuration bits and Fast is calculated by counting the ones in all of the bits and then 

converting the count according to Table 4.4. 

  The chart in Figure 8.3 shows that the population gradually converged to a 

small set of efficient configurations combining morphology and control that could drive the 

robots practically without colliding. The average fitness of the population oscillated in the 

beginning of the process, but in the end it got very close to the curve of the fitness of the 

best robot, since with asexual reproduction the population is a copy of the best robot that 

suffered only one mutation. Therefore, all the robots in the end of the evolutionary 

experiment had very similar behaviours, or at least the ability to produce similar 

performances. The small differences that still persisted were a consequence of the influence 

of noise and the interactions between the robots. As the generations passed, there were 
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fewer poorly-adapted robots crashing into the good ones, so the average performance 

increased.  

  The chart shown in Figure 8.4 represents the average fitness of each robot in 

the previous six generations and illustrates how the robots were selected to breed. The 

increase in performance that happened around generation 105 was initiated by Robot 5, 

which learned how to manoeuvre properly with four sensors enabled. It soon taught Robot 

3, which began to dominate the population for 30 generations, since it had the best 

combination of controller and morphology.  

  The bits corresponding to the commands of the black box controller mutate 

in units of three bits, corresponding to each command. However, the bits corresponding to 

the sensor configurations and the speed of the robot mutate bit-by-bit, with only one bit 

allowed to be changed each time. An interesting event was observed in this experiment: 

after the population started to converge in the last 30 generations of the process, the sensor 

configurations still varied into a small set of solutions with four or five sensors enabled, 

but the controller configuration did not change much. In fact, it was able to perform the 

same manoeuvres regardless of being attached to four or five sensors. This helped to 

preserve a good performance while the sensor and speed configurations kept changing, 

since the controller did not need to adapt again after the robot morphology changed.  

  This experiment succeeded in showing that the embedded evolutionary 

system was able to evolve a population of real robots controlled by an unstructured black 

box and having their morphology manipulated by evolution. Together with the data 

presented in Appendix C, it provided the first experimental proof of the embedded 

evolution concept where both an unstructured controller and morphology were evolved. 

The system was able to find efficient solutions in a considerably large search space of 

1.987×10234 possibilities (eight possible commands to occupy the 256 possible outputs of 

the black box controller make: 8256 × 28 sensor configurations × 5 possible speed levels). 

  In this experiment, the final version of the evolving controller, obtained after 

200 generations, did not behave exactly as the preconceived hand-designed controller when 

connected to five sensors (S1, S3, S4, S6, and S8). It was, nevertheless, able to manoeuvre 

the robots without colliding and produced a high performance. The system did not 

converge to an optimal solution, because it was not necessary, since many configurations 

obtained after 200 generations were able to produce the higher performance. 
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8.2 Evolving with a Neural Network Controller 

 

  This experiment shows for the first time an embedded evolutionary system 

evolving a structured neural network controller together with the morphology of the robot. 

Both the sensor configuration and the speed of the motors are under evolutionary control. 

This experiment makes use of the most efficient mutation rate and the selection and 

reproduction strategies that were developed in simulation. It also incorporates the 

developed strategy of predation to increase the performance of the system as it was 

demonstrated in Section 7.7. 

  In this experiment, the robots were evolved in the environment of medium 

complexity presented in Figure 8.1. The sensor configuration and motor speed are 

controlled by evolution in the same way as explained before in Section 8.1. The main 

difference between this experiment and the previous one is the use of a structured neural 

network to implement the navigation control circuit. 

 

• Aim of the Experiment 

  The aim of this experiment is to provide the first experimental proof of an 

embedded evolutionary system that evolves a structured neural network controller and the 

morphology of the robot. The evolutionary system is able to manipulate the 16 bits that 

control the sensor configuration, plus five of the ten bits that control the robot speed levels, 

and the 112 bits that define the contents of the neurons of the neural network. The total 

number of bits controlled by evolution is 133 plus 5 fixed ones. The neural network can 

produce four different commands and is connected to seven sensors (S5 is controlled by 

evolution, but is not connected to the neural network, so it is irrelevant if it is enabled or 

not). The number of possible genotypes for the controller alone is 2112 = 5.19×1033. 

However, because of the generalisation ability of the neural network, many of these 

genotypes produce the same phenotype.  

 

• Experimental Setting 

  The neural network architecture was explained before in Section 4.1.1 and 

its configuration is the same shown in Figure 6.6, which was described in Section 6.2. It 
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has four groups of neurons (discriminators) with seven 2-input neurons, each neuron 

containing four bits. The only difference is that instead of the command Turn Right Short2 

(TRS2), the neuron group 4 is now representing the class of the command Front Medium 

(FM). Therefore, the neural network controller provides four commands to drive the 

motors: Front Fast (FF); Turn Left Short1 (TLS1); Turn Right Short1 (TRS1); and Front 

Medium (FM). The commands are encoded by only two bits: FF – “00”; TLS1 – “01”; 

TLS2 – “10”; and FM – “11”. These commands were explained before in Sections 6.2 and 

8.1. Five of the ten bits in the chromosome that define the speed levels of the robot Fast 

and Medium, activated by the commands FF and FM, are again under evolutionary control, 

as explained before in Section 8.1. The first five bits that define the speed levels in the 

chromosome are fixed to “1” to prevent the robots from moving too slowly.  

  The neural network controller was evolved without the strategy that 

prevented back mutation from occurring and by manipulating the bits in the chromosome, 

not the commands. This was necessary because the neural network does not allow 

evolution to manipulate directly the commands. An inheritance selection that calculates the 

average fitness of the robots in the last six generations was adopted in this experiment. This 

strategy also protected up to two robots that score more than the fitness of the best robot, as 

explained in Sections 6.5 and 8.1. This experiment uses sexual reproduction as the 

crossover operator, where the robot with the best average is selected to breed by combining 

its chromosome with the ones of the robots that are not protected in the current generation. 

The modified selection strategy is described below: 
 

!" The score used to select the robot is the average of the robot fitness in 

the last six generations (i.e., inheriting the scores of its previous five 

generations). The robot with the best average survives, but does not 

breed with up to two robots with the fitness in the present generation 

higher than its own fitness. The other robots combine randomly their 

chromosomes with the one of the best robot, and then suffer mutation.  
 

  The mutation strategy generates a random number r between zero and 100 

for each one of the 133 bits in the chromosome and flips it if r is smaller than the mutation 

rate. This experiment uses a very simple fitness function in order to prevent biasing 

evolution towards a pre-conceived solution. Rule 3 punishes the robots that keep turning 
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for more than 15 seconds, encouraging them to move forward. The selected fitness function 

for this experiment is:  
 

   1- Start with 4096 points; 

   2- Reward: increase fitness by 10 points every 1 second; 

   3- Punishment: decrease fitness by 30 points for every time 
command is not FF or FM for more than 15 seconds; 

   4- Punishment: decrease fitness by 10 points for every collision if 
command = FF or FM. 

 

  In this experiment, the robot population suffered regular attacks (every ten 

generations) of a “predator” that selected the robot with the smallest average fitness in the 

specified generation and substituted it by a random one. Table 8.3 presents a summary of 

the settings for this experiment. 

 

Table 8.3 – Summary of the Experimental Settings 

Parameter Definition 
Fitness Function: +10 points every 1s 

–30 points for turning for more than 15s 
–10 points for colliding when command=FF, FM 

Initial Fitness Value: 4096 points 
Maximum Fitness Value: 4696 points 
Generation Time: 60 seconds 
Mutation Rate: 1% 
Back Mutation: Enabled 
Selection Strategy: Inheritance (6 generations) 
Crossover Strategy: Sexual 
Frequency of the Attacks: Every 10 generations 
Speed Levels: Fast and Medium with first 5 bits fixed and the others evolving 
Sensors Enable: All sensors under evolutionary control (S5 is not connected) 
Navigation Controller: Evolving Neural Network (m=4, n=7, neuron size=4) 
Initial Sensor Configuration: Random 
Initial Speed Configuration: Random 
Initial Controller Configuration: Random. 
Software: EXP16.CPP and GRAF16.CPP  (listed in Appendix A) 

 

• Results 

  As in the previous experiment shown in Section 8.1, the evolutionary 

experiment here is also described in three charts: Figure 8.5 shows the fitness values of the 

six evolving robots; Figure 8.6 shows the fitness of the best robot in the generation and the 

average fitness of the population; and Figure 8.7 shows the average fitness of each robot in 

the previous six generations.  
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Figure 8.5 – Experiment E2: Evolution of the neural controller and 
morphology using inheritance selection and a simple fitness function in an 
environment of medium complexity, with sexual reproduction, predation, 
mutation rate of 1%, and generation time of 60s. Here, Robotn is the fitness 
of Robot n in the generation.  
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Figure 8.6 – Summary of Experiment E2: Summary of the experiment 
showing the average fitness (Average) of all robots and the fitness of the 
best robot (BestRob) in the generation.  
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Figure 8.7 – Details of Experiment E2: More details of the experiment 
showing the average fitness of each robot in the last six generations. Here, 
AvRn is the average fitness scored by robot n in the current and the previous 
five generations.  

 

 

8.2.1 Discussion of the Experimental Results 

 

  Figure 8.5 shows a very distinct behaviour, since this experiment used a 

non-biasing fitness function, many different solutions were produced and evaluated by 

evolution. An interesting point is that maximum fitness was obtained from the first 

generation. These happened because some robots produced in the first generations 

developed a kind of wall following behaviour, where they tried to stay close to the walls or 

obstacles, but keeping a safe distance, so they did not collide with them. This could 

produce maximum fitness in some generations, but as it can be observed in the chart, one 

robot could have very distinct performances with the same controller from one generation 

to the other. They could avoid colliding into the walls, but suffered collision from other 

robots, so that in some generations their performance dropped substantially. This 

configuration nevertheless spread quickly through the population and a particular event 

started to happen when two robots with this configuration started to walk around each 

other, each considering its fellow robot a wall to be followed. They kept spinning around, 
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crashing upon everything in their way. This was responsible for the drop in performance 

near generation 13, which can be better observed in Figure 8.6. The population ended up 

converging to this unstable solution, a local optima, and could reach a better configuration 

only because of a predator attack that brought in new genetic material. 

  The third attack of the predator, in generation 30, resulted in a robot that 

could for the first time use one sensor in the front (S2) and produced a more steady 

performance. This can be observed in Figure 8.7, where the average of the fitness of each 

robot in the last six generations started to improve. This happened because, although this 

configuration did not produce such high scores as the previous wall-following behaviour, 

its average result was more consistent, and the average fitness of the population increased 

considerably between generations 30 and 40. 

  By generation 42, Robot 2, which was able to use properly S2 and S7, had 

been selected as the best robot for six generations and started to improve the others. From 

successive combinations with Robot 2, Robot 5 learned one more sensor, mastering S2, S4, 

and S7, a very powerful combination. From generation 60 on, all robots learned to 

manoeuvre properly according to at least three sensors, one in the front, and two lateral 

ones. Robot 3, from generation 70, dominated a population where a small set of efficient 

solutions competed to be selected as the best robot.  

  In this experiment, both speed levels Fast and Medium varied from 17 to 20 

through the whole experiment, indicating that a less biasing fitness function tends to be 

more careful, preserving lower, but safer, speed levels. The system oscillated considerably 

in the first 30 generations and convergence was only possible because of the inheritance 

selection that calculated the average fitness of the previous six generations for each robot. 

It can be seen in Figure 8.7 that in spite of all oscillations in the performances of the robots 

in Figure 8.5, the average fitness of the robots in six generations shown in Figure 8.7 

provided a better way of indicating the real capacity of the robots. 

  This experiment illustrated the power of the developed predation strategy in 

providing more diversity when the population was trapped in a local optima. The new 

genetic material it supplied in the first thirty generations was essential to allow the 

population to explore more widely the fitness landscape. The disadvantage of this strategy 

is that it never allowed the average of the population fitness to reach the maximum score, 

since a random robot was introduced every ten generations, causing a drop in the 

performance of the population that can be easily identified in Figure 8.6. 
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  The developed evolutionary system succeeded in evolving the real robots, 

initialised with random controllers and morphologies, reaching efficient solutions after 200 

generations of 60 seconds. This experiment, together with the data presented in Appendix 

C (Section C.3.1) provided the first experimental proof of an embedded evolutionary 

system that was able to evolve a structured neural network controller together with the 

morphology of the robots in real time in the real world. It produced a satisfactory collision-

free behaviour after 200 generations. 

  This experiment closes the last experimental chapter of this thesis. The 

experiments reported in this work analysed of the developed evolutionary strategies and 

their configuration parameters. These experiments demonstrated that the developed 

evolutionary system is a very powerful approach to developing a self-adapting distributed 

robot control system that enabled collision-free navigation behaviour in a population of six 

autonomous mobile robots.  
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9 CONCLUSION 
 

 

  This final chapter shows how the most relevant aspects of the developed 

work presented in this thesis can contribute to the state-of-the-art of evolutionary robotics 

and artificial intelligence with important ideas, novel strategies, and inspiring discussions. 

This chapter also reviews whether the obtained results achieved the proposed objectives. It 

highlights the most relevant conclusions arising from the experiments carried out in the 

specially built test environment and provides guidelines for the future exploration of the 

developed techniques. 

  This research work has been concerned with the development of a real-time 

high-performance distributed evolutionary system embedded in a population of six 

autonomous mobile robots, to be applied in producing collision-free navigation. To achieve 

this goal, one objective has been to develop suitable genetic operators and methods of 

embedding them into the robots. Furthermore, a robotic hardware system has been 

designed that allows the developed strategies to be tested in real time using the physical 

world as its best model [Bro91b].  

  Chapters 2 and 3 presented an overview of recent work in the area of 

evolutionary robotics together with a discussion of their limitations and drawbacks, which 

led to breaches in the research field that were explored by this work. These chapters 

showed that most of the work with evolutionary robotics has been done in simulation and 

inspired the pursuit of a challenging goal: providing the means of implementing a physical 

evolutionary system, where the population physically exists and artificially breeds, 

combining their configuration material to produce the new generations.  

  To achieve this goal, because of the dimensionality of the problem, the 

project specification had to set limits to the applicability of the research and select a non-

complex task-behaviour, reducing the system complexity and consequently the application 

of the obtained results. Nevertheless, a new concept emerged and was experimentally 

proven for the first time: embedded evolutionary systems. It was also the first time that an 

embedded evolutionary system was put to test in co-evolving the robot controller and 



 

 216 

morphology at the same time. Therefore, the major contribution of this work is in 

developing basic research on embedded evolution, which is a new concept, proposing 

novel techniques that enabled an evolutionary system to be applied to a group of real 

autonomous mobile robots. This forms the basis of a technique that has very important 

industrial applications. Evolutionary robotics is a research area in its infancy [Har97b] 

[Bro00] [Pol00] [Tho00], which tests whether all newborn AI philosophies can grow up 

into the real world, and scale up with increasing complexity. 

 

 

9.1 Conclusions Arising From the Experimental Results 

 

  It was noticed when comparing the results obtained with simulation 

(Chapter 7) to the ones with real evolution (Chapter 8) that the fitness of the robots 

improved faster in the experiments run in a real environment than the ones run in 

simulation, in terms of the number of generations, despite all the noise and interaction 

amongst the robots. The reason for this is that in a real environment the robots are 

evaluated for only a few minutes and are subjected to fewer situations that test their ability 

to manoeuvre properly. In the developed simulator, however, the response of the navigation 

control circuit is always exhaustively tested against all possible situations that the robot can 

face. This produced lower fitness values than the evaluations in real environments. 

Sometimes, for example, as demonstrated in Section 8.2, a randomly initialised population 

can produce the maximum fitness in the first generation of the experiment, if one of the 

robots is “lucky” enough to face only the situations it can deal with during the generation.  

  The importance of a long lifetime, the duration of a generation, was 

observed: improper solutions may take, by chance, the place of more robust individuals if 

they have been evaluated only for a short period. That happens because an unfit robot can 

be “lucky” enough to start its life in an easy place in the workspace or in a position where it 

can deal with the obstacles even when only part of its controller and sensors are well 

adjusted. In a similar way, a fit robot may start in a very difficult and crowded position, 

where its chances of collisions with other robots are greater. It may also happen, by chance, 

that other unfit robots end up colliding many times with a fit one. A longer lifetime will 

give more opportunities to differentiate between the fit and the unfit robots. The 
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disadvantage of a longer lifetime is that it will take longer to evolve the population and 

achieve an efficient solution. However, the benefits generated by a better evaluation can 

speed up the evolutionary process and make the overall result faster than one using a 

shorter lifetime.  

  The previous work on the evolution of collision-free navigation was 

reported mostly by Floreano and Mondada [Flo96a]. Their work employed physical 

Khepera robots tethered to external computation provided by a workstation. They could 

only achieve the desired behaviour after three days of non-stop evolution. During the 

development of this work, Watson et al. also proposed an embedded evolutionary system 

that used eight real robots [Wat99a]. Their robots were simpler than the ones used in this 

work and they evolved only their navigation control circuits to drive the robots towards a 

light source, a task of similar complexity to the chosen collision-free behaviour. They 

achieved an efficient solution (compared to a hand-designed controller) in less than two 

hours of evolution. After applying the understanding and insights produced in the real 

experiments in Chapter 6 and in simulation in Chapter 7, the developed evolutionary 

system could evolve the controller and morphology of the robots and achieve collision-free 

behaviour in less than two hours. This good result could only be achieved after refining the 

configuration of the system, which was taking days to evolve with the wrong parameters. 

  Monitoring fitness from inside the robots is necessary in a distributed 

embedded controller, but it generates problems on how to evaluate behaviours. The 

monitor computer is just recording the evolutionary data and cannot be used to distinguish 

between fit and unfit behaviours by evaluating distances from goals, contact with other 

robots and obstacles, or the position of the robots. The fitness function needed to be 

implemented from the point of view of the robot, using its own sensors (contact and 

infrared proximity sensors). The fitness function has to be kept as simple as possible, to 

avoid biasing evolution to produce a pre-conceived solution. 

  The on-board fitness evaluation function required the use of a 

microprocessor, since it is the simplest way of implementing such functionality. The 

presence of a microprocessor also permitted high-level modularity of the controller and 

facilitated its implementation using a neural network. Although biasing evolution, the high-

level modularity of the neural network permitted post-evolution analysis of the obtained 

result, a better user interface, and particular fitness evaluation of the modules. Moreover, 

and more importantly, it permitted the implementation of a considerably smaller 
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chromosome to contain the configuration of the controller. An unstructured controller can 

provide much more variety and has more chances of producing an unforeseen result, but it 

is less organised and needs a longer configuration bit string. This increased drastically the 

search space and slowed down the evolutionary process, reducing system performance. 

  Real time evolution of an embedded hardware means that the evolutionary 

controller must cope with the robot limited processing speed and small memory size. 

Consequently, Boolean neural networks offered small, high-speed solutions. To minimise 

the execution time of the controller, making it smaller and faster, the evolving neural 

network, for every generation, can be converted to a look-up table and be implemented into 

the robot RAM memory. This is achieved by taking the resulting chromosome, after the 

mating process, and using it to configure the neural network. Then, the neural network is 

simulated with every possible input and a corresponding output table is written. This output 

table is then stored into the robot RAM memory and becomes the current controller that 

drives the robot in the current generation. For each iteration, the sensor readings are 

converted into an address to the memory and the returned data is converted into a 

command to drive the robot. In this way, the operation of the complete neural network that 

would take hundreds of lines of code to be implemented can be executed with one single 

instruction that reads the command byte in the memory. It can make the controller work 

hundreds of times faster. This strategy was used in some experiments and was very 

efficient. 

  Mutation in embedded evolution has a more important effect than in 

simulated evolution, since the population in real systems is considerably smaller than in 

simulated evolution. Therefore, crossover is limited by the small variety of genetic material 

that it can combine to produce better individuals and, without mutation, the population 

usually converge in a few generations and stop evolving. However, a high mutation rate 

does not help to evolve faster. It did not prove to be a good strategy. Although it may help 

in the beginning of the process to bring more variety into such a small population (e.g., six 

robots), it slows down the process after the initial genetic material is combined and the 

population converges to individuals that have more than half of their chromosome with the 

right genes. Therefore, in the long term, it produces a very distinct population, where the 

fittest individual is considerably distant from the average fitness of the population. 

Generally, only the best robot that survives to the next generation and does not mutate is 

well adapted to the environment. A relatively high mutation can still be used to accelerate 

the initial search for a solution to a problem that, once an acceptable fitness is achieved, 
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will be replicated into other robots that will work independently. A low mutation rate 

makes the whole evolutionary experiment much faster. It produces a population with small 

variation where the average fitness is almost as high as the fitness of the fittest individual. 

A low mutation rate is very important if the robots are working as a team (e.g., combining 

their strength to push heavy objects or even playing soccer) and a bad performance can 

severely affect the overall operation. 

  Evolution produces a solution that is good enough to solve the problem, but 

not necessarily the expected one. It all depends on how the fitness evaluation function is 

specified. It is important to use the simplest function possible to prevent biasing evolution, 

limiting the possible solutions. Working from bottom-up, evolution generates what the 

fitness function rewards. It can get very close to the solution achieved by working out the 

problem from top-down, but probably never there. The main problem is how to specify the 

reward and punishment functions, so that evolution can deal with the complexity of the 

task. The best way encountered was by “trial and error”: rewarding particular responses and 

watching to see what it can produce. Then, by gradually adding small sub-functions and 

observing the overall result, the designer can keep the ones that improved the result. 

Usually, the longer the process, the better the solution. With a poor fitness function, fitness 

evaluation is not enough to determine a good solution (e.g., fitness can be high, but the 

solution can be far from the expected one). The final result is probably more complex and 

can take longer to achieve than the top-down design of a controller by hand. Nevertheless, 

what can be achieved by applying an open-ended evolution is a self-adaptable controller, 

which can continuously modify its internal configuration to coupe with a variable 

environment. This is very difficult to be obtained with a traditional design, since all the 

variability of the environment has to be foreseen. 

  The experiments in Chapters 6, 7, and 8 demonstrated that evolution can 

work in two ways: biased or non-biased. Biased evolution appears when the fitness 

function rewards not only what the robot should do, but also how it is doing it. It happens 

when sub-functions are rewarding the robots that behave in a similar way to an expected 

solution foreseen in the problem (e.g., when they avoid the obstacles by turning in a 

specific way). Non-biased evolution is the one that only rewards when the robot does what 

it should do (or punishes when it does what it should not do). Non-biased evolution is an 

interesting alternative to conventional top-down design, because it can produce unique, 

unexpected solutions where the robots can actually tell the designer how they should be 

designed (e.g., showing the best positions to place sensors, their best range and angle, the 



 

 220 

proper speed the robot should navigate, etc). It was observed that biased evolution is not 

yet a better alternative to manual design, because if the designer foresees a good solution 

for the problem, why cannot it be implemented right away? This approach can, though, be 

used to program more efficient controllers (such as look up tables or neural networks) to 

behave similarly to a complex solution developed in a modular top-down design. 

Moreover, with the inclusion of extra sub-functions, a biased evolution can produce a 

continuously adaptable system able to deal with variations of the environment. 

  As the number and position of the sensors and the speed levels of the motors 

are under evolutionary control, not only the control circuit is produced, but also the 

physical characteristics of the robots can change into different configurations according to 

the complexity of the environment. In addition, the designer can fix the number of sensors, 

for example, and let evolution decide where they should be placed. The most successful 

configurations according to the sensor positions that were observed in the experiments are:  

 

a) Configuration 1 – One sensor in the front; 

b) Configuration 2 – Two sensors, one in the front and a lateral one; 

c) Configuration 3 – Three sensors, one in the front and one in each side of 
the robot. 

 

  It was observed that, in a simple environment containing few obstacles, all 

three configurations coexist “peacefully”, because it does not present enough selection 

pressure and the fitness of all three configurations are roughly the same after a small 

lifetime (evaluation time). The longer the lifetime though, the greater the number of 

opportunities to distinguish between a more efficient configuration and an ordinary one and 

the robots with more sensors positioned in the right places are more likely to succeed. 

When more obstacles are added and the environment becomes more complex, the 

competition is tougher and the configurations with more resources gradually lead the less-

adapted ones to “extinction” from the population. 

  Late in the evolutionary experiment, when the robots are well-adapted to the 

environment and the task, refining the solutions takes progressively more time. The better a 

solution is, the slower it takes to refine it. Many crossover strategies and mutation rates 

were investigated to speed up the final refining process. The general strategy was to choose 

the best robot and breed it with all the others. The best robot then survives to the next 
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generation and all the other robots are replaced by their offspring. Another solution 

developed for the mating phase is a strategy that does not cross over the genes at all. This 

asexual reproduction technique consists in choosing the best robot, allowing it to survive 

to the next generation, and replacing all the other robots with a copy of its chromosome 

plus a small degree of mutation. This technique, although slower in the beginning of the 

process, was the fastest overall evolution.  

  Another technique was developed in order to provide new genetic material 

for evolution to play with: every ten generations, the worst robot is selected and destroyed 

(“killed” by a virtual “predator”), and has its chromosome replaced by a randomly 

generated configuration. It models the natural world, where from time to time a predator 

calls taking out weak members of the pack, preventing them spreading its genes and 

opening space for new individuals to migrate, bringing more diversity to the group. This 

was called “the predation strategy” and was shown to improve the overall performance of 

the evolutionary process. After an “attack”, enough time must be given to allow the 

population to recover and stabilise again. Otherwise, the “killed” robot that was replaced 

by a random configuration would probably be the worst one again in the next attack, and 

would be repeatedly destroyed. Therefore, the number of generations between the attacks 

must be carefully chosen according to the complexity of the evolving controller. The 

predation strategy brings in vital diversity that can prevent the population from being stuck 

in local optima. 

  Determining when the desired behaviour has been achieved on physical 

robots is difficult and relies on a quantitative analysis based on human judgement and 

experience. However, human observers can apply reasonable phenomenological 

descriptions of the performance of the robots [Mat97c]. Typically, statistical analysis is not 

significant as insufficient data are available. Because of the uncertainty and variability of 

physical experiments, an average performance is difficult to establish as trials vary 

significantly. Therefore, the conclusions provided in this work should be taken as 

guidelines to future experimentation and applications of the developed techniques, instead 

of an exhaustive study of all possible behaviours that such an evolutionary system can 

produce. Although it was proven that the developed evolutionary system can produce 

efficient solutions and unforeseen results, it cannot be affirmed that it will always behave 

as described in the experiments. The analysis provided is only descriptive [Men92].  
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9.2 Principal Achievements 

 

  The main achievements of this work is the proposal of the new concept of 

embedded evolution and the implementation of a novel and unique evolutionary system 

that is decentralised, distributed, and fully embedded in a population of real autonomous 

mobile robots, and is able to produce collision-free navigation by evolving not only the 

robot controller, but also its morphology. It provided a genetic system where the population 

exists in a real environment, where they exchange genetic material and reconfigure 

themselves as new individuals to form the next generations. The evolutionary algorithm is 

distributed amongst and embedded within the robot population. Most of the work to date 

on evolutionary robotics has been done by serially evaluating candidate controllers through 

simulation or on a single robot, so the importance of this research is in providing the means 

of running genetic evolutions in parallel, in a real physical platform. As new robots cannot 

be spontaneously created, the offspring are implemented by reconfiguring other robots of 

the same population. The adaptive mechanism is distributed in the population and is 

carried out autonomously. 

  This work provided the first experimental proofs of an embedded 

evolutionary system that can manipulate the robot control circuit and morphology. This 

system was inspired by biology and can be applied to address questions in the natural world 

and in artificial life, since it offers opportunities for conducting experiments that are 

extremely complicated in traditional biology or not feasible at all, such as the 

characterisation of the “evolvability” of ecological systems, modelling isolated 

populations, or ecological monitoring tools. Hence, most of the strategies developed to 

allow the implementation of such a system into real robots are also unique and relevant to 

the scientific community in biology and electronics: 
 

#"A real physical platform was developed where the population physically exists, 

which allows genetic techniques to be tested in a real environment, and distinct 

hardware and software were developed to allow the integration and distribution 

of reproduction and other genetic operators into the autonomous mobile robots; 
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#"Guidelines were provided to allow the implementation of the developed 

evolutionary system in different robot platforms, so that the experiments can be 

repeated by other researchers using their own robots; 

#"Existing genetic algorithm techniques that had been used only in simulated 

systems had been adapted and converted to be implemented within real physical 

robots; 

#"New genetic operations such as evaluation, selection, and mutation strategies 

were developed, implemented within the embedded hardware and software of 

the robots, and evaluated in real-time experiments; 

#"An original solution was developed to accommodate both the robot navigation 

controller and the distributed evolutionary system on board the robots; and a 

unique communication protocol was also developed to allow the establishment 

of a radio link that permitted the synchronisation and exchange of genetic 

material during the mating phase of the evolutionary system; 

#"Different ways of evolving real robots were investigated and relevant data 

analysis was provided to guide future experiments and the application of the 

developed techniques; 

#"The developed Predation strategy proved a powerful concept that not only 

improved the performance of the system but also prevented the population from 

being stuck in local optima, by bringing in more diversity; 

#"It was demonstrated that evolution can actually help in the traditional design of 

robotic platforms, since it can suggest the best features a robot should 

incorporate to develop specific tasks. Evolution was shown to be efficient in 

testing and selecting the best sensor configurations, or speed levels for the 

motors. It can give important clues to the designer of how the morphology of 

the designed robot should be to achieve maximum performance and economy of 

energy; 

#"Finally, this work provided understanding on the implementation of real 

evolutionary systems and inspiring insights that have great potential of 

application in the area of automation.  
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  The principal aim of this thesis has two major aspects. First, it has led to an 

understanding of the applicability of an evolutionary system to evolve a population of 

physical robots in real time. Second, the work has produced new evolutionary techniques 

and genetic operators that can have immediate potential value to researchers working in 

this area. Taken together, these two strands have contributed to an integrated study which, 

it is hoped, will be of continuing value in the future development of techniques in 

automation and cybernetics, since the embedded system can be applied to situations where 

the agents must evolve while deployed “in the field” – an issue not usually approached by 

evolutionary robotics. 

  A strategy was developed to allow the direct application of the evolutionary 

system in typical industrial control problems. For applications in optimisation and solution 

searching in robotics, it is possible that there will be many experiments with poorly-

developed configurations. These can be discarded and their poor performance has no effect. 

However, in industrial applications, if evolution is set free to “play” with the resources, 

poorly developed controllers may damage the system or cause dangerous situations. 

Therefore, this work developed a strategy to apply safely the evolutionary system to 

industry by pre-training it to behave properly, using a traditional approach as a model. It 

performs in simulation the initial evolutionary trial-and-error phase, and transfers the result 

to be refined by evolution in the field. The simulator developed in Section 7.1 can be used 

to train the black box controller developed in Section 6.4 or any other controller that can be 

described algorithmically in C language, such as a neural network or fuzzy logic system, to 

behave according to a traditional approach, such as a PID controller (Proportional-Integral-

Derivative controller). 

  The illustration in Figure 9.1 describes how the developed system can be 

adapted to be used in industrial control applications. To avoid damaging the controlled 

device, the evolutionary controller can be pre-trained by applying a biased simulated 

evolution to train it to behave according to the traditional approach to such control, as it 

was described in Sections 6.2 and 7.1. After the training phase, the evolving controller can 

safely actuate on the device and can be evolved by a supervisory evolutionary system to 

achieve the appropriate settings specified by the user. The fitness can be calculated by 

comparing the device settings to the current behaviour and giving a proportional score. If 

something goes wrong, the supervisory system can reconnect the original controller to 

prevent the device from being damaged until the evolutionary controller reaches a safe 

level again. 
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Figure 9.1 – A pre-trained evolutionary controller connected to a real device. 

 

 

9.3 Suggestions for Future Research 

 

  To provide a practical focus to the work described in the thesis the 

developed evolutionary system has been confined to the task-behaviour of collision-free 

navigation. However, the methodology described here may be generalized to many other 

applications, such as object fetching and collection, environment mapping, cleaning and 

foraging; and some collective tasks as well, such as pushing heavy objects, task sharing, 

team cooperation and competition. 
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  An investigation of other genetic strategies such as species adaptation 

genetic algorithms can improve the system performance in terms of accuracy and speed. 

The implemented techniques have shown good performances, but if new approaches can 

reduce the necessary time to achieve an efficient behaviour, longer lifetimes can be 

employed, which can better evaluate the robot ability to perform the task. 

  The gradual increase of the complexity of the evolved task-behaviours will 

be a primary subject in future work. A limited robot population is constraining the possible 

applications of the system. Therefore, more robots will be built, providing more diversity 

that can be combined into collective tasks where cooperation and competitive behaviours 

can emerge. 

  The self-adapting distributed controller developed in this work can be 

adapted to applications in situations where the designer cannot easily interfere and change 

the configuration of the robots and also where the conditions of the environment where the 

robots are going to work are difficult to foresee. Such applications are space exploration, 

underwater search and rescue, and rescue robots for large-scale disasters such as fire, flood, 

and earthquakes. The team (population) of robots can be pre-programmed and trained 

according to a preconceived solution (as demonstrated in the experiments) and can 

continuously adapt when deployed in the field to variations in the environment conditions, 

without depending on the designer to modify their configuration. Different teams of robots 

working in different environments that are distant from each other can learn or adapt to 

different behaviours, according to their experiences. These isolated populations can still 

communicate (via the internet, for example) and exchange the learned skills so that a team 

of robots that has never faced a particular situation or disaster can be taught the proper 

behaviour to deal with it from the experiences of another team. Such future work will 

probably have to deal with new arising concepts such as a robotic common knowledge, or 

culture, or even a robotic civilisation. 
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APPENDIX A 
 

 

Contents of the Attached CD-ROM 

 

 

 

  This Ph.D. thesis includes a CD-ROM containing the software implemented 

during the development of this work. The CD-ROM also contains a collection of selected 

photos and videos that help to illustrate how the proposed evolutionary system was 

implemented and operates.  

 

  The material included in the CD-ROM is organised in four folders: 

Experimental Data; General Software; Videos; and Photos. The last two folders contain 

video files and pictures. General Software contains some files with the main programs and 

data records produced and Experimental Data contains the programs developed during the 

experiments described in Chapters 6, 7, and 8, organised by chapters and by Experiments 

within the chapters. The structure of the CD-ROM is presented in Figure A.1 and the 

contents of each folder are listed below. 
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Figure A.1 – Structure of the folders in the attached CD-ROM. 

 

 

 

LIST OF THE CD-ROM CONTENTS: 

 
Volume in drive D is CD-ROM  
 
Directory of D:\AppendixA 
 
VIDEOS 
GENERAL SOFTWARE 
PHOTOS 
EXPERIMENTAL DATA 
 
Directory of D:\AppendixA\Experimental Data 
 
CHAPTER6       <DIR>        23/11/00   1:56 Chapter6 
CHAPTER7       <DIR>        23/11/00   1:56 Chapter7 
CHAPTER8       <DIR>        23/11/00   1:56 Chapter8 
         0 file(s)              0 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter6 
 
EXP1           <DIR>        23/11/00   1:56 Exp1 
EXP2           <DIR>        23/11/00   1:56 Exp2 
EXP3           <DIR>        23/11/00   1:56 Exp3 
EXP4           <DIR>        23/11/00   1:56 Exp4 
         0 file(s)              0 bytes 
 



 

A-iii 

Directory of D:\AppendixA\Experimental Data\Chapter6\Exp1 
 
Graf01.cpp 
graf1.exe 
exp1.exe 
Exp01.cpp 
         4 file(s)        345,424 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter6\Exp2 
 
exp7.exe 
Graf07.cpp 
graf7.exe 
Exp07.cpp 
         4 file(s)        345,424 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter6\Exp3 
 
EXP3     1     <DIR>        23/11/00   2:00 Exp3.1 
EXP3     2     <DIR>        23/11/00   2:00 Exp3.2 
EXP3     3     <DIR>        23/11/00   2:00 Exp3.3 
         0 file(s)              0 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter6\Exp3\Exp3.1 
 
Exp08.cpp 
Graf08.cpp 
exp8.exe 
graf8.exe 
         4 file(s)        345,424 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter6\Exp3\Exp3.2 
 
Exp10.cpp 
Graf10.cpp 
exp10.exe 
graf10.exe 
         4 file(s)        345,424 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter6\Exp3\Exp3.3 
 
Exp09.cpp 
Graf09.cpp 
exp9.exe 
graf9.exe 
         4 file(s)        345,424 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter6\Exp4 
 
graf13.exe 
exp13.exe 
Graf13.cpp 
Exp13.cpp 
         4 file(s)        345,424 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter7 
 
EXPS1        <DIR>        23/11/00   2:16 ExpS1 
EXPS2        <DIR>        23/11/00   2:16 ExpS2 
EXPS3        <DIR>        23/11/00   2:16 ExpS3 
EXPS4       <DIR>        23/11/00   2:17 ExpS4 
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EXPS5       <DIR>        23/11/00   2:17 ExpS5 
EXPS6       <DIR>        23/11/00   2:17 ExpS6 
         0 file(s)              0 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS1 
 
Sim01.cpp 
Grafsim01.cpp 
Grafsim01.exe 
Sim01.exe 
         4 file(s)        334,522 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS2 
 
Grafsim02.cpp 
Grafsim02.exe 
Sim02.cpp 
Sim02.exe 
         4 file(s)        337,387 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS3 
 
Sim04.exe 
Grafsim04.exe 
Grafsim04.cpp 
Sim04.cpp 
         4 file(s)        370,108 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS4 
 
Sim05.exe 
Grafsim05.exe 
Grafsim05.cpp 
Sim05.cpp 
         4 file(s)        370,301 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS5 
 
Grafneu01.cpp 
Grafneu01.exe 
Simneu01.exe 
Simneu01.cpp 
         4 file(s)        348,143 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter7\ExpS6 
 
Grafneu02.cpp 
Simneu02.exe 
Grafneu02.exe 
Simneu02.cpp 
         4 file(s)        349,489 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter8 
 
EXPE1          <DIR>        23/11/00   2:34 ExpE1 
EXPE2          <DIR>        23/11/00   2:34 ExpE2 
         0 file(s)              0 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter8\ExpE1 
 
Exp15.exe 
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Graf15.exe 
Graf15.cpp 
Exp15.cpp 
         4 file(s)        357,630 bytes 
 
Directory of D:\AppendixA\Experimental Data\Chapter8\ExpE2 
 
Exp16.exe 
Exp16.cpp 
Graf16.cpp 
Graf16.exe 
         4 file(s)        357,953 bytes 
 
Directory of D:\AppendixA\General Software 
 
Evolution.asm 
virtualscreen.cpp 
Handcontrol.asm 
Graf20.cpp 
GRAFIC.TXT 
Initialise.cpp 
Gene.txt 
Exp20.cpp 
         8 file(s)        155,934 bytes 
 
Directory of D:\AppendixA\Photos 
 
Image46.jpg 
IMAGE41.KDC 
IMAGE39.KDC 
IMAGE38.KDC 
IMAGE33.KDC 
IMAGE31.KDC 
IMAGE19.KDC 
robot_top.jpg 
Robot_side.jpg 
robot_front3.jpg 
Robot_front1.jpg 
Radio1.jpg 
Z.jpg 
r_n+obs.jpg 
r_lab.jpg 
r_cima.jpg 
r_c+obs.jpg 
lab_simple.jpg 
lab_med.jpg 
lab_complex.jpg 
Image48.jpg 
IMAGE47.jpg 
pspbrwse.jbf 
IMAGE44.jpg 
Image43.jpg 
IMAGE42.jpg 
Image41.jpg 
Image40.jpg 
Image39.jpg 
Image38.jpg 
IMAGE37.jpg 
Image36.jpg 
Image33.jpg 
IMAGE31.jpg 
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Image30.jpg 
Image28.jpg 
Image27.jpg 
IMAGE26.jpg 
IMAGE25.jpg 
IMAGE24.jpg 
IMAGE23.jpg 
Image22.jpg 
IMAGE21.jpg 
IMAGE20.jpg 
Image19.jpg 
Image18.jpg 
IMAGE17.jpg 
IMAGE16.jpg 
IMAGE15.jpg 
IMAGE14.jpg 
Image13.jpg 
Image12.jpg 
IMAGE11.jpg 
IMAGE10.jpg 
Image1.jpg 
IMAGE09.jpg 
IMAGE08.jpg 
IMAGE07.jpg 
IMAGE06.jpg 
Image05.jpg 
IMAGE04.jpg 
IMAGE03.jpg 
Image02.jpg 
IMAGE01.jpg 
Fig1_5.jpg 
eu_robo.jpg 
Robot1.bmp 
board2.bmp 
board1.bmp 
        69 file(s)      7,219,290 bytes 
 
Directory of D:\AppendixA\Videos 
 
video1.jpg 
video2.jpg 
video3.jpg 
video4.jpg 
video5.jpg 
         1 file(s)              1753,270 bytes 
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APPENDIX B 
 

 

Schematic Diagrams 

 

 

 

  Appendix B contains two schematic diagrams. The first one, Diagram 1, 

contains the schematics of the circuit of the robot board, and a list of the used components. 

The second one, Diagram 2, contains the schematics of the circuit of the radio board, and a 

list of the used components. 
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Diagram 1:  
 

Schematics of the circuit of the robot board 
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List of the used components: 
 

Part Type Designator 
0.01uF C7 
0.1uF CU4 
0.1uF CU3 
0.1uF CU2 
0.1uF CU7 
0.1uF C8 
0.1uF CU5 
0.1uF CU6 
100M R3 
10K R7 
10K R6 
10K R9 
10K R8 
10K R10 
10K R5 
10M R1 
10uF C5 
10uF C9 
10uF C6 
1K R2 
1uF C3 
1uF C4 
1uF CU1 
24pF C1 
24pF C2 
2K2 R11 
2K2 R12 
330R R15 
330R R16 
4011 U4 
4K7 R4 
74LS04 U12 
820R R14 
820R R13 
8MHz X1 
AMRECEIVER-AMRW TX1 
AMTRANSMITER-AMT21 TX1 
ANTENNA A1 
ANTENNA A2 
BC182B T1 
BC182B T6 
BC182B T5 
BC182B T4 
BC182B T2 
BC182B T3 



 

B-v 

HEADER 10 JP3 
HEADER 10 JP6 
HEADER 10 JP1 
HEADER 10 JP2 
HEADER 10 JP4 
HEADER 10 JP5 
HEADER 2 JP9 
HEADER 2 JP8 
HEADER 2 JP6 
HEADER 2 JP7 
HEADER 3 JP10 
L293NE U11 
LED-Green L3 
LED-Green L2 
LED-Green L5 
LED-Green L4 
LED-Red L7 
LED-Red L6 
LED-Red L1 
LED-Red L9 
LED-Red L8 
MAX233 U7 
MAX603 U6 
MAX691 U8 
MC68HC11A1FN(52) U1 
MC68HC24 U9 
MC74HC373 U2 
OPE5594 IR4 
OPE5594 IR3 
OPE5594 IR5 
OPE5594 IR7 
OPE5594 IR8 
OPE5594 IR6 
OPE5594 IR2 
OPE5594 IR1 
RN-10K RN3 
RN-10K RN2 
RN-10K RN1 
RN-4.7K RN4 
RN-4.7K RN5 
S4576DY U5 
SW DIP-8 DP1 
SW DIP-8 DP2 
SW SPDT S1 
SW SPDT S2 
SW-PB PB4 
SW-PB PB2 
SW-PB PB3 
SW-PB PB1 
SW-PBSMALL PB5 
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Diagram 2:  
 

Schematics of the circuit of the radio board 
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List of the used components: 
 
Part Type Designator 
0.1uF C2 
10uF C3 
2K2 R2 
2K2 R3 
2K2 R1 
AMRECEIVER-AMRW TX1 
AMTRANSMITER-AMT21 TX1 
ANTENNA A1 
ANTENNA A2 
CON25 JP1 
DIODE D1 
HEADER 2 JP2 
LED-GREEN L2 
LED-RED L1 
MAX233 U2 
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APPENDIX C 
 

 

Experimental Data 

 

 

 

  Appendix C contains complementary data that for a reason of space could 

not be presented in the body of the thesis. The data is organised by chapters and by sections 

within the chapters. 

 

 

C.1 - Data Relative to Chapter 6: 
 

C.1.1 - Section 6.3: Experiment 2 

 

  The data presented here is the result of experiments that were carried out to 

determine the best sensor configurations to drive the robots according to the hand-designed 

controller used in Experiment 2 (Section 6.3). Many sensor combinations were tested in 

different environments containing simple (11 tests), medium (20 tests), and complex (9 

tests) configurations of obstacles. The best 42 combinations, presented in Table C.2, were 

selected and ordered by the average fitness they scored in all 40 experiments. A “blind” 

robot with all sensors disabled (0,0,0,0,0,0,0) was also included to provide a comparison to 

the worst case. In the sensor specifications shown below, a disabled sensor is represented 
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by 0 and an enabled sensor is represented by its own name (i.e., S1 or S7). S5 was not 

present. 

 

• Summary of the Settings 

  Table C.1 presents a summary of the settings for the experiments: 

Table C.1 – Summary of the settings 

Parameter Definition 
Fitness Function: +3 points every 1s moving forward 

–10 points each collision 
Initial Fitness Value: 4096 points 
Maximum Fitness Value: 4186 points 
Generation Time: Population fixed at the first generation: 30 seconds 
Mutation Rate: Not present 
Speed Levels: Fixed at maximum speed (Vmax=32) 
Sensors Enable: All sensors but S5 can be enabled independently 

S5 is permanently disabled 
Navigation Controller: Fixed Neural Network (m=4, n=7, neuron size=4 bits) 

 

• Results 

 

Table C.2 – The Best Sensor Configurations in 40 Tests 

Sensor Configuration Average Fitness Value Sensor Configuration Average Fitness Value 
S8,0,S6,S4,S3,S2,S1 4144 S8,S7,S6,S4,S3,0,S1 4130 
0,S7,S6,0,S3,0,S1 4143 0,0,0,0,S3,S2,S1 4129 
0,S7,S6,0,S3,S2,S1 4142 0,0,0,0,0,0,S1 4128 
0,S7,0,0,0,S2,S1 4141 S8,S7,0,0,0,S2,S1 4128 
0,S7,0,0,S3,S2,S1 4140 S8,S7,S6,0,S3,S2,0 4127 
0,S7,S6,S4,0,0,S1 4139 S8,S7,S6,S4,0,0,S1 4127 
S8,S7,S6,S4,0,S2,S1 4139 0,0,0,0,0,S2,S1 4126 
0,0,0,0,S3,0,S1 4138 S8,0,S6,S4,0,0,S1 4126 
S8,0,0,S4,S3,S2,S1 4138 S8,S7,S6,S4,S3,S2,0 4125 
S8,S7,S6,0,S3,0,S1 4138 0,0,0,S4,S3,S2,S1 4123 
0,S7,0,S4,S3,0,S1 4136 0,0,S6,S4,S3,0,S1 4123 
S8,0,0,S4,S3,S2,S1 4135 0,S7,S6,0,0,0,S1 4123 
S8,S7,0,S4,0,0,S1 4135 S8,0,0,0,0,S2,S1 4122 
0,0,0,S4,0,0,S1 4134 0,S7,0,S4,0,S2,0 4119 
S8,S7,S6,S4,S3,S2,S1 4134 S8,0,0,S4,0,S2,S1 4118 
0,S7,0,0,0,0,S1 4133 S8,0,0,0,S3,S2,S1 4113 
0,0,0,S4,0,S2,S1 4132 S8,0,S6,S4,S3,0,0 4112 
0,S7,S6,S4,S3,S2,S1 4132 S8,0,0,0,0,0,S1 4110 
S8,S7,0,S4,S3,S2,S1 4132 S8,0,0,0,S3,0,S1 4107 
S8,S7,0,S4,S3,S2,0 4132 S8,0,0,S4,S3,0,0 4106 
S8,0,S6,S4,S3,0,S1 4131 0,0,0,0,0,0,0 4073 
S8,0,S6,S4,0,S2,S1 4130   
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C.2 - Data Relative to Chapter 7: 
 

C.2.1 - Section 7.2: Experiment S1 

 

  The chart S1.1 presented in Figure 7.2 (Section 7.2) is just one of many 

experiments performed with the simulator configured as described in Experiment S1. In 

total, it was run 300 times for each mutation rate (0.1% and 0.5%), during 30,000 

generations.  

 
Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 
6 Robots & 0.1% 4319.1 2.13177026 4322 4316 
6 Robots & 0.5% 4308.2 2.29975844 4312 4305 

50 Robots & 0.1% 4339.1 1.95874658 4342 4335 
50 Robots & 0.5% 4336.4 2.01254863 4340 4331 

100 Robots & 0.1% 4344.9 1.52356458 4348 4343 
100 Robots & 0.5% 4341.8 1.62352418 4345 4338 

 

Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 30,000; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 30,000;  

Max. Fitness  Maximum fitness value obtained in generation 30,000 
in 300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 30,000 
in 300 tests; 

 

  The charts S1.3 and S1.4 presented in Figures 7.4 and 7.5 (Section 7.2) are 

just one of many experiments performed with the simulator configured as described in 

Experiment S1. In total, it was run 300 times for each mutation rate (0.1%, 0.5%, 1%, 3%, 

10%, 20%, 50%, and 80%), during 300 generations.  

 

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 
0.1% 4216.4 2.59058123 4219 4211 
0.5% 4228.2 1.75119007 4230 4225 
1% 4198.1 2.72641401 4202 4194 
3% 4192.1 2.51440296 4195 4188 

10% 4181.5 3.20589734 4185 4177 
20% 4166.8 2.394438 4170 4163 
50% 4162.2 4.18462795 4169 4157 
80% 4160.3 3.77270902 4165 4152 
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Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 300; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 300;  

Max. Fitness  Maximum fitness value obtained in generation 300 in 
300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 300 in 
300 tests; 

 

 

C.2.2 - Section 7.3: Experiment S2 

 

  The chart S2.1 presented in Figure 7.7 (Section 7.3) is just one of many 

experiments performed with the simulator configured as described in Experiment S2. In 

total, it was run 300 times for each mutation rate (0.1% and 0.5%), during 30,000 

generations.  

 

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 
0.1% 4300.5 2.12132034 4304 4292 
0.5% 4326.4 1.71269768 4339 4330 

 

Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 30,000; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 30,000;  

Max. Fitness  Maximum fitness value obtained in generation 30,000 
in 300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 30,000 
in 300 tests; 

 

 

  The chart S2.2 presented in Figure 7.8 (Section 7.3) are just one of many 

experiments performed with the simulator configured as described in Experiment S2. In 

total, it was run 300 times for each mutation rate (0.1%, 0.5%, 1%, and 10%), during 300 

generations.  
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Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 
0.1% 4225.9 2.13177026 4229 4222 
0.5% 4251.1 1.85292561 4253 4248 
1% 4239.9 2.33095117 4243 4236 

10% 4190.4 3.16929715 4194 4185 
 

Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 300; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 300;  

Max. Fitness  Maximum fitness value obtained in generation 300 in 
300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 300 in 
300 tests; 

 

 

C.2.3 - Section 7.4: Experiment S3 

 

  The Experiment S3 presented in Figure 7.10 (Section 7.4) is just one of 

many experiments performed with the simulator configured as described in Experiment S3. 

In total, it was run 300 times for mutation rate of 0.5%, during 9000 generations.  

 

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 
0.5% 4353.9 1.59513148 4356 4349 

 

Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 9000; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 9000;  

Max. Fitness  Maximum fitness value obtained in generation 9000 
in 300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 9000 in 
300 tests; 
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C.2.4 - Section 7.5: Experiment S4 

 

  The chart S4.1 presented in Figure 7.11 (Section 7.5) is just one of many 

experiments performed with the simulator configured as described in Experiment S4. In 

total, it was run 300 times for Sexual and Asexual reproduction, during 3700.  

 
Reproduction: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 

Sexual 4352 1.01846171 4356 4352 
Asexual 4356 0 4356 4356 

 

Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 3700; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 3700;  

Max. Fitness  Maximum fitness value obtained in generation 3700 
in 300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 3700 in 
300 tests; 

 

  The chart S4.2 presented in Figure 7.12 (Section 7.5) is just one of many 

experiments performed with the simulator configured as described in Experiment S4. In 

total, it was run 300 times for Sexual and Asexual reproduction, during 600.  

 
Population: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 

6 Robots 4271 2.01846171 4275 4267 
8 Robots 4302 2.03546816 4305 4298 

10 Robots 4318 1.96587146 4321 4316 
15 Robots 4323 1.82664546 4326 4319 
25 Robots 4339 2.04882256 4341 4336 
35 Robots 4343 1.62585825 4345 4341 
45 Robots 4343 1.82325496 4346 4341 
60 Robots 4349 1.53585212 4352 4347 
80 Robots 4356 0 4356 4356 

100 Robots 4356 0 4356 4356 
 

Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 600; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 600;  

Max. Fitness  Maximum fitness value obtained in generation 600 in 
300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 600 in 
300 tests; 
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C.2.5 - Section 7.6: Experiment S5 

 

  The chart S5.1 presented in Figure 7.13 (Section 7.6) are just one of many 

experiments performed with the simulator configured as described in Experiment S5. In 

total, it was run 300 times for each mutation rate (0.5%, 1%, 3%, and 15%), during 600 

generations.  

 
Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 

0.5% 4301.5 3.02765035 4306 4297 
1% 4332.3 2.83039063 4336 4328 
3% 4322.7 2.58413966 4326 4318 

15% 4301.9 3.21282154 4304 4295 
 

Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 600; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 600;  

Max. Fitness  Maximum fitness value obtained in generation 600 in 
300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 600 in 
300 tests; 

 

 

 

C.2.6 - Section 7.7: Experiment S6 

 

  The chart S6.2 presented in Figure 7.15 (Section 7.7) are just one of many 

experiments performed with the simulator configured as described in Experiment S6. In 

total, it was run 300 times for each mutation rate (0.5%, 1%, 3%, and 15%), during 600 

generations.  

 

Mutation Rate: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 
0.5% 4323.6 3.33999335 4326 4318 
1% 4341.3 2.71006355 4344 4337 
3% 4331.3 2.71006355 4334 4327 

15% 4289.5 3.27448045 4292 4283 
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Where:  Av. Best Fitness   Average in 300 tests of the fitness of the best robot in 
generation 600; 

Standard Deviation Standard Deviation for the Average in 300 tests of the 
fitness of the best robot in generation 600;  

Max. Fitness  Maximum fitness value obtained in generation 600 in 
300 tests; 

Min. Fitness   Minimum fitness value obtained in generation 600 in 
300 tests; 

 

 

C.3 - Data Relative to Chapter 8: 
 

C.3.1 - Section 8.2: Experiment E1 

 

  The chart Summary of Experiment E1 presented in Figure 8.3 (Section 8.1) 

is just one of many experiments performed with the real evolutionary system configured as 

described in Experiment E1. In total, it was run 12 times for the black box controller, 

during 200 generations. Far less experiments were performed here than with using the 

simulator in Chapter 7. The reason for this is that it takes more than three hours to perform 

only one real experiment with the duration of the generations set to one minute.  

 

Controller: Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 
Black box 4666.948 3.68920588 4671 4660 

 

Where:  Av. Best Fitness   Average in 12 tests of the fitness of the best robot in 
generation 200; 

Standard Deviation Standard Deviation for the Average in 12 tests of the 
fitness of the best robot in generation 200;  

Max. Fitness  Maximum fitness value obtained in generation 200 in 
12 tests; 

Min. Fitness   Minimum fitness value obtained in generation 200 in 
12 tests; 
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C.3.2 - Section 8.3: Experiment E2 

 

  The chart Summary of Experiment E2 presented in Figure 8.6 (Section 8.2) 

is just one of many experiments performed with the real evolutionary system configured as 

described in Experiment E2. In total, it was run 12 times for the black box controller, 

during 200 generations. Far less experiments were performed here than with using the 

simulator in Chapter 7. The reason for this is that it takes more than three hours to perform 

only one real experiment with the duration of the generations set to one minute.  

 

Controller Av. Best Fitness Standard Deviation Max. Fitness Min. Fitness 
Neural Network 4690.235 3.20538458 4696 4982 

 

Where:  Av. Best Fitness   Average in 12 tests of the fitness of the best robot in 
generation 200; 

Standard Deviation Standard Deviation for the Average in 12 tests of the 
fitness of the best robot in generation 200;  

Max. Fitness  Maximum fitness value obtained in generation 200 in 
12 tests; 

Min. Fitness   Minimum fitness value obtained in generation 200 in 
12 tests; 

 

 


