
ABOUT THE EXISTENCE OF MILNOR FIBRATIONS

J. L. CISNEROS-MOLINA AND R. N. ARAÚJO DOS SANTOS

Abstract. The aim of the present article is to review the results
about the existence of Milnor fibrations for complex and real sin-
gularities and some generalizations in several settings that have
been developed recently. After recalling the classical theorems by
Milnor, we start with the complex case for germs of functions and
maps, then we continue with the real analytic cases and list some
open questions.

1. Introduction

In his now classical book [Mi1] Milnor proves a Fibration Theorem,
which associates a locally trivial fibration to each singular point of
a complex hypersurface. It is a very useful and fundamental tool to
understand its local topological behavior.

Given a complex holomorphic function

f : (Cn, 0) → (C, 0),

let V (f) = f−1(0), denote by
∑

(f) the critical locus of f and suppose
0 ∈ ∑

(f). Let S2n−1
ε be the sphere centered at 0 ∈ Cn of radius ε > 0.

The set Kε := V (f) ∩ S2n−1
ε is called the link of the singularity at the

origin.

Theorem 1.1 (Milnor Fibration Theorem [Mi1]). There exists a small
ε0 > 0, such that, for all 0 < ε ≤ ε0, the map

f

|f | : S2n−1
ε \Kε → S1,

is the projection of a smooth locally trivial fibration. Furthermore, if
0 ∈ Cn is an isolated critical point of f , then the fibers of this fibrations
have the homotopy type of a bouquet of spheres of dimension n− 1 and
the topological closure of each fiber is the link Kε.
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Let us see one example in the case n = 2.

Example 1.2. Consider the holomorphic map f : (C2, 0) → (C, 0),
given by f(z, w) = z2 + w3. Since ∇f(z, w) = (0, 0) implies (z, w) =
(0, 0), then we have that

∑
(f) = {(0, 0)}, i. e., f has an isolated critical

point at the origin. Since the function f is weighted-homogeneous of
type (3, 2; 6), it means that V (f)\{(0, 0)} is an analytic manifold that
cuts transversally all spheres of any radius. Without loss of generality,
we can choose the sphere S3√

2
= {(z, w) ∈ C2 : ‖z‖2 + ‖w‖2 = 2}.

Using the transversality theorem, the link K√
2 = V (f) ∩ S3√

2
is a

real analytic submanifold in S3√
2

of dimension one, i.e, a regular curve.

Let us describe this link.

If (z, w) ∈ K√
2 ⇒

{
|z|2 = |w|3,
|z|2 + |w|2 = 2.

This system provides the equation X3 + X2 − 2 = 0 on the variable
X = |w|, which can be factorized as X3+X2−2 = (X−1)(X2+2X+2).
Hence this equation has only one real solution X = |w| = 1 and two
others which are complex conjugated.

Considering the real solution |w| = 1 and using the second equation
|z|2 + |w|2 = 2, we get |z| = 1. It means that, the link K√

2 lives on the

torus S1 × S1 = {(eiθ, eiφ) ∈ S3√
2

: (θ, φ) ∈ [0, 2π]× [0, 2π]}.
Now consider the parametrization ϕ : [0, 12π] → V (f)∩S3√

2
given by

ϕ(t) = (e
it
2 , e

it
3 ) (see the Figure 1 below). We can see clearly that the

intersection is the well-known (2, 3)-torus knot also called the “trefoil
knot”.

According to Milnor’s theorem this curve is the topological closure
or the boundary of the fibers.

This example is a particular case of weighted-homogeneous polyno-
mials in n complex variables called Brieskorn-Pham polynomials

(1) za1
1 + · · ·+ zan

n , n > 0, aj ∈ N, aj ≥ 2, j = 1, . . . , n.

Figure 1. Fibre and link of V (z2 + w3).
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1.1. Milnor fibration for real singularities. Milnor wrote an arti-
cle [Mi] showing that for a real polynomial map germ

f : (Rn, 0) → (Rk, 0), n ≥ k ≥ 2.

with 0 ∈ Rn an isolated critical point, it is always possible to associate a
locally trivial fibration. This article was never published but its results
appeared in §11 of [Mi1].

In what follow we will describe this fibration, for this, denote by Bε

the real closed ball of dimension n centered at 0 ∈ Rn and radius ε, let
Sk−1

η be the sphere centered at 0 ∈ Rk of radius η > 0. Then Milnor’s
result is:

Theorem 1.3 ([Mi, Mi1]). There exists a small ε0 > 0, such that for
all 0 < ε ≤ ε0, there exists η, with 0 < η ¿ ε, such that the map

1

η
f | : Bε ∩ f−1(Sk−1

η ) → Sk−1

is the projection of a smooth locally trivial fibration.

Let Sn−1
ε = ∂Bε and as before, let V (f) = f−1(0) and define the

link by Kε := V (f) ∩ Sn−1
ε . Since 0 ∈ Rn is an isolated singularity

of f , then 0 ∈ Rk is a regular value of f | : Sn−1
ε → Rk, if ε > 0 is

small enough. Let N(Kε) stand for an open tubular neighborhood of
Kε in the sphere. Milnor used the flow of an appropriated vector field
in Bε \ V (f), to construct a diffeomorphism from Bε ∩ f−1(Sk−1

η ) to

Sn−1
ε \ N(Kε), getting in this way, up to diffeomorphism, a fibration

Sn−1
ε \ N(Kε) → Sk−1. It is not difficult to see that one can always

extend this fibration into the open tubular neighborhood N(Kε) to get
a fibration

(2) Sn−1
ε \Kε → Sk−1.

Even in his book [Mi1, p. 100], Milnor comments that the major
weakness of Theorem 1.3 is that the hypothesis is so strong that is very
difficult to find examples, except those that comes from holomorphic
functions and posed the problem to find dimensions n ≥ k ≥ 2 for
which there exists non-trivial examples.

This was solved for k = 2 in [Lo] for n even and in [CL] for n odd,
also in [CL] was determined all the possible pairs (n, k) for which there
exist real map germs satisfying Milnor’s hypothesis, but no explicit
examples of such singularities were given. The first explicit non-trivial
example for the case k = 2 was given in [A].
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On the other hand, some natural questions come along the construc-
tion of fibration (2). In order to propose one of them, we will do below
some considerations.

It follows from the construction of fibration (2) that one completely
loses control over the projection map; i.e. Theorem 1.3 only ensures
the existence of fibration (2) for some projection map and unlike the
complex case it is completely unknown.

In other words, on real settings, there is not any a priori reason

to expect that this projection must be the canonical map
f

|f | , as in

the complex case. In fact, Milnor gave an example (see [Mi1, p. 99])
showing that, in general, this map fails to be the projection map of
fibration (2). This motivated the following definition.

Definition 1.4 ([RSV], [S2]). Let n ≥ 2. Given a real analytic map
germ f : (Rn, 0) → (R2, 0), with isolated critical point at the origin, we
say that f satisfies the strong Milnor condition at 0, if and only if,
for all ε > 0 sufficiently small the map

f

‖f‖ : Sn−1
ε \Kε → S1

is the projection of a locally trivial fibration.

So, a natural question is: Are there real analytic maps which satisfy
the strong Milnor condition?

By Theorem 1.1 we have a partial positive answer: Just look at any
holomorphic function f : (Cn, 0) → (C, 0), with isolated singularity at
the origin, as a pair of real analytic maps f = (<(f),=(f)), where <(f)
and =(f) are the real and imaginary part of f , respectively.

What about real analytic maps which do not come from holomorphic
ones?

This introduces the problem of study natural conditions under which
a real analytic map germ f = (f1, f2) : (Rn, 0) → (R2, 0), n ≥ 2, satis-
fies the strong Milnor condition, i.e,

How big the class of real analytic maps which satisfy the strong
Milnor condition is?

As far as we know, this problem was first approached in [Ja, Ja1] by
A. Jacquemard. There the author proposed two sufficient conditions,
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one geometric and one algebraic, that imply the strong Milnor condi-
tion. Some years later, Seade in [S] and Seade, Ruas and Verjovsky in
[RSV], used a pencil of real analytic hypersurfaces canonically associ-
ated to the corresponding map germs to study singularities with the
strong Milnor condition (see §2.2). Even in [RSV], the authors pro-
vided a method to find an infinite family of singularities satisfying this
condition, in particular, the twisted Brieskorn-Pham polynomials,
which are real analytic analogues to Brieskorn-Pham polynomials (1)
(see Example 3.8).

In [RS], using different tools of singularity theory and stratification
theory the authors refined the previous argument and proved that un-
der a weaker condition (Bekka’s (c)-regularity) on a stratification of an
analytic set given by projections of the map f , also is possible to guar-
antee the existence of this condition. See [RS] for details. Afterwards,
in [Sa] the author got a slight improvement of the last one using only
the called (m)-condition. Actually, it was inspired from K. Bekka and
Koike’s result proving that (c)-regularity imply (m)-condition.

Recently, in [CSS, ST, CSS1] necessary and sufficient conditions were
given to assure that given a real analytic map f : (Rn, 0) → (Rk, 0),
with n ≥ k ≥ 2, the map f

‖f‖ : Sn−1
ε \ Kε → Sp−1 is the projection of

a locally trivial fibration. We will explain these results in more details
on §3.4 and §3.5.

In what follows, we intend to present some interesting generaliza-
tions, in the authors point of view, of Milnor fibrations on complex
and real cases, which have been developed in these last years. We will
start with the complex case for germs of functions and maps and af-
ter that we will move to the real analytic cases and list some open
questions. As a complementary reading we recommend the interesting
survey article [S3].

2. Milnor fibrations for complex functions and maps

In this section we will be concerned with the complex case.

2.1. Milnor Fibration on complex analytic sets. Let us start with
an improvement of Milnor Fibration Theorem [Mi1] for complex func-
tions done by Lê Dũng Tráng in [Le1], which generalizes the existence
of Milnor fibrations on complex analytic sets.

Let X be an analytic subset of an open neighbourhood U of the origin
0 in Cn. Let f : (X, 0) → (C, 0) be holomorphic and set V = f−1(0).
Let Bε be a ball in U of sufficiently small radius ε > 0, centred at
0 ∈ Cn and Dη − {0} be the punctured disc of radius η in C.
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Theorem 2.1 (Milnor-Lê Fibration [Le1]). For all ε > 0 small enough,
there exists η, with 0 < η ≤ ε, such that

(3) f | : Bε ∩X ∩ f−1(Dη − {0}) → Dη − {0}
is a topological locally trivial fibration.

Idea of proof. Let S be a Whitney stratification of X, choose ε > 0
small enough such that the closed ball Bε intersects only a finite number
of strata of X and such that the sphere Sε, boundary of Bε, intersects
such strata transversally. Moreover, according to [Hi], we can always
choose this stratification in such way that V is union of strata and
satisfies Thom’s Af−condition. This implies that for 0 < η ¿ ε the
fibres of the map

f | : Bε ∩X ∩ f−1(Dη − {0}) → Dη − {0},
intersect transversally the strata of X ∩ Sε and that it is a stratified
submersion. Now the result follow from Thom-Mather First Isotopy
Theorem [Mat]. ¤

Lê also observed that H. Hamm in [H] proved that this topological
fibration becomes a smooth fibration, if X\V is a non-singular analytic
set in CN .

As stated below, this result was generalized by E. Looijenga in [Lo1]
for complex analytic maps germs f : (Cn, 0) → (Cp, 0) that locally de-
fine an Isolated Complete Intersection Singularity (ICIS). This means
that in a sufficient small ball Bε ⊂ Cn the intersection (f−1(0)−{0})∩
Bε is an analytic manifold. Set C(f) = f(

∑
(f)) be the discriminant

set of f .

Theorem 2.2 ([Lo1]). There exists ε0, such that for all 0 < ε ≤ ε0,
there exists 0 < η ¿ ε, such that the projection map

f | : Bε ∩ f−1(Dη − C(f)) → Dη − C(f)

is a smooth locally trivial fibration.

One has the following natural

Question 1. What are the good conditions under which it is possible to
guarantee the existence of Milnor fibration for a complete intersection
with non-isolated singularity?

More recently in [Ga], using the tool of integral closure of modules,
T. Gaffney did a beautiful and interesting approach to this question.
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There is also a generalization of Theorem 1.1 on complex analytic
sets, which is implicit in the work of Lê Dũng Tráng [Le] and a weaker
form of it is also given in [Du, Thm. 3.9].

Let LXε = X ∩ Sε be the link of X and let Lf ε = X ∩ V ∩ Sε be the
link of f in X.

Theorem 2.3. There exists ε0 > 0, such that, for all 0 < ε ≤ ε0, the
map

(4) φ =
f

|f | : LXε \ Lf ε −→ S1.

is a locally trivial fibration.

A proof of this theorem and the fact that the fibration (4) is equiv-
alent to the restriction f | : Bε ∩X ∩ f−1(∂Dη) → ∂Dη of fibration (3)
can be found in [CSS] (see Theorem 2.5 below).

2.2. Refinements of Milnor Fibration Theorems. In [CSS] the
authors give some refinements of Theorems 2.1 and 2.3.

As in § 2.1, let X be an analytic subset of an open neighbourhood U
of the origin 0 in Cn and denote by Sing(X) the set of singular points
of X. Let f : (X, 0) → (C, 0) be holomorphic and set V = f−1(0) and
let Sing(V ) the set of singular points of V . Let Bε0 be a closed ball in
U of sufficiently small radius ε > 0, centred at 0 ∈ Cn and let Sε be its
boundary.

As we mentioned in the introduction, there is a canonical pencil of
real analytic hypersurfaces associated to f (see also [S, RSV]) defined
as follows. For each θ ∈ [0, π), let Lθ be the line through 0 in R2

with an angle θ (with respect to the x-axis) and set Xθ = f−1(Lθ).
Then each Xθ is a real analytic hypersurface and {Xθ} is called the
canonical pencil of f , its main properties are summarized in the
following theorem.

Theorem 2.4 (Canonical Decomposition). Let {Xθ} be the canonical
pencil of f . Then

i) The Xθ are all homeomorphic real analytic hypersurfaces of X with
singular set Sing(V ) ∪ (Xθ ∩ Sing(X)). Their union is the whole
space X and they all meet at V , which divides each Xθ in two
homeomorphic halves, i.e., Xθ = E+

θ ∪ V ∪ E−
θ and E+

θ
∼= E−

θ .
ii) If {Sα} is a Whitney stratification of X adapted to V , i.e., V is

union of strata, then the intersection of the strata with each Xθ

determines a Whitney stratification of Xθ, and for each stratum
Sα and each Xθ, the intersection Sα∩Xθ meets transversally every
sphere in Bε0 centred at 0.
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iii) There exist a small ε > 0 such that there is a uniform conical
structure for all Xθ, i.e., there is a homeomorphism

h : (X ∩Bε0 , V ∩Bε0) → (Cone(X ∩ Sε0),Cone(V ∩ Sε0))

which restricted to each Xθ defines a homeomorphism

(Xθ ∩Bε0)
∼= Cone(Xθ ∩ Sε0).

The generalization of Theorems 2.1 and 2.3 is the following theorem.

Theorem 2.5 (Fibration Theorem). One has a commutative diagram
of fibre bundles

(X ∩Bε0) \ V
Φ //

Ψ &&MMMMMMMMMMM S1

π

²²

RP1

where Ψ(x) = (Re(f(x)) : Im(f(x))) with fibre (Xθ ∩ Bε0) \ V , Φ(x) =
f(x)
|f(x)| and π is the natural two-fold covering. The restriction of Φ to

the link LX \ Lf is the Milnor fibration φ in Theorem 2.3, while the
restriction of Φ to the Milnor tube f−1(∂Dη) ∩ Bε0 is the Milnor-Lê
fibration in Theorem 2.1 (up to multiplication by a constant), and the
two fibrations are equivalent.

To prove Theorem 2.5 the authors introduce an auxiliary function
called the spherefication of f , defined by

F(x) = ‖x‖Φ(x) = ‖x‖ f(x)

|f(x)| .

Notice that given z ∈ C \ {0} with θ = arg z, the fibre F−1(z) is the
intersection of E±

θ with the sphere S|z| of radius |z| centred at 0, and
F carries S|z| \ V into the circle around 0 ∈ R2 of radius |z|.

Then they obtain the following fibration theorem.

Theorem 2.6. For ε0 > 0 sufficiently small, one has a fibre bundle

F :
(
(X ∩Bε0) \ V

) −→ (Dε0 \ {0}) ,

taking x into ‖x‖ f(x)
|f(x)| , where Dε0 is the disc in R2 centred at 0 with

radius ε0. Furthermore, the restriction of F to each sphere around 0 of
radius ε ≤ ε0 is a fibre bundle over the corresponding circle of radius ε,
and this is the Milnor fibration φ in Theorem 2.3 up to multiplication
by a constant.
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Idea of the proofs. Using Theorem 2.4-ii) it is proved that F is a sub-
mersion on each strata in X\V . This allows to construct on (X∩Bε0)\V
two complete, stratified, vector fields: v̂ is tangent to all the spheres
in Bε centred at 0, and whose orbits are transverse to the Xθ \ V and
permute them; ŵ is transverse to all spheres in Bε0 centred at 0, and
therefore, it is transverse to all fibres F−1(y). These vector fields give
the local triviality of F in Theorem 2.6. The vector field v̂ also gives
the local triviality of the restriction of F to any sphere Sε which is

equivalent to the fibration φ since Φ = F(x)
‖F(x)‖ = f(x)

‖f(x)‖ . Also v̂ gives the

local triviality of Φ and Ψ in Theorem 2.5.
Modifying ŵ one gets a vector field w̃ which is transverse to all

spheres in Bε0 centred at 0, it is also transverse to all the tubes f−1(∂Dη)
and it is tangent to the strata of each Xθ \V . This vector field gives the
equivalence of the fibration on the tube and the one on the sphere. ¤

The following corollary gives the relation between the Milnor fibers
and the link of the Xθ.

Corollary 2.7. Given f : (X, 0) → (C, 0) and its Milnor fibration

φ =
f

|f | : LXε \ Lf ε −→ S1,

one has that the union of every pair of fibres of φ over antipodal points
of S1 with the link Lf is the link of a real analytic hypersurface Xθ,
which is homeomorphic to the link of {Re f = 0 }. Moreover, if both
X and f have an isolated singularity at 0, then this homeomorphism
is in fact a diffeomorphism and the link of each Xθ is diffeomorphic to
the double of the Milnor fibre of f regarded as a smooth manifold with
boundary Lf .

Also a new Milnor-type fibration theorem is obtained in which it is
not necessary to remove the zero locus of the function f .

Theorem 2.8. Let X̃ be the space obtained by the real blow-up of V ,
i.e., the blow-up of (Re(f), Im(f)). The projection Ψ̃ : X̃ → RP1 is a
topological fibre bundle with fibre Xθ.

This implies that all the hypersurfaces Xθ are homeomorphic and
can also used to prove Theorem 2.5.

Idea of the proof. The Whitney stratification of X induces a canoni-
cal Whitney stratification on X̃, Ψ̃ is an stratified submersion and by
Theorem 2.4-ii), the fibres of Ψ̃ are transverse to X̃ ∩ (Sε0 × RP1),
the boundary of the compact set X̃ ∩ (Bε0 × RP1), so one can apply
Thom-Mather First Isotopy Theorem to get the fibration. ¤
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3. Milnor fibrations for real maps

3.1. Fibrations for maps fḡ and meromorphic functions. It is
natural to ask if, as in the holomorphic case, it is possible to have
a fibration theorem for real analytic map germs f : (Rn, 0) → (Rk, 0)
having an isolated critical value at 0 ∈ Rk, instead of having only
0 ∈ Rn as an isolated critical point. This was first considered in [PS]
where the authors generalized Theorem 2.1 for the case of real analytic
maps f : X → Rk on a real analytic variety X of dimension n > 0,
with 0 ∈ Rk as an isolated critical value and that satisfies Thom’s
Af -condition and get the fibration corresponding to (2). Using this
generalization they prove the following fibration theorem.

Let X be an equidimensional, complex analytic variety in CN of
dimension n with an isolated singularity at 0. Let f, g : (X, 0) → (C, 0)
be germs of holomorphic functions such that f−1(0) and g−1(0) have
no common irreducible components. Denote by LX the link of X and
by and Lfḡ is the link of fḡ in X.

Theorem 3.1. Suppose fḡ : (X, 0) → (C, 0) has an isolated critical
value at 0 ∈ R2 ∼= C and that it satisfies Thom’s Af -condition. Then
one has a locally trivial fibration

Ψfḡ : LX \ Lfḡ −→ S1
η .

When X has dimension 2 it is proved that for f and g with no
common branch and fḡ with an isolated critical point at 0, fḡ satisfies
Thom’s Af -condition.

With the previous setting, also in [PS] the authors generalize a fibra-
tion theorem in [BP] for meromorphic functions f/g which are semi-
tame.

The meromorphic function f/g takes values on P1. Let Vfg = { fg =
0 } and denote by Lfg the link of fg in X.

Definition 3.2. Set h = f/g and define the set

M(f/g) = {x ∈ X \ Vfg |Tx

(
(h−1(h(x))

) ⊂ TxS
2N−1
||x|| }.

The bifurcation set B ⊂ P1 of f/g is the union of { 0,∞} and the
set of c ∈ P1 such that there exists a sequence (xk)k∈N in M(f/g) such
that

lim
k→∞

xk = 0 and lim
k→∞

(f/g)(xk) = c.

The meromorphic function f/g is semitame at 0 if B = { 0,∞}.



MILNOR FIBRATIONS 11

Theorem 3.3 ([BP]). Let f, g : (X, 0) → (C, 0) be holomorphic with
no common branch. If f/g is semitame at 0, then the map

φf/g =
f/g

|f/g| : LX \ Lfg −→ S1,

is a locally trivial C∞ fibre bundle.

Notice that on X \ Vfg one has
fḡ

|fḡ| =
f/g

|f/g| , and in fact one has

that for f, g : (X, 0) → (C, 0) be holomorphic with no common branch
such that fḡ has an isolated critical value at 0, it satisfies Thom’s Afḡ-
condition and f/g is semitame at 0 the fibrations Ψfḡ and φf/g are
topologically equivalent.

Recall that when X has dimension 2, fḡ satisfies Thom’s Afḡ-condition,
so in this case it is natural to compare the hypothesis: fḡ has an iso-
lated critical value at 0 and f/g is semitame at 0, which gives fibrations
Ψfḡ and φf/g respectively. In the case X = C2 these two hypothesis are
equivalent.

Theorem 3.4. Let f, g : (C2, 0) → (C, 0) be holomorphic germs such
that f−1(0) and g−1(0) have no common factors. The following are
equivalent :

(i) fḡ has an isolated critical value at 0,
(ii) The map Ψfḡ : LX \ Lfg → S1 is a fibration.
(iii) The map φf/g : LX \ Lfg → S1 is a fibration.
(iv) f/g is semitame at 0.

3.2. Fibrations of polar weighted homogeneous polynomials.
In [RSV] twisted Brieskorn-Pham polynomials were defined (see Exam-
ple 3.8), which were the first examples of polar weighted homogeneous
polynomials. Inspired by these examples, in [Ci, O] Polar weighted
homogeneous polynomials were defined, they are real analytic maps
which generalize complex weighted homogeneous polynomials. This
family of polynomials have 0 ∈ C as its only critical value. Hence
they are examples of real analytic maps which does not necessarily
have isolated critical point and have Milnor Fibrations on the Milnor
tube and on the sphere, and the two fibrations are equivalent.

Consider Cn with coordinates z1, . . . , zn. As usual, let z̄j be the com-
plex conjugate of zj. Writing zj = xj + iyj, we have that considering
Cn with coordinates z1, . . . , zn, z̄1, . . . , z̄n is equivalent to consider it as
a 2n-dimensional real vector space with coordinates x1, y1, . . . , xn, yn.
To simplify notation we shall write z = (z1, . . . , zn), z̄ = (z̄1, . . . , z̄n).
Also set C∗ = C− {0}.
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Definition 3.5. Let pj, uj with j = 1, . . . , n, positive integers such
that

gcd(p1, . . . , pn) = 1, gcd(u1, . . . , un) = 1.

Let τ ∈ C∗ written in its polar form τ = tλ, with t ∈ R+ and λ ∈ S1,
that is, t = |τ | and λ = ei arg τ .

A polar C∗-action on Cn with radial weights (p1, . . . , pn) and
polar weights (u1, . . . , un) is given by

(5) tλ · (z) = (tp1λu1z1, . . . , t
pnλunzn).

In fact, a polar C∗-action is the combination of two actions: a R+-action
given by the weights (p1, . . . , pn), and a S1-action given by the weights
(u1, . . . , un).

Definition 3.6. Let f : Cn → C be a polynomial in the 2n variables
z1, . . . , zn, z̄1, . . . , z̄n. Hence, we can see f as a real analytic function.

Let a and c be positive integers. We say that f is polar weighted
homogeneous with radial weight type (p1, . . . , pn; a) and polar
weight type (u1, . . . , un; c) if the following functional identity holds

(6) f(tλ · (z)) = taλcf(z), t ∈ R+, λ ∈ S1,

where tλ · (z) is a polar C∗-action. In other words, it is weighted ho-
mogeneous of degree a with respect to the R+-action with weights
(p1, . . . , pn) and it is weighted homogeneous of degree c with respect to
the S1-action with weights (u1, . . . , un).

Example 3.7. Weighted homogeneous polynomials are a particular
case of polar weighted homogeneous polynomials with no z̄j for j =
1, . . . , n and with pj = uj and a = c. In particular, Pham-Brieskorn
polynomials (1).

Example 3.8. A polynomial in Cn of the form

ν1z
a1
1 z̄σ(1) + · · ·+ νnzan

n z̄σ(n),

was called in [RSV] a twisted Brieskorn-Pham polynomial of class
{a1, . . . , an; σ}, where each aj ≥ 2, j = 1, . . . , n, the νj are non-zero
complex numbers and σ is a permutation of the set {1, . . . , n} called
the twisting.

In [RSV] it is proved that twisted Brieskorn-Pham polynomials are
polar weighted homogeneous. It is also proved that they have isolated
critical point and that they satisfy the strong Milnor condition.

Remark 3.9. The sum of two polar weighted homogeneous polynomials
is again a polar weighted homogeneous polynomial.
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Using a generalization of Euler identities for weighted homogeneous
polynomials it is proved that 0 ∈ C is the only critical value of po-
lar weighted homogeneous polynomials. Then as for complex weighted
homogeneous polynomials one has the following fibration theorem.

Let V = f−1(0), let S2n−1
ε ⊂ Cn be a sphere of radius ε around 0 and

let Kε = S2n−1
ε ∩ V .

Proposition 3.10. The restriction f : (Cn − V ) → C∗ is a locally
trivial fibration. Its monodromy is given by the map

h(z) = e2πi/c · z.
Moreover, the map

φ =
f

|f | : (S2n−1
ε \Kε) → S1,

is a locally trivial fibration for any ε > 0.

Let f| : f−1(S1) → S1 be the restriction of the fibration f : (Cn −
V ) → C∗ of Proposition 3.10 to S1.

Proposition 3.11. The fibration f| : f−1(S1) → S1 is equivalent to the
Milnor fibration φ : S2n−1

ε \Kε → S1.

In [Ci] it is also proved a Join Theorem, which says that the Milnor
fiber of the sum of two polar weighted homogeneous polynomials in
different variables, is homotopically equivalent to the join of the Milnor
fibers of the summands.

Polar weighted homogeneous polynomials are mixed analytic func-
tions which is a wider class of real analytic functions recently defined
in [O1]. There, the author gives a condition to guarantee the existence
of Milnor Fibrations for mixed analytic functions.

3.3. Milnor conditions (a) and (b) and ÃL-analytic maps. An
interesting improvement toward the existence of Milnor fibrations for
real analytic map germs f : (Rn, 0) → (Rk, 0),m ≥ k ≥ 2, was given
in [Ma]. The author defined two conditions under which is possible to
guarantee the existence of Milnor fibrations for non-isolated singulari-
ties, more precisely, for map f with isolated critical value at 0 ∈ Rk.

In order to describe this result and following the author’s notation
in [Ma], let f(x) = (f1(x), . . . , fk(x)) be a representant of the germ
defined in a small neighborhood of origin U , ∇fi(x) the gradient map
of the coordinates functions fi, for i = 1, ..., k. Denote by U =

∑
(f)

the singular locus of f and ρ(x) = ‖x‖2 the square of distance function
from the origin. Define

B := {x ∈ U |∇fi(x), . . . ,∇fk(x),∇ρ(x), are linearly dependent}.



14 J. L. CISNEROS-MOLINA AND R. N. ARAÚJO DOS SANTOS

Definition 3.12. We say that a map germ f satisfies Milnor condi-
tion (a) at the origin 0 if, and only if, 0 /∈ U \ V (f).

Definition 3.13. We say that a map germ f satisfies Milnor condi-
tion (b) at the origin 0 if, and only if, 0 is an isolated point of (or,

is not in) V (f) ∩B \ V (f).

It is easy to see that Milnor condition (a) means that in a small
neighborhood of origin

∑
(f) ⊂ V (f), i.e, 0 ∈ Rk is an isolated critical

value. Milnor condition (b) implies that there exists a small enough
ε0 > 0, such that for each 0 < ε ≤ ε0, there exists η, 0 < η ¿ ε, such
that f−1(Bk

η − {0}) ∩ Sn−1
ε ∩ B = ∅, where Bk

η − {0} stand for the

punctured closed ball in Rk of radius η.

Definition 3.14. If f satisfies Milnor conditions (a) and (b) at the
origin, we say that ε is a Milnor radius for f at the origin, if both
conditions holds into a closed ball Bε ⊂ Rn.

Theorem 3.15 ([Ma]). Suppose that a real analytic map f has a Mil-
nor radius ε0 > 0. Then, for all ε, 0 < ε ≤ ε0, there exists η, 0 < η ¿ ε0,
such that

f| : Bε ∩ f−1(Bk
η − {0}) → Bk

η − {0}
is the projection of a smooth locally trivial fibration.

Idea of proof. Since f has a Milnor radius ε0 > 0, we have that for all
0 < ε ≤ ε0,

∑
(f)∩Bε ⊂ V (f)∩Bε. It means that, 0 ∈ Rk is an isolated

critical value of f , i.e, f| : B◦
ε \ V (f) → Rk is a smooth submersion,

where B◦ stands for an open ball. It follows from Milnor condition (b),
and the remark above that, for each ε there exists η, 0 < η ¿ ε0, such
that

f| : Sn−1
ε ∩ f−1(B◦

η − {0}) → B◦
η − {0}

is a submersion on the boundary of the closed ball Bε. Now, combining
these two conditions, we get that for each ε we can choose η such that

f| : Bε ∩ f−1(B◦
η − {0}) → B◦

η − {0}
is a smooth, proper submersion and by Ehresmann Fibration Theorem
it is a locally trivial fibration. ¤

Even in [Ma] the author gave the following analytic condition to
guarantee the existence of Milnor’s radius of a map f .

Definition 3.16. We say that a real analytic map germ f : (Rn, 0) →
(Rk, 0),m ≥ k ≥ 2, satisfies the strong ÃLojasiewicz inequality at
the origin or is ÃL-analytic at the origin, if, and only if, there exists
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an open neighborhood U 3 0, and constants c > 0, 0 < θ < 1, such
that, for all x ∈ U , the following holds:

|f(x)|θ ≤ c. min
|(a1,...,ak)|=1

{|a1.∇f1(x) + · · ·+ ak.∇fk(x)|}.

It is easy to see that, ÃL-analytic maps always satisfies Milnor condi-
tion (a). In [Ma], using a technique started in [HL], the author proved
the following result:

Theorem 3.17 ([Ma]). If a real analytic map pair f = (P, Q) :
(Rn, 0) → (R2, 0) is ÃL-analytic at the origin, then Milnor condition
(b) holds. i.e, there exist a Milnor radius for the map f . Therefore,
(applying Theorem.3.15) the local Milnor fibration exists.

In general, i.e, for real analytic map germ f : (Rn, 0) → (Rk, 0),m ≥
k > 2, the author posed the following open questions:

Question 2. Do general ÃL-analytic maps satisfy Milnor condition (b)?

Question 3. Let f : (Rn, 0) → (R2, 0) be an ÃL-analytic map that also
satisfies the strong Milnor condition. Are the two fibrations equivalent?

3.4. Real Milnor fibration and open book decompositions. As
we have mentioned before, we cannot expect in general that given a real
analytic map germ f : (Rn, 0) → (Rk, 0), with isolated critical point at

the origin, the projection
f

‖f‖ : Sm−1
ε \Kε → Sk−1 will be the projec-

tion map of a smooth locally trivial fibration, i.e, for k = 2, that f will
satisfy the strong Milnor condition at the origin.

In [ST] the second author and M. Tibar used the idea of open book
decomposition in higher dimensions to get a characterization of this
kind of fibrations, for all dimensions k ≥ 2, on the class of K−finite
map germs. Their main result is:

Theorem 3.18 ([ST]). Let f : (Rn, 0) → (Rk, 0) be a real analytic
map germ and suppose that for all small enough radii ε > 0,

∑
(f) ∩

V (f) ∩ Bε ⊆ {0}. Then, the map
f

‖f‖ : Sn−1
ε \Kε → Sk−1 is the map

projection of a locally trivial fibration if, and only if, it is a submersion
for all ε. Moreover, if the map is weighed-homogeneous with isolated
singularity at origin, this fibration is smooth and fiber-equivalent to the
Milnor fibration given in Theorem.1.3.
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Idea of proof. Let f(x) = (f1(x), . . . , fk(x)) and s = (s1, . . . , sk) ∈
Rk \ {0}, now consider [s] = (s1 : . . . : sk) ∈ Pk−1(R) and define
the analytic set

X := {x ∈ Bε0 × Pk−1(R) : rank

[
f1(x) · · · fk(x)

s1 · · · sk

]
< 2}.

Define π : X → Pk−1(R) and p : X → Bε0 and denote X[s] the fiber

of π over [s] ∈ Pk−1(R). It is easy to see that V × Pk−1(R) ⊂ X and
V × [s] ⊂ X[s], for all [s]. Also, denote

X+
[s] = (

f

‖f‖)−1(
s

‖s‖) and X−
[s] = (

f

‖f‖)−1(− s

‖s‖).

The three conditions below holds:

1) X[s] \ V is a disjoint union of X+
[s] and X−

[s];

2) The first factor projection p : X → Bε0 is actually a blow up along
V , i.e, p : X \ (V × Pk−1(R)) → Bε0 \ V is an analytic isomorphism;
3) The submersion condition on hypothesis means that: for all 0 < ε ≤
ε0, X[s] \ V is an analytic manifold for all [s] and it is transverse to all
small sphere Sε.

Now the equivalence follows similarly to the construction given in
[Mi1] and [RS]. ¤

We observe that, if f has isolated singular point at origin, i.e.
∑

(f) =
{0}, our main hypothesis is fulfilled, so the following result is an im-
mediate consequence:

Corollary 3.19. A necessary and sufficient condition for a pair of
isolated singular map germ f = (P, Q) : (Rn, 0) → (R2, 0) satisfies the
strong Milnor condition at the origin, is that the projection map
f

‖f‖ : Sm−1
ε \Kε → S1 be a submersion, for all ε > 0 small enough.

3.5. Real Milnor fibrations and d-regularity. Using the ideas and
constructions given in [CSS] for holomorphic functions, in [CSS] for the
case k = 2 and [CSS1] for the general case, the authors introduce a con-
dition called d-regularity, which is a necessary and sufficient condition
to have several kinds of fibrations associated to a real analytic map
f : (Rn, 0) → (Rk, 0) with an isolated critical value at 0 ∈ Rk.

Let f : (U, 0) → (Rk, 0) be a non-constant real analytic map defined
on an open neighbourhood of the origin 0 ∈ Rn, with a critical point
at 0 and which is a submersion at each x /∈ V = f−1(0), i.e., 0 ∈ Rk is
an isolated critical value. As in §2.2 we define the canonical pencil of
f , which is a family of real analytic spaces, parametrised by RPk−1, as
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follows: For each ` ∈ RPk−1, consider the line L` ⊂ Rk passing through
the origin corresponding to ` and set

X` = {x ∈ U | f(x) ∈ L`}
Then each X` is a real analytic variety. It is easy to see that these
varieties meet at V and away from it they are smooth submanifolds of
U of dimension n− k + 1.

Definition 3.20. The map f is said to be d-regular at 0 if there exists
a metric ρ induced by some positive definite quadratic form and there
exists ε0 > 0 such that every sphere (for the metric ρ) of radius ≤ ε0

centred at 0 meets every X` \V transversely whenever the intersection
is not empty. We shall also say that f is d-regular with respect to the
metric ρ.

Example 3.21. The first three examples are d-regular at 0 for the
usual metric:

1) By [Mi1, Lem. 5.9], every holomorphic germ f : (Cn, 0) → (C, 0) is
d-regular (see [CSS]).

2) By [PS], given f, g : (C2, 0) → (C, 0) holomorphic germs (see §3.1):
• If fḡ has an isolated critical value at 0 ∈ C, then it is d-regular.
• If f/g : (Cn, 0) → (C, 0) is semitame at 0, then it is d-regular.

3) By [Ci] (see §3.2), Polar weighted homogeneous polynomials are d-
regular.

4) Assume f : (Rn, 0) → (Rp, 0) is real weighted homogeneous with
isolated critical value at 0. The orbits of the action of R∗ are obvi-
ously tangent to each X` and transversal to all spheres centered at
0. Hence f is d-regular.

5) By [RS], every map-germ g : (Rn+2, 0) → (R2, 0) for which its pencil
is c-regular (in the sense of K. Bekka) with respect to the control
function defined by a metric d in Rn+2, is d-regular.

The condition of d-regularity is equivalent to the condition given in
§3.4 that the map

(7) φ =
f

‖f‖ : Sn−1
ε \Kε → Sk−1

is a submersion for any sufficiently small ε. In fact, one has the following
characterizations of d-regularity in terms of the spherification of f .

As in §2.2, define the map Φ: U \ V → Sk−1 by Φ(x) = f(x)
‖f(x)‖ and

the spherefication F : U \ V → Rk \ {0} of f by F(x) = ‖x‖Φ(x).

Proposition 3.22. Let Bε0 ⊂ U be a ball centered at 0 ∈ Rn. Let
f : (Bε0 , 0) → (Rk, 0). Set V = f−1(0) and Kε = V ∩ Sε. The following
are equivalent:
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(1) The map f is d-regular at 0.
(2) For each sphere Sε in Rn centred at 0 of radius ε ≤ ε0, the restric-

tion map Fε : Sε \ V → Sk−1
ε of F is a submersion.

(3) The spherefication map F is a submersion at each x ∈ Bε0 \ V .
(4) The map φ = f

‖f‖ : Sε \ Kε −→ Sk−1 is a submersion for every

sphere Sε with ε ≤ ε0.

Idea of proof. The equivalences are straightforward from the definitions
of d-regularity and the spherefication map. The important point is to

notice that Φ(x) = f(x)
‖f(x)‖ = F(x)

‖F(x)‖ . ¤

The main result of [CSS1] is the following real analogue of Theo-
rems 2.5 and 2.6.

Theorem 3.23 (Fibration Theorem). Fix a metric ρ in Rn and
let Bε0 be a sufficiently small open ball around 0 ∈ Rn with respect to
this metric. Let f := (f1, ..., fk) : Rn → Rk be a real analytic map-
germ, which is a submersion away from V = f−1(0). Define the map
Φ: Bε0 \ V → Sk−1 by Φ = f

‖f‖ and the spherefication map of f by

F : Bε0 \ V → Dε0 \ {0}, F(x) = ‖x‖Φ(x),

where Dε0 is a ball in Rk centred at 0 with radius ε. The following are
equivalent:

1. The map f is d-regular at 0.
2. The map F : Bε0 \ V → F(Bε0 \ V ) ⊆ Dε0 \ {0} is a differentiable

fibre bundle. Furthermore, for every sphere Sε centred at 0 of radius
ε < ε0, the restriction Fε : Sε \ V → Fε(Sε \ V ) ⊆ Sk−1

ε of F is
also a differentiable fibre bundle and this is the map φ in (7) up to
multiplication by a constant.

3. One has a commutative diagram of smooth fibre bundles

Bε0 \ V
Φ //

Ψ %%JJJJJJJJJ Sk−1

π

²²

RPk−1

where Ψ(x) = (f1(x) : · · · : fk(x)) has fibre (X` ∩ Bε0) \ V and π is
the natural two-fold covering.

4. Let Kε = V ∩ Sε. Restricting to Sε \ Kε one has a corresponding
diagram of smooth fibre bundles on Sε\Kε for every sphere Sε centred
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at 0 of radius ε < ε0:

Sε \Kε
φ //

ψ %%JJJJJJJJJ Sp−1

π

²²

RPk−1

where ψ = Ψ|Sε\Kε and φ = f
‖f‖ : Sε \Kε → Sk−1.

Remark 3.24. In Theorem 3.23 the maps F, Ψ, Φ, ψ and φ are not nec-
essarily surjective, so they are fibrations over their respective images.

Idea of the proof. The proof is analogue to the proofs of Theorems 2.5
and 2.6. By Proposition 3.22 the spherefication map F is a submersion.
This allows to prove the local triviallity of the fibrations mentioned in

the Theorem using the fact that Φ(x) = f(x)
‖f(x)‖ = F(x)

‖F(x)‖ (see [CSS1] for

details). ¤
If f satisfies Thom’s Af -condition, one has the fibration on the Mil-

nor tube, and if f is also d-regular this fibration is equivalent to the
fibration on the sphere:

Theorem 3.25. Let f : (U, 0) → (Rk, 0) be real analytic, with an iso-
lated critical value at 0 ∈ Rk. Then:

a) If V := f−1(0) has dimension more than 0 and f has the Thom
property at 0, then one has a locally trivial fibration

(8) f : Bε0 ∩ f−1(∂Dδ) −→ ∂Dδ,

where Dδ ⊂ Rk is the disc of radius δ around 0 ∈ Rk, ε >> δ > 0.
b) If f has the Thom property at 0, V has dimension more than 0 and

f is d-regular at 0, then the two fibrations above, one on the Milnor
tube (8), the other on the sphere (7), are equivalent.

Idea of the proof. Item a) follows from the generalization of Theorem 2.1
given in [PS] (see §3.1). Item b) is proved constructing a vector field
as in the proof of Theorem 2.5. (see Idea of proofs in page 9). ¤
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