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Abstract. We define the Global Centre Symmetry set (GCS) of
a smooth closed m-dimensional submanifold M ⊂ Rn, n ≤ 2m,
which is an affinely invariant generalization of the centre of a k-
sphere in Rk+1. The GCS includes both the centre symmetry set
defined by Janeczko [16] and the Wigner caustic defined by Berry
[3]. We develop a new method for studying generic singularities of
the GCS which is suited to the case when M is lagrangian in R2m

with canonical symplectic form. The definition of the GCS, which
slightly generalizes one by Giblin and Zakalyukin [10]-[12], is based
on the notion of affine equidistants, so, we first study singularities
of affine equidistants of Lagrangian submanifolds, classifying all
the stable ones. Then, we classify the affine-Lagrangian stable sin-
gularities of the GCS of Lagrangian submanifolds and show that,
already for smooth closed convex curves in R2, many singularities
of the GCS which are affine stable are not affine-Lagrangian stable.

1. Introduction

A circle is usually defined as the set of all points on a plane which
are equidistant to a fixed point. Naturally, this point is called the
centre of the circle or, equivalently, the centre of symmetry of the circle.
Similarly, a 2-sphere in R3 has a unique point of R3 as its centre, or
centre of symmetry, and the same applies for any k-sphere in Rk+1.

When trying to generalize this notion of centre of symmetry of a
smooth closed m-dimensional submanifold of Rn, one finds that there
seems to be more than one way of doing it. Coming back to the circle
on the plane, or even an ellipse, its center can also be defined as the set
(in this case consisting of a single element) of midpoints of straight lines
connecting pairs of points on the curve with parallel tangent vectors.

For a generic smooth convex closed curve, this set, of midpoints
of straight lines connecting pairs of points on the curve with parallel
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tangent vectors, is not a single point, but forms a curve with an odd
number of cusps, in the interior of the smooth original curve.

This singular inner curve has been known as the “Wigner caustic”
of a smooth curve since the work of Berry in the 70’s, because of its
prominent appearance in the semiclassical limit of the “Wigner func-
tion” of a pure quantum state whose classical limit corresponds to the
given smooth curve in R2 (with canonical symplectic structure) [3].

Therefore, this “Wigner caustic” of a smooth closed curve on the
plane is a natural affine-invariant generalization of the centre of sym-
metry of a circle, or an ellipse, which extends to higher dimensional
smooth closed submanifolds of Rn.

On the other hand, the centre of a circle or an ellipse in R2 can also
be described as the “envelope” of all straight lines connecting pairs of
points on the curve with parallel tangent vectors.

For a generic smooth convex closed curve, this set, the envelope of
all straight lines connecting pairs of points on the curve with parallel
tangent vectors, is not a single point, but forms a curve with an odd
number of cusps, in the interior of the smooth original curve.

This singular inner curve has been known as the “centre symmetry
set” of a smooth closed curve on the plane since the work of Janeczko,
over a decade ago, and is a natural affine-invariant generalization of the
centre of symmetry of a circle, or an ellipse, which extends to higher
dimensional smooth closed submanifolds of Rn [16].

However, except for circles or ellipses, when both symmetry sets are
the same point, the Wigner caustic and the centre symmetry set of a
smooth convex closed curve are not the same singular curve. Instead,
the Wigner caustic is interior to the centre symmetry set and the cusp
points of the inner curve touches the outer one in its smooth part.

A new, more complicated curve, containing the Wigner caustic and
the centre symmetry set, can be defined in a single way and this
affine-invariant definition extends to an arbitrary smooth closed m-
dimensional submanifold M of Rn, for n ≤ 2m. We call this new set,
the “Global Centre Symmetry” set of M .

In fact, our definition is only a very slight modification of a defini-
tion already introduced and used by Giblin and Zakalyukin [10]-[12] to
study singularities of centre symmetry sets of hypersurfaces. A key no-
tion in their definition is that of an affine λ-equidistant to the smooth
submanifold, of which the Wigner caustic is the case λ = 1/2. The sin-
gularities of these λ-equidistants are then fundamental to characterize
the Global Centre Symmetry set and its singularities.
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In this paper, we present a new method that is suitable for studying
the singularities of affine λ-equidistants Eλ(M), ∀λ ∈ R, and the affine-
invariant GCS(M) of a smooth closed submanifold Mm ⊂ Rn, n ≤ 2m.
However, the more general study shall be published elsewhere [7]. Here,
we focus on the extreme case n = 2m. More particularly, in this paper
we focus on the case when L is a smooth closed Lagrangian submanifold
of the affine symplectic space (R2m, ω), where ω denotes the canonical
symplectic form. This Lagrangian case is particular in various respects.

From a physical standpoint, this is the setting where Wigner caus-
tics were first defined, from the semiclassical limit of Wigner functions,
which are important in semiclassical dynamics [3][17][19][21]. It is
therefore natural to investigate in detail the singularities of the Wigner
caustic of a closed smooth Lagrangian submanifold L of arbitrary di-
mension, particularly the yet little studied case of a Lagrangian surface.
Then, given the neat geometrical character of the full Global Centre
Symmetry set, it is natural to extend these investigations, when L is
Lagrangian in (R2m, ω), to the singularities of GCS(L).

From a mathematical standpoint, because this is the extreme case
n = 2m, the notion of a pair of points on Lm with parallel tangent
subspaces is more amply generalized and we can study all the cases of
“degree of parallelism”, running from 1 to m. Also, this is the setting
where generating functions and generating families are more naturally
defined, but, because we have to cope with a symplectic structure on
R2m and use generating families, the correct definition of an equivalence
relation for the singularities of GCS(L) is more subtle.

This paper is organized as follows. In section 2 we present the def-
inition of the Global Centre Symmetry set. This section also contains
the basic definitions of degree of parallelism, affine equidistant, Wigner
caustic, centre symmetry caustic and criminant. In section 3 we define
λ-chord transformations which are used to define a general characteri-
zation and classification for affine equidistants.

In section 4 we define the generating families for these affine equidis-
tants and relate their general classification to the well known classifi-
cation by Lagrangian equivalence [2]. This is then used in section 5 to
obtain the classification of all stable singularities of all affine equidis-
tants of any generic Lagrangian submanifold.

Thus, theorem 5.1 states that any caustic of stable Lagrangian sin-
gularity is realizable as Eλ(L), for some Lagrangian L ⊂ (R2m, ω), and
corollaries 5.2 and 5.3 specialize this theorem to the cases when L is a
curve or a surface, respectively. In the first case, generic singularities
are cusps, while, in the second case, they can be cusps, swallowtails,
butterflies, or hyperbolic, elliptic and parabolic umbilics.
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The following three sections are devoted to the singularities of the
Global Centre Symmetry set. In section 6 we give a geometric charac-
terization for the criminant of GCS(L) similar to results in [10]-[12] for
hypersurfaces. In section 7 we introduce the equivalence relation (also
as an equivalence of generating families) that allows for a complete
affine-symplectic-invariant classification of the stable singularities of
GCS(L). We show that only singularities of the criminant, the smooth
part of the Wigner caustic, or tangent union of both, are stable.

Finally, section 8 is devoted to the study of the GCS of Lagrangian
curves. First, we state two theorems for the GCS of convex curves in
R2 when no symplectic structure is considered. The results presented
in theorem 8.1 are not new ([3], [16], [9]-[13]), but they are proved in
the appendix using a method that is entirely original and twin to the
method used in the Lagrangian case. In the second theorem, the in-
equality on the number of cusps of the CSS and the Wigner caustic,
although straightforward from the results in [9], had not been men-
tioned before. Pictures illustrate these theorems. Then, we specialize
the results of section 7 to the case of Lagrangian curves, showing that
most of the singularities which were affine stable when no symplectic
structure was considered are not affine-Lagrangian stable. In other
words, there is a breakdown of their stabilities due to the presence of
a symplectic form, similarly to some results presented in [4]-[6].

Acknowledgements: We specially thank M.A.S. Ruas for many stim-
ulating discussions and invaluable remarks that greatly contributed to
this paper. We also thank P. Giblin and S. Janeczko for stimulating
discussions. W. Domitrz thanks M.A.S. Ruas for invitation and hospi-
tality during his stay in São Carlos. P. de M. Rios thanks S. Janeczko
for invitation and hospitality during his visit to Warsaw.

2. Definition of the Global Centre Symmetry set.

Let M be a smooth closed m-dimensional submanifold of the affine
space Rn, with n ≤ 2m. Let a, b be points of M .

τa−b : Rn 3 x 7→ x + (a− b) ∈ Rn

is the translation by the vector (a− b).

Definition 2.1. A pair of points a, b ∈ M (a 6= b) is called a weakly
parallel pair if

TaM + τa−b(TbM) 6= Rn.

codim(TaM+τa−b(TbM)) in TaRn is called a codimension of a weakly
parallel pair a, b. We denote it by codim(a, b).



SINGULARITIES OF GCS OF LAGRANGIAN SUBMANIFOLDS 5

A weakly parallel pair a, b ∈ M is called k-parallel if

dim(TaM ∩ τb−a(TbM)) = k.

If k = m the pair a, b ∈ M is called strongly parallel, or just parallel.
We also refer to k as the degree of parallelism of the pair (a, b) and
denote it by deg(a, b). The degree of parallelism and the codimension
of parallelism are related in the following way:

(2.1) 2m− deg(a, b) = n− codim(a, b).

Thus, for a Lagrangian submanifold, the degree of parallelism and
the codimension of a weakly parallel pair coincide.

Definition 2.2. A chord passing through a pair a, b, is the line

l(a, b) = {x ∈ Rn|x = λa + (1− λ)b, λ ∈ R},
but we sometimes also refer to l(a, b) as a chord joining a and b.

Definition 2.3. For a given λ, an affine λ-equidistant of M , Eλ(M),
is the set of all x ∈ Rn such that x = λa+(1−λ)b, for all weakly parallel
pairs a, b ∈ M . Eλ(M) is also called a (affine) momentary equidis-
tant of M . Whenever M is understood, we write Eλ for Eλ(M).

Note that, for any λ, Eλ(M) = E1−λ(M) and in particular E0(M) =
E1(M) = M . Thus, the case λ = 1/2 is special:

Definition 2.4. E 1
2
(M) is called the Wigner caustic of M .

Remark 2.5. This name is given for historical reasons [3][17].

The extended affine space is the space Rn+1
e = R×Rn with coordinate

λ ∈ R (called affine time) on the first factor and projection on the
second factor denoted by π : Rn+1

e 3 (λ, x) 7→ x ∈ Rn.

Definition 2.6. The affine extended wave front of M , E(M), is
the union of all affine equidistants each embedded into its own slice of
the extended affine space: E(M) =

⋃
λ∈R {λ} × Eλ(M) ⊂ Rn+1

e .

Note that, when M is a circle on the plane, E(M) is the (double)
cone, which is a smooth manifold with nonsingular projection π every-
where, but at its singular point, which projects to the centre of the
circle. From this, we generalize the notion of centre of symmetry.

Thus, let πr be the restriction of π to the affine extended wave front
of M : πr = π|E(M). A point x ∈ E(M) is a critical point of πr if the
germ of πr at x fails to be the germ of a regular projection of a smooth
submanifold. We now introduce the main definition of this paper:

Definition 2.7. The Global Centre Symmetry set of M , GCS(M),
is the image under π of the locus of critical points of πr.
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Remark 2.8. The set GCS(M) is the bifurcation set of a family of
affine equidistants (family of chords of weakly parallel pairs) of M .

Remark 2.9. In general, GCS(M) consists of two components: the
caustic Σ(M) being the projection of the singular locus of E(M) and
the criminant ∆(M) being the (closure of) the image under πr of the
set of regular points of E(M) which are critical points of the projection
π restricted to the regular part of E(M). ∆(M) is the envelope of the
family of regular parts of momentary equidistants, while Σ(M) contains
all the singular points of momentary equidistants.

The above definition (with its following remarks) is only a very slight
modification of the definition that has already been introduced and
used by Giblin and Zakalyukin [10] to study centre symmetry sets of
curves on the plane and surfaces in 3-space. However, in our present
definition the whole manifold M is considered, as opposed to pairs of
germs, as in [10], and weak parallelism is also taken into account. Of
course, slightly modifying their nice definition was the easy part. On
the other hand, considering the whole manifold in the definition leads
to the following simple but important result:

Theorem 2.10. The Global Centre Symmetry set of M contains the
Wigner caustic of M .

Proof. Let x be a regular point of E 1
2
(M). Then x = 1

2
(a + b) for a

weakly parallel pair a, b ∈ M . It means that x is a intersection point of
the chords l(a, b) and l(b, a). The extended wave front E(M) contains
the sets

{(λ, λa + (1− λ)b)|λ ∈ R}, {(λ, (1− λ)a + λb)|λ ∈ R}.
If (1

2
, x) is a regular point of E(M) then the above sets are included in

the tangent space to E(M) at (1
2
, x). It implies that a fiber {(λ, x)|λ ∈

R} is included in the tangent space of E(M). Thus if (1
2
, x) is a regular

point of E(M) then x is in the criminant ∆(M). If (1
2
, x) is not a

regular point of E(M) then x is in the caustic Σ(M). ¤

Remark 2.11. As we shall see later (section 8), when we give a bet-
ter characterization of ∆(M), apart from the cases considered in the
previous remark most often (1

2
, x) ∈ E(M) is not a regular point of

E(M) (but the fact that x ∈ Σ(M) cannot be seen by purely local
considerations). In view of this fact, we divide the caustic Σ(M) into
two parts: The Wigner caustic E1/2(M) and the centre symmetry
caustic Σ′(M) = Σ(M) \ E1/2(M).
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As noted in the introduction, the study of Wigner caustics goes back
more than 30 years and E1/2(M) can be described in various ways:

Let M be a smooth convex closed curve on the plane and take two
nearby points on M . There is only one chord connecting these two
points (with nonparallel tangent vectors), whose midpoint x lies close
to M . Conversely, for such a point x, inside but close to M , there is
only one chord connecting two points of M for which x is its midpoint.
As the neighboring points are moved further away from each other, the
midpoint of the chord connecting these points moves further inside of
M . When the two points have parallel tangent vectors, x ∈ E1/2(M).
As x moves inside E1/2(M), there are three chords connecting nonparal-
lel pairs of points on M having x as their midpoint (when x ∈ E1/2(M)
two of these three chords coalesced into one) [3].

One way to find a chord connecting points on M given a midpoint x
is by reflecting M through x and looking for the intersection points of
M and its reflected image RxM (these are pairs of endpoints of each
chord). Again, the number of intersection pairs change as x crosses the
Wigner caustic and, when x ∈ E1/2(M), there is a point (or a pair of
points) on M where M and RxM are tangent [17].

Still another way to search for E1/2(M) is to look at the area of the
planar region enclosed by M and a chord as a function Ā of the chord’s
midpoint x̄ and search for the points where the hessian determinant
blows up. Alternatively, a more precise and complete description is
obtained by considering this area as a function A of a point x on the
chord and a variable κ locating one of the endpoints of the chord on
the curve. Regarding x as parameter, A(x, κ) is a generating family
for which E1/2(M) is its bifurcation set. Because of this description,
E1/2(M) is also known as the “area evolute” of M [3, 13].

The first description of E1/2(M) can in principle be generalized to
any smooth closed m-dimensional submanifold M of R2m.

The second description can be generalized to any smooth closed m-
dimensional submanifold M of R2m and it can be further generalized to
any smooth closed m-dimensional submanifold M of Rn, for n ≤ 2m,
so that, when x ∈ E1/2(M), there is a point (or pair of points) on
M where M and RxM are tangent in at least 2m − n + 1 directions.
Moreover, in this more general setting, there is a way to encode these
reflection maps in a transformation of the space Rn × Rn, which can
be generalized for any λ 6= 0, 1 and used to characterize all sets Eλ(M)
in a simple way, as explained below in the next section.

A way to generalize the third description is to focus on the case when
L is a smooth closed Lagrangian submanifold of R2m with canonical



8 DOMITRZ & RIOS

affine symplectic structure. In this case, a generating family closely
related to A and Ā, above, generalize to generating families for every
Eλ(L), in each degree of parallelism, as done in section 4, below.

3. λ-chord transformations

For λ = 1/2, there is a well known procedure, sometimes known
as the centre-chord change of coordinates, sometimes as the midpoint
transformation, hereby also called the “1

2
-chord transformation”, which

encodes the midpoint reflections referred to above in such a way as to
facilitate the description of the Wigner caustic [20].

Consider the product affine space: Rn×Rn with coordinates (x+, x−)
and the tangent bundle to Rn: TRn = Rn×Rn with coordinate system
(x, ẋ) and standard projection

pr : TRn 3 (x, ẋ) → x ∈ Rn.

Then, there exists a global linear diffeomorphism

Γ1/2 : Rn × Rn 3 (x+, x−) 7→
(

x+ + x−

2
,

x+ − x−

2

)
= (x, ẋ) ∈ TRn,

with inverse

Γ−1
1/2 : TRn 3 (x, ẋ) 7→ (x + ẋ, x− ẋ) = (x+, x−) ∈ Rn × Rn.

This map Γ1/2 is the 1
2
-chord transformation, which we now generalize.

Below, we state this generalization in the case Rn = R2m, for better
reference throughout the paper, but stress that this generalization and
most of what follows apply to general Rn, as done in [7].

Definition 3.1. ∀λ ∈ R \ {0, 1}, a λ-chord transformation

Ψµ(λ)ρ(λ) : R2m × R2m → TR2m , (x+, x−) 7→ (x, ẋ)

is a linear diffeomorphism generalizing the half-chord transformation,
which is defined by the λ-point equation:

(3.1) x = λx+ + (1− λ)x− ,

for the λ-point x, and the general chord equation:

(3.2) ẋ− µ(λ)x = ρ(λ)(x+ − x−) ,

where ρ : R \ {0, 1} → R is such that ρ(λ) 6= 0, for λ 6= 0, 1, and
ρ(1/2) = 1/2, and µ : R \ {0, 1} → R is such that µ(1/2) = 0.

If µ ≡ 0, Ψ0ρ(λ) ≡ Ψρ(λ) is a faithful λ-chord transformation. If
µ(λ) 6= 0, for λ 6= 1/2, Ψµ(λ)ρ(λ) is a tilted λ-chord transformation.
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The inverse equations to (3.1) and (3.2) are given by

(3.3) x+ =

(
1− (1− λ)

µ(λ)

ρ(λ)

)
x +

1− λ

ρ(λ)
ẋ ,

(3.4) x− =

(
1 + λ

µ(λ)

ρ(λ)

)
x − λ

ρ(λ)
ẋ .

Remark 3.2. If Ψρ(λ) is a faithful λ-chord transformation, for every
affine transformation on R2m, x± 7→ Ax±+a, with A ∈ GL(2m,R) and
a ∈ R2m, the induced affine transformation on TR2m is λ-independent,

(3.5) A : TR2m → TR2m , (x, ẋ) 7→ (Ax + a,Aẋ) .

Equivalently, the image of the diagonal of R2m × R2m by Ψρ(λ) is the
zero section of TR2m, ∀λ ∈ R \ {0, 1}.

If Ψµ(λ)ρ(λ) is a tilted λ-chord transformation, the image of the diag-
onal of R2m×R2m by Ψµ(λ)ρ(λ) is the tilted section {(x, ẋ = µ(λ)x)} of
TR2m and the induced affine transformation on TR2m is λ-dependent,

(3.6) A′
µ(λ) : TR2m → TR2m , (x, ẋ) 7→ (Ax + a, Aẋ + µ(λ)a) .

Note, however, that if one considers a linear (a = 0) transformation on
R2m, the induced linear transformation on TR2m is λ-independent.

Among the faithful λ-chord transformations, the choice ρ(λ) ≡ 1/2
is standard and, in this case, the λ-chord transformation is denoted by
Γλ and is bijective ∀λ ∈ R. This is the transformation used in [7].

The reason for considering tilted λ-chord transformations shall be-
come clear in the next section. Among the tilted λ-chord transforma-
tions, the most special one, in the case of Lagrangian submanifolds, is
the choice µ(λ) = 2λ − 1 and ρ(λ) = 2λ(1 − λ). For this choice, the
tilted λ-chord transformation shall be denoted by Φλ. Explicitly,

Φλ : R2m × R2m 3 (x+, x−) 7→ (x, ẋ) ∈ TR2m

is given by the λ-point equation (3.1), for x, together with

(3.7) ẋ = λx+ − (1− λ)x− ,

so that Φ−1
λ is given by:

(3.8) x+ =
x + ẋ

2λ
, x− =

x− ẋ

2(1− λ)
.

Now, let L be a smooth closed Lagrangian submanifold of the affine
symplectic space (R2m, ω) and consider the product L×L ⊂ R2m×R2m.
Let Lµ(λ)ρ(λ) denote the image of L× L by a λ-chord transformation,

Lµ(λ)ρ(λ) = Ψµ(λ)ρ(λ)(L× L) ,
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which is a 2m-dimensional smooth submanifold of TR2m.
Then we have the following general characterization:

Theorem 3.3. The set of critical values of the standard projection
pr : TR2m → R2m restricted to Lµ(λ)ρ(λ) is Eλ(L).

Proof. Let a belong to the set of critical values of pr|Lµ(λ)ρ(λ)
. It means

that dim T(a,ȧ)Lµ(λ)ρ(λ) ∩ T(a,ȧ)pr
−1(a) is positive. Let v1, · · · , vk be a

basis of T(a,ȧ)Lµ(λ)ρ(λ)∩T(a,ȧ)pr
−1(a). Then these basis has the following

form vj =
∑2m

i=1 αji
∂

∂ẋi
|(a,ȧ) for j = 1, · · · , k. By (3.3) and (3.4) we get

that for i = 1, · · · , 2m
(
Ψ−1

µ(λ)ρ(λ)

)
∗

(
∂

∂ẋi

)
=

1

ρ(λ)

(
(1− λ)

∂

∂x+
i

− λ
∂

∂x−i

)

and it follows that (Ψ−1
µ(λ)ρ(λ))∗(vj) = 1

ρ(λ)
(v+

j + v−j ), where

v+
j = (1− λ)

2m∑
i=1

αji
∂

∂x+
i

|a+ ∈ Ta+L , v−j = −λ

n∑
i=1

αji
∂

∂x−i
|a− ∈ Ta−L.

It implies that v+
j ∈ Ta+L ∩ τ(a+−a−)Ta−L for j = 1, · · · , k. Thus

Ta+L + τ(a+−a−)Ta−L 6= Ta+Rn and consequently a+, a− is a weakly
parallel (k-parallel) pair. Hence a = λa+ + (1− λ)a− belongs to Eλ.

Now assume that a belongs to Eλ. Then a = λa+ + (1 − λ)a−

for a weakly k-parallel pair a+, a−. Thus there exist linearly inde-
pendent vectors v+

j =
∑2m

i=1 αji
∂

∂x+
i

|a+ ∈ Ta+L ∩ τ(a+−a−)Ta−L for j =

1, · · · , k. Consider linearly independent vectors vj = (Ψµ(λ)ρ(λ))∗((1 −
λ)v+

j − λτ(a−−a+)v
+
j ) for j = 1, · · · , k. It is obvious that vj belongs

to T(a,ȧ)Lµ(λ)ρ(λ) and pr∗(vj) = 0 for j = 1, . . . , k. Thus a is a critical
value of pr|Lµ(λ)ρ(λ)

. ¤

Remark 3.4. For the characterization of Eλ(L), the distinction be-
tween faithful and tilted λ-chord transformations is meaningless.

For local classification of singularities, we introduce the the following

definition. Again, let L and L̃ be smooth closed Lagrangian submani-
folds of the affine symplectic space (R2m, ω) and let

Lµ(λ)ρ(λ) = Ψµ(λ)ρ(λ)(L× L) , L̃µ(λ)ρ(λ) = Ψµ(λ)ρ(λ)(L̃× L̃) ,

where Ψµ(λ)ρ(λ) is a λ-chord transformation.

Definition 3.5. Eλ(L) and Eλ(L̃) are Ψµ(λ)ρ(λ)-chord equivalent if
there exists a fiber-preserving diffeomorphism-germ ξλ of TR2m which

maps the germ of Lµ(λ)ρ(λ) to the germ of L̃µ(λ)ρ(λ), as germs of La-
grangian submanifolds, for suitable symplectic forms on TR2m, so that
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the following diagram commutes (vertical arrows indicate germs of dif-
feomorphisms):

Ψµ(λ)ρ(λ)|L×L pr
L× L ⊂ R2m × R2m −→ TR2m −→ R2m

↓ ↓ ξλ ↓
Ψµ(λ)ρ(λ)|eL×eL pr

L̃× L̃ ⊂ R2m × R2m −→ TR2m −→ R2m

Whenever Ψµ(λ)ρ(λ) is subtended, Ψµ(λ)ρ(λ)-chord equivalence is simply
called λ-chord equivalence.

For global invariance considerations we also introduce the following
definition, which relates invariance of the chord-classification under a
group G-action on R2m with G-equivariance of the above diagram.

Definition 3.6. Let L and L′ be smooth closed Lagrangian submani-
folds of the affine symplectic space (R2m, ω) and let G be a Lie group
acting properly on R2m so that L′ is the image of L by the action
αg : R2m → R2m of some g ∈ G. We say that the classification of the
singularities of Eλ(L) by Ψµ(λ)ρ(λ)-chord equivalence is G-invariant
if, ∀g ∈ G, the following diagram commutes (vertical arrows indicate
global diffeomorphisms):

Ψµ(λ)ρ(λ) pr
L× L ⊂ R2m × R2m −→ TR2m −→ R2m

αg × αg ↓ ↓ θλ
g ↓ αg

Ψµ(λ)ρ(λ) pr
L′ × L′ ⊂ R2m × R2m −→ TR2m −→ R2m

where θλ
g is fiber-preserving.

The following statement is immediate (see remark 3.2):

Proposition 3.7. The classification of the singularities of Eλ(L) by
λ-chord equivalence is affine symplectic invariant, that is the group G
in the definition 3.6 above being the affine symplectic group.

The above theorem, proposition, definitions and remarks set up
the characterization and classification of singularities of Eλ(L), for a
smooth closed Lagrangian submanifold L of (R2m, ω). In fact, most of
what has been defined above generalizes to non Lagrangian cases [7].

However, the fact that L is a Lagrangian submanifold of the affine
symplectic space (R2m, ω) forces us to consider suitable symplectic
forms on TR2m very carefully and limits the kinds of diffeomorphism
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germs ξλ that can be used in definition 3.5, for λ-chord equivalence.
When no symplectic structure is considered, the diffeomorphism-germ
ξλ in definition 3.5 is of the general form

(3.9) ξλ : TR2m 3 (x, ẋ) 7→ (X(x), Ẋλ(x, ẋ)) ∈ TR2m,

but in the lagrangian case, further restrictions apply.
On the other hand, the fact that L is a Lagrangian submanifold of

the affine symplectic space (R2m, ω) also allows us to relate this new
notion of λ-chord equivalence to the well-known notion of Lagrangian
equivalence and, in so doing, define very useful generating families for
every Eλ(L), in each degree of parallelism, as presented below.

4. Generating families

Let (R2m, ω) be an affine symplectic space with canonical Darboux
coordinates pi, qi, so that ω =

∑m
i=1 dpi ∧ dqi, and let L be a smooth

closed Lagrangian submanifold of (R2m, ω).
The purpose of this work is to describe the singularities of GCS(L).

To do so, we generalize to any λ ∈ R\{0, 1} another construction that is
well known for λ = 1/2 (for this case, see for instance [20]). This other
generalization amounts to correctly weighting the symplectic form on
each copy of R2m to be consistent with λ-chord transformations.

Thus, for a fixed λ ∈ R \ {0, 1} we consider the product affine space
R2m × R2m with the symplectic form

(4.1) δλω = 2λ2π∗1ω − 2(1− λ)2π∗2ω ,

where πi is the projection of R2m × R2m on i-th factor for i = 1, 2.
Now, let Ψµ(λ)ρ(λ) be a λ-chord transformation (3.1)(3.2). Then,

(
Ψ−1

µ(λ)ρ(λ)

)∗
(δλω) = Ωµ(λ)ρ(λ) =

(4.2) =

(
2λ(1− λ)

ρ(λ)

)
ω̇ + 2

(
(2λ− 1)− 2λ(1− λ)

ρ(λ)
µ(λ)

)
pr∗ω ,

where pr : TR2m → R2m is the standard projection and ω̇ is the canoni-
cal symplectic form on the tangent bundle to (R2m, ω), which is defined
by ω̇(x, ẋ) = d{ẋyω}(x) or, in Darboux coordinates for ω, by

(4.3) ω̇ =
m∑

i=1

dṗi ∧ dqi + dpi ∧ dq̇i .

For the standard λ-chord transformation (µ(λ) ≡ 0, ρ(λ) ≡ 1/2),

(4.4)
(
Γ−1

λ

)∗
(δλω) = 4λ(1− λ)ω̇ + 2(2λ− 1)pr∗ω .
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On the other hand, if we consider the tilted λ-chord transformation
defined by (3.1) and (3.7), which is given by the choices µ(λ) = 2λ− 1
and ρ(λ) = 2λ(1− λ), we obtain the λ-independent form

(4.5)
(
Φ−1

λ

)∗
(δλω) = ω̇ .

The pair (TR2m, ω̇) is the canonical symplectic tangent bundle of
(R2m, ω) and is, thus, a 4m-dimensional symplectic space. Similarly,
for any other Ψµ(λ)ρ(λ), the pair (TR2m, Ωµ(λ)ρ(λ)) defines a noncanonical
symplectic tangent bundle of (R2m, ω), also a 4m-dimensional symplec-
tic space. Note that Ωµ(λ)ρ(λ) satisfies Ωµ(1/2)ρ(1/2) = ω̇.

Remark 4.1. The vertical subspaces of TTR2m are Lagrangian for
Ωµ(λ)ρ(λ), as one can see from the explicit expressions (4.2) and (4.3),
which means that pr : TR2m → R2m defines a Lagrangian fiber
bundle with respect to Ωµ(λ)ρ(λ) i.e. a fiber bundle whose total space is
equipped with a symplectic structure and whose fibers are Lagrangian
submanifolds [2]. This follows from the weights in (4.1) for δλω.

In order to understand the ideology of this present construction, let’s
first focus attention on the case λ = 1/2. Consider a Lagrangian sub-
manifold Λ1/2 ⊂ (R2m×R2m, δ1/2ω) that is a graph onto the first factor
of (R2m×R2m, δ1/2ω). Then, Λ1/2 is the graph of a symplectomorphism,
or a canonical transformation φ : (R2m, ω) → (R2m, ω), φ∗ω = ω.

For the 1
2
-chord transformation Γ1/2, if L1/2 = Γ1/2Λ1/2 is locally a

graph over the zero section of (TR2m, ω̇), then this canonical transfor-
mation (R2m, ω) → (R2m, ω), x− 7→ x+, can locally be “described” by
the midpoint x = (x+ + x−)/2, that is, this canonical transformation
can locally be described by a generating function of the midpoints.1

This midpoint description generalizes for when Λ1/2 is not a graph
onto the first factor of (R2m × R2m, δ1/2ω), but is still Lagrangian . In
this case, Λ1/2 defines a canonical relation on (R2m, ω) and, if L1/2 =
Γ1/2Λ1/2 is locally a graph over the zero section of (TR2m, ω̇), then this
canonical relation Λ1/2 = {(x+, x−)} can locally be “described” by the
midpoints, that is, by a generating function of the midpoints, given the
Lagrangian fiber bundle pr : (TR2m, ω̇) → R2m (see [20]).

Clearly, if L is Lagrangian in (R2m, ω), then L × L = {(x+, x−)}
defines a relation on (R2m, ω). If we want to “describe” this relation by
the midpoints, we endow the product space with the symplectic form
δ1/2ω which makes L× L = Λ1/2 a canonical relation on (R2m, ω).

However, if we now want to “describe” the relation {(x+, x−)} by
another λ-point x = λx+ + (1 − λ)x− on the chord joining the pair

1Such a midpoint description was first introduced by Poincaré [18].
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(x+, x−), this relation cannot be canonical anymore. In other words, if
we want to describe the relation L × L = {(x+, x−)} by a generating
function of the λ-points x = λx+ + (1 − λ)x−, for some λ 6= 1/2, we
must now weight differently the symplectic form ω on the two copies
of R2m in such a way as to account for the fact that we are describing
the relation on (R2m, ω) in an asymmetrical way. The weights given in
formula (4.1) for δλω correctly account for this asymmetry.

Definition 4.2. For each λ ∈ R \ {0, 1}, a Lagrangian submanifold
Λλ ⊂ (R2m × R2m, δλω) defines a λ-weighted symplectic relation
on (R2m, ω). In particular, if L is a Lagrangian submanifold of (R2m, ω),
then L×L = Λλ defines a λ-weighted symplectic relation on (R2m, ω).

Now, if Ψµ(λ)ρ(λ) is a λ-chord transformation, let

Lµ(λ)ρ(λ) = Ψµ(λ)ρ(λ)(L× L).

If Lµ(λ)ρ(λ) is locally a graph over the zero section of (TR2m, Ωµ(λ)ρ(λ)),
then Lµ(λ)ρ(λ) can locally be “described” by the λ-points x = λx+ +
(1− λ)x−, that is, by a generating function of these λ-points.

In other words, Lµ(λ)ρ(λ) = Ψµ(λ)ρ(λ)(L×L) is a Lagrangian submani-
fold of the 4m-dimensional symplectic tangent bundle (TR2m, Ωµ(λ)ρ(λ))
which, with its standard projection pr : TR2m → R2m, is a Lagrangian
fiber bundle.

The restriction of the projection of a Lagrangian bundle to a embed-
ding Lagrangian submanifold in the total space of this bundle is called
a Lagrangian map [2]. So we obtain the following result.

Proposition 4.3. pr|Lµ(λ)ρ(λ)
: Lµ(λ)ρ(λ) → R2m is a Lagrangian map.

The set of critical values of a Lagrangian map is called a caustic
and from Theorem 3.3 we have

Corollary 4.4. The caustic of pr|Lµ(λ)ρ(λ)
is Eλ(L).

Definition 4.5 ([2]). Two germs of Lagrangian fiber bundles are La-
grangian equivalent if there exists a fiber-preserving diffeomorphism-
germ of the bundle spaces mapping one symplectic structure to the
other. Two germs of Lagrangian maps are Lagrangian equivalent
if there exists a Lagrangian equivalence of the corresponding germs of
Lagrangian fiber bundles that sends the domain of the first map to the
domain of the second.

A Lagrangian map-germ at a point is said to be Lagrangian stable
if for every map with the given germ there is a neighbourhood in the
space of Lagrangian maps (in the topology of the convergence with a
finite number of derivatives on each compact set) and a neighbourhood
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of the original point such that each Lagrangian map belonging to the
first neighbourhood has in the second neighbourhood a point at which
its germ is Lagrangian equivalent to the original germ.

Remark 4.6. For λ 6= 0, 1, note that the λ-dependent affine bijec-

tion TR2m → TR2m, (x, ẋ) 7→ (x, ẋ−(2λ−1)x
4λ(1−λ)

), relating the tilted and

the (standard) faithful λ-chord transformations Φλ and Γλ, defines a
Lagrangian equivalence between (TR2m, (Γ−1

λ )∗(δλω)) and (TR2m, ω̇).
More generally, the distinction between faithful and tilted λ-chord trans-
formations looses meaning via Lagrangian equivalence.

In view of remarks 3.4 and 4.6, in the remaining of this paper we only
use the tilted λ-chord transformation Φλ defined by (3.1) and (3.7) and
only consider the canonical symplectic tangent bundle (TR2m, ω̇). The
only exception is the appendix, where we study curves in nonsymplectic
plane and use, instead, the standard chord transformation.

So, let L and L̃ be smooth closed Lagrangian submanifolds of the
symplectic affine space (R2m, ω) and let

Lλ = Φλ(L× L) , L̃λ = Φλ(L̃× L̃) ,

be the corresponding smooth closed Lagrangian submanifolds of the
canonical symplectic tangent bundle (TR2m, ω̇), where

Φλ : R2m × R2m → TR2m

(x+, x−) 7→ (λx+ + (1− λ)x−, λx+ − (1− λ)x−) .

Definition 4.7. Eλ(L) and Eλ(L̃) are Lagrangian equivalent if the
Lagrangian maps pr|Lλ

and pr| eLλ
are Lagrangian equivalent.

Remark 4.8. Lagrangian equivalence of affine λ-equidistants, as de-
fined above, fulfills all the requirements for λ-chord equivalence of affine
λ-equidistants, as in definition 3.5. We shall therefore use this well-
known notion of Lagrangian equivalence for the classification of Eλ(L).

It follows from above definitions and remarks and proposition 3.7:

Corollary 4.9. The classification of Eλ(L) by Lagrangian equivalence
is affine symplectic invariant.

Definition 4.10. From the above corollary, we also use the terms
affine-Lagrangian equivalence and affine-Lagrangian stability
for Lagrangian equivalence and Lagrangian stability (definition 4.5) of
an affine equidistant Eλ of a Lagrangian submanifold L ⊂ (R2m, ω).
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We now rely on the well known fact that any smooth Lagrangian
submanifold L of a symplectic affine space can be locally described as
the graph of the differential of a certain generating function.

Thus, let L+ and L− denote germs of L at the points a+ and a−.

Proposition 4.11. If the pair a+, a− is k-parallel (k = 1, · · · ,m) then
there exists canonical coordinates (p, q) on R2m and function germs S+

and S− such that

(4.6) L+ : pi =
∂S+

∂qi

(q1, · · · , qm), for i = 1, · · · ,m

(4.7)

L− :

{
pj = ∂S−

∂qj
(q1, · · · , qk, pk+1, · · · , pm), for j = 1, · · · , k,

ql = −∂S−
∂pl

(q1, · · · , qk, pk+1, · · · , pm), for l = k + 1, · · · ,m

and d2S+(q+
a,1, · · · , q+

a,m) = 0 and d2S−(p−a,1, · · · , p−a,k, q
−
a,k+1, · · · , p−a,m) =

0, where a+ = (p+
a , q+

a ) and a− = (p−a , q−a ).

Proof. We can find a linear symplectic change of coordinates such that
the tangent (affine) spaces have the following form Ta+L+ = {p = p+

a },
where a+ = (p+

a , q+
a ) and Ta−L− = {p1 = p−a,1, · · · , pk = p−a,k, qk+1 =

q−a,k+1, · · · , qm = q−a,m}, where a− = (p−a , q−a ). Since L is a smooth
Lagrangian submanifold, it follows from standard considerations that
it can be described locally by differentials of generating functions of
the forms stated above in neighborhoods of a+ and a−, in which case
we have that d2S+|a+ = d2S−|a− = 0. ¤

From the above, we state the main result of this section, which shall
be used in all that follows.

Let the arguments of the function S+ be denoted by (q+
1 , · · · , q+

m) and
the arguments of the function S− by (q−1 , · · · , q−k , p−k+1, · · · , p−m). Let
q = (q1, · · · , qm), p = (p1, · · · , pm), q̇ = (q̇1, · · · , q̇m), ṗ = (ṗ1, · · · , ṗm).

Also, let β = (β1, · · · , βm) and, for any k < m, let [k] = {1, · · · , k},
so that β[k] = (β1, · · · , βk), and α[m]\[k] = (αk+1, · · · , αm).

Let L+×L− denote the germ of L×L at the point (a+, a−) ∈ L×L so
that Lλ = Φλ(L

+×L−) is the germ at (a, ȧ), where a = λa++(1−λ)a−,
ȧ = λa+ − (1− λ)a−, of a smooth Lagrangian submanifold of the 4m-
dimensional symplectic tangent bundle (TR2m, ω̇).

The restriction to Lλ of the projection pr : TR2m → R2m defines a
germ of Lagrangian map and we have the following result:

Theorem 4.12. If the pair a+, a− is k-parallel and L+ and L− are
given by (5.3) and (5.4) then the germ of Lλ at (a, ȧ) is generated by
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the germ of the generating family Fλ which is given by

Fλ(p, q, α[m]\[k], β) =(4.8)

2λ2S+
(

q+β
2λ

)− 2(1− λ)2S−
(

q[k]−β[k] , p[m]\[k]−α[m]\[k]

2(1−λ)

)

−∑k
i=1 piβi + 1

2

∑m
j=k+1 qjαj − pjβj − αjβj − pjqj

Proof. We show that

(4.9)

Lλ =

{
(ṗ, q̇, p, q) : ∃(α, β), ṗ =

∂Fλ

∂q
, q̇ = −∂Fλ

∂p
,

∂Fλ

∂α
=

∂Fλ

∂β
= 0

}
.

We have for i = 1, · · · , k and j = k + 1, · · · ,m
(4.10)

ṗi = λ
∂S+

∂q+
i

(
q + β

2λ

)
− (1− λ)

∂S−

∂q−i

(
q[k] − β[k], p[m]\[k] − α[m]\[k]

2(1− λ)

)
,

(4.11) ṗj = λ
∂S+

∂q+
j

(
q + β

2λ

)
+

1

2
(αj − pj),

(4.12) q̇i = βi,

(4.13) q̇j = (1− λ)
∂S−

∂p−j

(
q[k] − β[k], p[m]\[k] − α[m]\[k]

2(1− λ)

)
+

1

2
(βj + qj),

(4.14)
∂Fλ

∂αj

= (1− λ)
∂S−

∂p−j

(
q[k] − β[k], p[m]\[k] − α[m]\[k]

2(1− λ)

)
+

1

2
(qj − βj) = 0,

(4.15)
∂Fλ

∂βi

= λ
∂S+

∂q+
i

(
q + β

2λ

)
+(1−λ)

∂S−

∂q−i

(
q[k] − β[k], p[m]\[k] − α[m]\[k]

2(1− λ)

)
−pi = 0,

(4.16)
∂Fλ

∂βj

= λ
∂S+

∂q+
j

(
q + β

2λ

)
− 1

2
(αj + pj) = 0.

By (4.12) we get βi = q̇i for i = 1, · · · , k. (4.13) and (4.14) imply
that βj = q̇j for j = k+1, · · · ,m. By (4.11) and (4.16) we have αj = ṗj

for j = k + 1, · · · ,m. Thus we eliminate (α[m]\[k], β).
Then (4.10) implies that for i = 1, · · · , k

(4.17)

ṗi = λ
∂S+

∂q+
i

(
q + q̇

2λ

)
− (1− λ)

∂S−

∂q−i

(
q[k] − q̇[k], p[m]\[k] − ṗ[m]\[k]

2(1− λ)

)
.
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(4.15) implies that for i = 1, · · · , k
(4.18)

pi = λ
∂S+

∂q+
i

(
q + q̇

2λ

)
+ (1− λ)

∂S−

∂q−i

(
q[k] − q̇[k], p[m]\[k] − ṗ[m]\[k]

2(1− λ)

)
.

By (4.11) and (4.16) we have for j = k + 1, · · · ,m

(4.19)
1

2λ
(ṗj + pj) =

∂S+

∂q+
j

(
q + q̇

2λ

)
.

(4.13) and (4.14) imply that for j = k + 1, · · · ,m
(4.20)

1

2(1− λ)
(qj − q̇j) = −(1− λ)

∂S−

∂p−j

(
q[k] − q̇[k], p[m]\[k] − ṗ[m]\[k]

2(1− λ)

)
.

If (p+, q−) (p−, q−) are points in L+ and L− described by (5.3) and
(5.4) respectively then (4.17)-(4.20) describe Lλ in coordinates given
by (3.1)-(9.1). ¤

Remark 4.13. It is clear from the form of the generating family, given
by (4.8), that the degree of parallelism is the corank of the singularity
i. e. the corank of the Hessian of the function

R2m−k 3 (α[m]\[k], β) 7→ Fλ(pa, qa, α[m]\[k], β) ∈ R

Now, let x = (p, q). We recall that two germs of generating fam-
ilies F = F (x, κ) and G(x, κ) are R+-equivalent if there exists a
fiber-preserving diffeomorphism-germ Z(x, κ) = (φ(x), ζ(x, κ)) and a
function-germ g such that F (x, κ) = G(Z(x, κ)) + g(x).

The families F and F̃ with common parameters x but in general
with different spaces of arguments κ and κ̃ are stably R+-equivalent
if there exist nondegenerate quadratic forms Q and Q̃ (in the new
arguments) such that families F + Q and F̃ + Q̃ are R+-equivalent.

Theorem 4.14 ([2]). Two germs of Lagrangian maps are Lagrangian
equivalent if and only if the germs of their generating families are stably
R+-equivalent.

Corollary 4.15. Let L and L̃ be smooth closed Lagrangian submani-
folds of the symplectic affine space (R2m, ω). Germs Eλ(L) and Eλ(L̃)
are Lagrangian equivalent if and only if the corresponding germs of
generating families for Lλ and L̃λ are stably R+-equivalent.
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5. Singularities of equidistants of Lagrangian
submanifolds

In this section we study the singularities of momentary equidistants
of closed Lagrangian submanifolds up to Lagrangian equivalence. Re-
mind that, for Eλ(L), Lagrangian stability is affine-Lagrangian stability
(corollary 4.9 and definition 4.10). We have the following results:

Theorem 5.1. Any caustic of stable Lagrangian singularity in the
4m-dimensional symplectic tangent bundle (TR2m, ω̇) is realizable as
Eλ(L), for some smooth closed Lagrangian submanifold L in (R2m, ω).

Corollary 5.2. For a smooth Lagrangian curve L, generic singularities
of Eλ(L) are cusps. In the neighborhood of its regular points, Eλ(L) is
a smooth curve in (R2, ω).

Corollary 5.3. For a smooth Lagrangian surface L, generic singular-
ities of Eλ(L) can be cusps A3, swallowtails A4, butterflies A5, hyper-
bolic umbilics D+

4 , elliptic umbilics D−
4 , or parabolic umbilics D5. In

the neighborhood of its regular points, Eλ(L) is a 3-dimensional smooth
submanifold of (R4, ω).

The proof of Theorem 5.1 is based on the following description of
the stable Lagrangian singularities.

Theorem 5.4 ([2]). The germ at (x0, κ0) of Lagrangian map (x, κ) 7→ x
given by a Lagrangian submanifold L∗ ⊂ (T ∗Rn, ωcan),

L∗ =

{
(x∗, x) | ∃κ ∂F

∂κ
= 0, x∗ =

∂F

∂x

}
,

where

rank(x0,κ0)

[
∂2F

∂κ2
,

∂2F

∂κ∂x

]

is equal to the dimension of κ-space, is Lagrangian stable if and only if

(5.1) Eκ

/〈
∂f

∂κ

〉
= spanR

{
1,

∂F

∂x
(x0, κ)

}
,

where Eκ is the ring of germs at κ0 of functions in κ, f(κ) = F (x0, κ)
and 〈∂f/∂κ〉 denotes the ideal in Eκ generated by ∂f/∂κi for i =
1, · · · , 2m− k.

Remark 5.5. (5.1) means that F (x, κ) + x0 is a R-versal deformation
of f(κ) ([2]).
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First, we calculate the formula appearing in Theorem 5.4 for the spe-
cial case of the generating family Fλ and the Lagrangian submanifold
Lλ ⊂ (TR2m, ω̇), given by theorem 4.12. For a fixed λ, let x = (p, q)
and κ = (α, β). From (4.8) we easily see that

rank(a,ȧ)

[
∂2Fλ

∂κ2
,

∂2Fλ

∂κ∂x

]
= 2m− k,

hence is equal to the dimension of κ-space. The caustic of Lλ generated
by Fλ(x, κ) is given by

(5.2) Eλ =

{
x ∈ R2m | ∃κ ∂Fλ

∂κ
= 0, det

[
∂2Fλ

∂κi∂κj

]
= 0

}
.

By Proposition 4.11 we obtain that

(5.3) S+(q+) =
m∑

i=1

p+
a,i(q

+
i − q+

a,i) + S+
3 (q+ − q+

a )

S−(q−[k], p
−
[m]\[k]) =

k∑
i=1

p−a,i(q
−
i − q−a,i)−

m∑

i=k+1

q−a,i(p
−
i − p−a,i) +

+ S−3 (q−[k] − q−a,[k], p
−
[m]\[k] − p−a,[m]\[k]),

whereS±3 ∈ m3 (m is the maximal ideal of the ring of smooth function-
germs on Rn at 0).

We write the generating families in coordinates p̃ = p−pa, q̃ = q−qa,
s = α − ṗa, t = β − q̇a, where a = (pa, qa), ȧ = (ṗa, q̇a). Then by
Theorem 4.12 we obtain

Fλ(p̃, q̃, s, t) =(5.4)

2λ2S+
3

(
q̃+t
2λ

)− 2(1− λ)2S−3
(

q̃[k]−t[k] , p̃[m]\[k]−s[m]\[k]

2(1−λ)

)

−∑k
i=1 p̃iti + 1

2

∑m
j=k+1 q̃jsj − p̃jtj − sjtj − p̃j q̃j +

∑m
l=1 ṗa,lq̃l − q̇a,lp̃l

fλ(s, t) = Fλ(0, 0, s, t) =(5.5)

2λ2S+
3

(
t

2λ

)− 2(1− λ)2S−3
(−t[k],−s[m]\[k]

2(1−λ)

)
− 1

2

∑m
j=k+1 sjtj

The ideal
〈

∂fλ

∂κ

〉
is generated by the function germs (we let the indices

i = 1, · · · , k ; j = k + 1, · · · ,m )

(5.6)
∂fλ

∂ti
= λ

∂S+
3

∂q+
i

(
t

2λ

)
+ (1− λ)

∂S−3
∂q−i

(−t[k],−s[m]\[k]

2(1− λ)

)

(5.7)
∂fλ

∂tj
= −1

2
sj + λ

∂S+
3

∂q+
j

(
t

2λ

)
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(5.8)
∂fλ

∂sj

= −1

2
tj + (1− λ)

∂S−3
∂p−j

(−t[k],−s[m]\[k]

2(1− λ)

)

and partial derivatives with respect to the parameters at p̃ = q̃ = 0 are

(5.9)
∂Fλ

∂p̃i

(0, 0, s, t) = −q̇ai − ti

(5.10)
∂Fλ

∂p̃j

(0, 0, s, t) = −q̇aj − 1

2
tj − (1− λ)

∂S−3
∂p−j

(−t[k],−s[m]\[k]

2(1− λ)

)

(5.11)
∂Fλ

∂q̃i

(0, 0, s, t) = ṗai + λ
∂S+

3

∂q+
i

(
t

2λ

)
− (1− λ)

∂S−3
∂q−i

(−t[k],−s[m]\[k]

2(1− λ)

)

(5.12)
∂Fλ

∂q̃j

(0, 0, s, t) = ṗaj +
1

2
sj + λ

∂S+
3

∂q+
j

(
t

2λ

)

In order to prove Theorem 5.1, we analyze separately the cases of
1-parallelism and 2-parallelism, in every dimension.

5.1. Singularities of Eλ for 1-parallelism.

Proposition 5.6. Any Ak singularity can be realizable as Eλ(L), for
1-parallelism and k ≤ 2m + 1.

Proof. We use the generating family of the form (5.4) for k = 1. To
realize A2l singularity take the following function-germs

S+
3 (q̃+) = λ(q̃+

1 )3 + (q̃+
1 )2l+1 +

l∑
i=2

q̃+
i (q̃+

1 )2i−1,

S−3 (q̃−1 , p̃−2 , · · · , p̃−m) = −(1− λ)(q̃−1 )3 +
l−1∑
i=2

p̃−i (q̃−1 )2(l−i+1).

A2l+1 singularity is realizable by the following function-germs

S+
3 (q̃+) = λ(q̃+

1 )3 + (q̃+
1 )2l+2 +

l∑
i=2

q̃+
i (q̃+

1 )2i−1,

S−3 (q̃−1 , p̃−2 , · · · , p̃−m) = −(1− λ)(q̃−1 )3 +
l∑

i=2

p̃−i (q̃−1 )2(l−i+2).

By long but straightforward calculations using (5.6)-(5.12) one can
check that (5.1) is satisfied. Theorem 5.4 completes the proof. ¤
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5.2. Singularities of Eλ for 2-parallelism.

Proposition 5.7. Any Dk (k ≥ 4) or Ek (k = 6, 7, 8) singularity can
be realizable as Eλ(L), for 2-parallelism and k ≤ 2m + 1.

Proof. In case of 2-parallelism we use the generating family of the form
(5.4) with k = 2. The following singularities are realizable by the
following generating functions:

D2l :

S+
3 (q̃+) = λ(q̃+

1 )3 + q̃+
2 (q̃+

1 )2 ± (q̃+
2 )2l−1 + λ(q̃+

2 )3 +
l−1∑
i=2

q̃+
i+1(q̃

+
2 )2i−1,

S−3 (q̃−[2], p̃
−
[m]\[2]) = −(1− λ)(q̃−1 )3 − (1− λ)(q̃−2 )3 +

l−2∑
i=2

p̃−i+1(q̃
−
2 )2(l−i).

D2l+1 :

S+
3 (q̃+) = λ(q̃+

1 )3 + q̃+
2 (q̃+

1 )2 ± (q̃+
2 )2l + λ(q̃+

2 )3 +
l−1∑
i=2

q̃+
i+1(q̃

+
2 )2i−1,

S−3 (q̃−[2], p̃
−
[m]\[2]) = −(1− λ)(q̃−1 )3 − (1− λ)(q̃−2 )3 +

l−1∑
i=2

p̃−i+1(q̃
−
2 )2(l−i+1).

E6 :

S+
3 (q̃+) = (q̃+

1 )3 ± (q̃+
2 )4 + λq̃+

1 (q̃+
2 )2 + λ(q̃+

2 )3 + q̃+
1 (q̃+

2 )2q̃+
3 ,

S−3 (q̃−[2], p̃
−
[m]\[2]) = −(1− λ)q̃−1 (q̃−2 )2 − (1− λ)(q̃−2 )3.

E7 :

S+
3 (q̃+) = (q̃+

1 )3 + q̃+
1 (q̃+

2 )2 + λq̃+
1 (q̃+

2 )2 + λ(q̃+
2 )3 + (q̃+

2 )3q̃+
3 ,

S−3 (q̃−[2], p̃
−
[m]\[2]) = −(1− λ)q̃−1 (q̃−2 )2 − (1− λ)(q̃−2 )3 + (q̃−2 )4p̃−3 .

E8 :

S+
3 (q̃+) = (q̃+

1 )3 + (q̃+
2 )5 + λq̃+

1 (q̃+
2 )2 + λ(q̃+

2 )3 + q̃+
1 (q̃+

2 )2q̃+
3 + q̃+

1 (q̃+
2 )3q̃+

4 ,

S−3 (q̃−[2], p̃
−
[m]\[2]) = −(1− λ)q̃−1 (q̃−2 )2 − (1− λ)(q̃−2 )3 + (q̃−2 )3p̃−3 .

We use the method described in the proof of Proposition 5.6. By
long but straightforward calculations we obtain the result. ¤
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6. The GCS of a Lagrangian submanifold: the criminant

We now begin the study of singularities of the global centre symmetry
set of a smooth closed Lagrangian submanifold L ⊂ (R2m, ω).

Remind that, in terms of the projection

(6.1) π : R× R2m 3 (λ, x) 7→ x ∈ R2m ,

definition 2.7 states that GCS(L) is the locus of critical points of π|E(L),
where

(6.2) E(L) =
⋃

λ∈R
{λ} × Eλ(L) ⊂ R× R2m .

From remarks 2.9 and 2.11, GCS(L) consists of two parts which can
be further refined to comprise three parts:

(i) the Wigner caustic E1/2(L).
(ii) the centre symmetry caustic Σ′(L), consisting of the λ-family

of π-projections of singularities of E(L), excluding the Wigner caustic.
(iii) the criminant ∆(L), being the π-projection of smooth parts of

the extended wave front E(L) that are tangent to the fibers of π.
The classification of the Wigner caustic of a Lagrangian submanifold

L has been mostly carried out in the last section, since the Wigner
caustic is the λ = 1/2 affine equidistant. In a subsequent paper [8], we
study E1/2(L) in a neighborhood L, considered in a broader sense, that
is, considering pairs of points of the type (a, a) ∈ L × L as strongly
parallel pairs. Then, in a neighborhood of L, we look for singularities
of the Wigner caustic that have maximal co-rank m, that is, that are
singularities of strong parallel pairs, for pairs of type (a, a).

In terms of the generating families of section 4, these must now have
the special (simplest) form

(6.3) F1/2(p, q, β) =
1

2
S(q + β)− 1

2
S(q − β)−

m∑
i=1

piβi ,

where S is the local generating function of a germ of the Lagrangian
submanifold L ⊂ (R2m, ω). It follows immediately from (6.3) that

(6.4) F1/2(p, q,−β) = −F1/2(p, q, β)

and therefore only the generating families for singularities of co-rank
m which are odd functions of β should be considered, in this case.

This point had already been made in [17], but, in order to classify
such singularities, we must consider the condition of versality of un-
foldings in the category of odd functions [8]. Condition (6.4) for the
generating families implies Z2-symmetric singularities for the Wigner
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caustic on-shell. A first study of such symmetric singularities, for the
case of surfaces in nonsymplectic R4, is presented in [14].

In order to study the centre symmetry caustic Σ′(L) and the crimi-
nant ∆(L), the whole λ-family must be considered together.

Due to the Lagrangian condition, we resort to a classification via gen-
erating families, as was done in sections 4 and 5 for the λ-equidistants.
From results of the previous sections we know that Eλ(L) is the caustic
of the Lagrangian submanifold Lλ = Φλ(L×L) in the Lagrangian fiber
bundle (TR2m, ω̇) → R2m, where Φλ be the tilted chord transformation
given by equations (3.1) and (3.7), that is

Φλ : R2m × R2m → TR2m ,

Φλ : (x+, x−) 7→ (x, ẋ) = (λx+ + (1− λ)x−, λx+ − (1− λ)x−) .

By Theorem 4.12 the generating family for Lλ is given by Fλ(p, q, α, β)
of the form (4.8). Then the germ of Eλ(L) is described as in equation
(5.2), that is (for κ = (α, β)),

Eλ(L) =

{
(p, q) ∈ R2m | ∃κ ∂Fλ

∂κ
= 0, det

[
∂2Fλ

∂κi∂κj

]
= 0

}
.

Since E(L) is the union of {λ} × Eλ we obtain that the germ of E(L)
is described in the following way.

Proposition 6.1. E(L) =
{

(λ, p, q) : ∃κ ∂Fλ

∂κ
= 0, det

[
∂2Fλ

∂κi∂κj

]
= 0

}
.

We now find a Lagrangian fiber bundle and the germ of a Lagrangian
submanifold L in this bundle such that E(L) is the caustic of L.

Lets us consider the fiber bundle

(6.5) Pr : T ∗R× TR2m 3 ((λ∗, λ), (ṗ, q̇, p, q)) 7→ (λ, (p, q)) ∈ R×Rm.

The above bundle with the canonical symplectic structure

dλ∗ ∧ dλ + ω̇

is a Lagrangian fiber bundle. For Fλ given by (4.8) in theorem 4.12, let

F (λ, p, q, α, β) = Fλ(p, q, α, β).

Then, for κ = (α, β) = (α[m]\[k], β) = (κ1, · · · , κ2m−k), we have the
following immediate result:

Proposition 6.2. The germ of E(L) is the caustic of the germ of
a Lagrangian submanifold L of the Lagrangian fiber bundle (T ∗R ×
TR2m, dλ∗ ∧ dλ + ω̇) generated by the family F in the following way
(6.6)

L =

{
((λ∗, λ), (ṗ, q̇, p, q)) : ∃κ λ∗ =

∂F

∂λ
, ṗ =

∂F

∂q
, q̇ = −∂F

∂p
,

∂F

∂κ
= 0

}
.
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6.1. Geometric characterization of the criminant of the GCS
of a Lagrangian submanifold. Let L ⊂ (R2m, ω) be a smooth closed
Lagrangian submanifold. Remind that the criminant ∆(L) is the (clo-
sure of) the image under πr of the set of regular points of E(L) which
are critical points of the projection π restricted to the regular part of
E(L). That is, the criminant ∆(L) is the envelope of the family of
regular parts of momentary equidistants. We find the condition for the
tangency to the fibers of the projection π : (λ, p, q) 7→ (p, q).

The results stated in this section are also valid for the criminant of
the GCS of arbitrary smooth submanifolds [7], which generalize results
in [10]-[12] for hypersurfaces, but here we present the results for La-
grangian submanifolds and their proofs in terms of generating families.

Proposition 6.3. If (λ, a) is a regular point of E(L) then there exists
a 1-parallel pair a+, a− such that a = λa+ + (1− λ)a−.

Proof. (λa, pa, qa) is a regular point of E(L) then the rank of the map

κ 7→
(

∂F

∂κ
(λa, pa, qa, κ), det

[
∂2F

∂κi∂κj

(λa, pa, qa, κ)

])

is maximal 2m − k. It implies that corank
[

∂2F
∂κi∂κj

(λa, pa, qa, κa)
]

is 1.

By Remark 4.13 we obtain that a+, a− is a 1-parallel pair. ¤
Proposition 6.4. Let (λa, a) = (λa, pa, qa) be a regular point of E(L).
Then the fiber of πr is tangent to E(L) at (λa, pa, qa) if and only if

(6.7) rank

[
∂2F

∂λ∂κj

,
∂2F

∂κi∂κj

]
= rank

[
∂2F

∂κi∂κj

]
= 2m− 2

at (λa, pa, qa, κa) such that

∂F

∂κ
(λa, pa, qa, κa) = 0, det

[
∂2F

∂κi∂κj

(λa, pa, qa, κa)

]
= 0.

Proof. By Proposition 6.3 if (λa, pa, qa) is a regular point of E(L) then
the rank of the map

κ 7→
(

∂F

∂κ
(λa, pa, qa, κ), det

[
∂2F

∂κi∂κj

(λa, pa, qa, κ)

])

is maximal 2m − 1. We also have that rank
[

∂2F
∂κi∂κj

(λa, pa, qa, κa)
]

is

2m− 2 which implies that one of the columns of this matrix is linearly
dependent on the others. For simplicity we assume that this is the first
column. Thus a rank of the map

κ 7→
(

∂F

∂κ[2m−1]\[1]

(λa, pa, qa, κ), det

[
∂2F

∂κi∂κj

(λa, pa, qa, κ)

])
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is maximal 2m − 1. By the implicit function theorem there exists a
smooth map germ K : R2m+1

e → R2m−1 at(λa, pa, qa), such that κ =
K(λ, p, q) if and only if

∂F

∂κ[2m−1]\[1]

(λ, p, q, κ) = 0, det

[
∂2F

∂κi∂κj

(λ, p, q, κ)

]
= 0.

Then the germ of E(L) at(λa, pa, qa) has the following form:

E(L) =

{
(λ, p, q) :

∂F

∂κ1

(λ, p, q,K(λ, p, q)) = 0

}
.

The fiber of πr is tangent to E(L) at (λa, pa, qa) if and only if

∂

∂λ

(
∂F

∂κ1

(λ, p, q,K(λ, p, q))

)
(λa, pa, qa) = 0,

which can be rewritten as
(6.8)

∂2F

∂λ∂κ1

(λa, pa, qa, κa) +
2m−1∑
j=1

∂2F

∂κj∂κ1

(λa, pa, qa, κa)
∂Kj

∂λ
(λa, pa, qa) = 0.

On the other hand, differentiating ∂F
∂κ[2m−1]\[1]

(λ, p, q,K(λ, p, q)) = 0 with

respect to λ we obtain for i = 2, · · · , 2m− 1
(6.9)

∂2F

∂λ∂κi

(λa, pa, qa, κa) +
2m−1∑
j=1

∂2F

∂κj∂κi

(λa, pa, qa, κa)
∂Kj

∂λ
(λa, pa, qa) = 0.

Thus (6.8)-(6.9) imply (6.7). On the other hand (6.9) and (6.7) imply
(6.8). ¤

Theorem 6.5. The point a = λa++(1−λ)a− belongs to the criminant
∆(L) of the Global Centre Symmetry set of L if and only if there exists
a bitangent hyperplane to L at points a+ and a−.

Proof. First assume that (λ, a) is a regular point of E(L). By Proposi-
tions 6.3-6.4 a+, a− is a 1-parallel pair and a = (p, q) is in the criminant
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if and only if (λ, a) satisfies (6.7). Thus
[

∂2F
∂κi∂κj

]
has the following form

1

2




∂2S+

(∂q+
1 )2

− ∂2S−
(∂q−1 )2

∂2S+

∂q+
1 ∂q+

2

· · · ∂2S+

∂q+
1 ∂q+

m
− ∂2S−

∂q−1 ∂p−2
· · · − ∂2S−

∂q−1 ∂p−m
∂2S+

∂q+
1 ∂q+

2

∂2S+

(∂q+
2 )2

· · · ∂2S+

∂q+
2 ∂q+

m
−1 · · · 0

...
...

. . .
...

...
. . .

...
∂2S+

∂q+
1 ∂q+

m

∂2S+

∂q+
2 ∂q+

m
· · · ∂2S+

(∂q+
m)2

0 · · · −1

− ∂2S−
∂q−1 ∂p−2

−1 · · · 0 − ∂2S−
(∂p−2 )2

· · · ∂2S−
∂p−2 ∂p−m

...
...

. . .
...

...
. . .

...

− ∂2S−
∂q−1 ∂p−m

0 · · · −1 ∂2S−
∂p−2 ∂p−m

· · · − ∂2S−
(∂p−m)2




On the other hand

∂2F

∂λ∂β1

= p+
1 − p−1 −

n∑
j=1

q+
j

∂2S+

∂q+
1 ∂q+

j

+ q−1
∂2S−

(∂q−1 )2
+

n∑
j=2

p−j
∂2S−

∂q−1 ∂p−j
,

∂2F

∂λ∂βi

= p+
i −

n∑
i=1

q+
j

∂2S+

∂q+
i ∂q+

j

, for i = 2, · · · ,m,

∂2F

∂λ∂αi

= q−i + q−1
∂2S+

∂p−i ∂q−1
+

n∑
j=2

p−j
∂2S+

∂p−i ∂p−j
, for i = 2, · · · ,m,

where q+ = q+β
2λ

,p+ = ∂S+

∂q+ are coordinates of a+ ∈ L+ and q−1 = q1−β1

2(1−λ)
,

p−[m]\[2] =
p[m]\[2]−α[m]\[2]

2(1−λ)
, p−1 = ∂S−

∂q−1
, q−[m]\[2] = − ∂S−

∂p−
[m]\[2]

are coordinates

of a− ∈ L−.
Then (6.7) is equivalent to

(6.10) (a+ − a−) ∈ Ta+L+ + Ta−L−,

since Ta+L+ is spanned by vectors
∑m

j=1
∂2S+

∂q+
i ∂q+

j

∂
∂pj

+ ∂
∂qi

for i = 1, · · · ,m

and Ta−L− is spanned by vectors ∂2S−
(∂q−1 )2

∂
∂p1
−∑m

j=2
∂2S−

∂q−1 ∂p−j
∂

∂qj
+ ∂

∂q1
and

∂2S−
∂p−i ∂q−1

∂
∂p1

−∑m
j=2

∂2S−
∂p−i ∂p−j

∂
∂qj

+ ∂
∂pi

for i = 2, · · · ,m.

a+, a− is 1-parallel then (6.10) exactly means that there exists a
bitangent hyperplane to L+ at a+ and to L− at a−. By continuity, a
point in the closure of the set of points which satisfy (6.10) also satisfies
this condition. ¤
Corollary 6.6. If, for some λ, the point a = λa++(1−λ)a− belongs to
the criminant ∆(L) ⊂ GCS(L), then the whole chord l(a+, a−) belongs
to GCS(L). Equivalently, if there exists a bitangent hyperplane to L
at points a+ and a−, then the chord l(a+, a−) belongs to GCS(L).
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In view of these results, we now generalize the notion of convexity
of a curve on the plane.

Definition 6.7. A smooth closed Lagrangian submanifold L of the
affine symplectic space (R2m, ω) is weakly convex if there is no bi-
tangent hyperplane to L.

Corollary 6.8. If L is a weakly convex closed Lagrangian submanifold
of (R2m, ω) then the criminant ∆(L) of GCS(L) is empty.

7. Affine-Lagrangian stable singularities of the GCS of
Lagrangian submanifolds

We now turn to the definition of an equivalence relation to be used for
the classification of the singularities of GCS(L). Due to the Lagrangian
condition, we look for an equivalence of generating families.

Remind that, for the classification of E(λ) and GCS(L), because λ
is no longer fixed it has become an extra parameter that unfolds the
generating families F . The naive approach is to consider the extended
parameter space R×R2m 3 (λ, x) for unfolding the generating families
and then classify their stable unfoldings in the usual way.

This approach, which treats λ ∈ R and x ∈ R2m on an equal footing,

(λ, (p, q)) = (λ, x) = y ∈ R1+2m ,

becomes clearer if we change from tangent to cotangent bundle to R2m,

(TR2m, ω̇) 3 (ṗ, q̇, p, q) 7→ (p∗, q∗, p, q) ∈ (T ∗R2m, ωcan)

(7.1) p∗ = −q̇ , q∗ = ṗ ,

where ωcan is the canonical symplectic form on T ∗Rn, ∀n, which is given

in terms of coordinates (y∗, y) ∈ T ∗Rn by ωcan =
n∑

i=1

dy∗i ∧ dyi. Then,

(7.1) induces the symplectomorphism

(T ∗R× TR2m, dλ∗ ∧ dλ + ω̇) → (T ∗R1+2m, ωcan) ,

so that, for F (λ, p, q, α, β) = F (y, κ), y = (λ, x), κ = (α, β), we have
the analogous of proposition 6.2, namely, that the germ of E(L) is the
caustic of the germ of a Lagrangian submanifold L∗ of the Lagrangian
fiber bundle (T ∗R1+2m, ωcan), which is generated by the family F in
the canonical way. In this setting, Lagrangian equivalence of E(L) and

E(L̃) is defined in terms of Lagrangian equivalence of L∗ and L̃∗ in the
usual way, which means that their generating families must be stably
R+-equivalent (theorem 4.14). Because GCS(L) is obtained from E(L)
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using projection (6.1), we could classify singularities of GCS(L) using
the above equivalence relation for classifying E(L).

However, such a classification of GCS(L) would not take into ac-
count the projection (6.1) in a proper way, because it is not possible
to introduce the notion of affine symplectic invariance for such a clas-
sification of GCS(L), since the above Lagrangian equivalence of E(L)
does not distinguish the affine time λ ∈ R from x ∈ R2m.

Now, if A = (A, a) is an element of the affine symplectic group
iSp2m

R = Sp(2m,R)nR2m, with A ∈ Sp(2m,R), a ∈ R2m, then

A : (R2m, ω) ⊃ L → L′ ⊂ (R2m, ω) ,

A : x 7→ Ax = Ax + a .

From this, we define the natural action

idT ∗R ×A×A : T ∗R× R2m × R2m → T ∗R× R2m × R2m ,

(λ, λ∗, x+, x−) 7→ (λ, λ∗,Ax+,Ax−) ,

which, via the chord transformation Φλ, induces an action

iSp2m
R 3 idT ∗R ×AΦ : T ∗R× TR2m ⊃ L → L′ ⊂ T ∗R× TR2m,

idT ∗R ×AΦ : (λ, λ∗, Φλ(x
+, x−)) 7→ (λ, λ∗, Φλ(Ax+,Ax−)),

idT ∗R ×AΦ : (λ, λ∗, x, ẋ) 7→ (λ, λ∗, Ax + a,Aẋ + (2λ− 1)a),

that commutes with projection idT ∗R×pr : T ∗R×TR2m → T ∗R×R2m,
that is, defining the obvious action idR ×A on R× R2m, we have

(7.2) (idR ×A) ◦ (idT ∗R × pr) = (idT ∗R × pr) ◦ (idT ∗R ×AΦ).

In view of the above and proposition 6.2, we now define a modified
Lagrangian equivalence which takes into account projection (6.1).

Definition 7.1. Germs of Lagrangian submanifolds L, L̃ of the La-
grangian fiber bundle (T ∗R×TR2m, dλ∗∧dλ+ω̇) are (1,2m)-Lagrangian
equivalent if there exists a symplectomorphism-germ Υ of T ∗R×TR2m

such that Υ(L) = L̃ and the following diagram commutes, where the
vertical arrows indicate diffeomorphism-germs

Pr π
L ↪→ T ∗R× TR2m −→ R× R2m → R2m

↓ Υ ↓ ↓
Pr π

L̃ ↪→ T ∗R× TR2m −→ R× R2m → R2m

The first two vertical diffeomorphism-germs (from right to left) read:

x 7→ X(x)



30 DOMITRZ & RIOS

(λ, x) 7→ (Λ(λ, x), X(x)).

Moreover, germs L, L̃ at (1
2
, a, ȧ) are (1,2m)-Lagrangian equivalent

for λ = 1
2

if, in addition, for every x ∈ R2m

(7.3) Λ(
1

2
, x) =

1

2
.

Remark 7.2. Condition (7.3) is introduced for the classification of the
Wigner caustic E 1

2
(L) as a part of GCS(L). If (7.3) is satisfied then

the diffeomorphism (Λ, X) preserves the Wigner caustic.

Remark 7.3. (1, 2m)-Lagrangian equivalence of germs of Lagrangian
submanifolds of the Lagrangian fiber bundle (T ∗R×TR2m, dλ∗∧dλ+ω̇)
is the equivalence of bifurcations of Lagrangian maps (Section 10.1 in
[2]), that is, diagrams of maps of the form:

Pr π
D(L) : L ↪→ T ∗R× TR2m −→ R× R2m → R2m

A Lagrangian submanifold L is (1,2m)-Lagrangian stable if the dia-

gram of maps D(L) is stable i.e. every Lagrangian submanifold L̃ with

nearby diagram D(L̃) is (1, 2m)-Lagrangian equivalent to L.

Definition 7.4. If L is a smooth closed Lagrangian submanifold of
(R2m, ω) and L is a lagrangian submanifold of (T ∗R×TR2m, dλ∗∧dλ+
ω̇), with E(L) = Pr(L), we say that the classification of GCS(L) by
(1, 2m)-Lagrangian equivalence of L is affine symplectic invariant
because, ∀A ∈ iSp2m

R , the following diagram commutes (see (7.2)):

Pr π
T ∗R× TR2m −→ R× R2m → R2m

↓ idT ∗R ×AΦ ↓ idR ×A ↓ A
Pr π

T ∗R× TR2m −→ R× R2m → R2m

so that, if L′ = A(L), then L′ = (idT ∗R×AΦ)(L) and therefore E(L) =
(idR ×A)E(L) and GCS(L′) = A(GCS(L)).

Thus, for an affine symplectic invariant classification of GCS(L), the
generating families for L cannot be unfolded by the parameters λ ∈ R
and x ∈ R2m as if they were on an equal footing.

However, in a natural way, the (1, 2m)-Lagrangian equivalence of
Lagrangian submanifolds of T ∗R× TR2m leads to the following equiv-
alence of their generating families.
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Definition 7.5. The function-germs F, F̃ : R × R2m × Rk → R are
(1,2m)-R+-equivalent if there exists a diffeomorphism-germ

(λ, x, κ) 7→ (Λ(λ, x), X(x), K(λ, x, κ))

and a smooth function-germ g : R× R2m → R such that

F̃ (λ, x, κ) = F (Λ(λ, x), X(x), K(λ, x, κ)) + g(λ, x).

F and F̃ are stably (1,2m)-R+-equivalent if there are quadratic

forms Q and Q̃ such that F +Q and F̃ + Q̃ are (1, 2m)-R+-equivalent.

Germs F and F̃ at (1
2
, a, κa) are (stably) (1,2m)-R+-equivalent for

λ = 1
2

if, in addition, for every x ∈ Rm condition (7.3) is satisfied (the
role of condition (7.3) is explained in remark 7.2.

Remark 7.6. (1, 2m)-R+-equivalence is a special case of Wassermann’s
(1, 2m)-equivalence studied in [22]. See also Section 10.1 in [2], where
relations between (r, s)-classification of families of functions ([22]), clas-
sification of bifurcations of caustics ([1] and [23]) and classification of
bifurcations of Lagrangian maps (see Remark 7.3) were discussed.

We have the following result, whose proof is a minor modification
for (1, 2m)-Lagrangian equivalence of the proof of Theorem 4.14 in [2].

Proposition 7.7. Germs of Lagrangian submanifolds L, L̃ of the La-
grangian fiber bundle (T ∗R×TR2m, dλ∗∧dλ+ω̇) are (1, 2m)-Lagrangian
equivalent if and only if the corresponding germs of generating families

F and F̃ are stably (1, 2m)-R+-equivalent.

Definition 7.8. GCS(L) and GCS(L̃) are (1,2m)-Lagrangian

equivalent if the generating families F and F̃ for L and L̃ are stably
(1, 2m)-R+-equivalent.

Definition 7.9. The function-germ F at z is (1,2m)-R+-stable if for
any neighborhood U of z in R×R2m ×Rk and representative function
F ′ of the germ F defined on U , there exists a neighborhood V of F ′ in
C∞(U,R) (with the weak C∞-topology) such that for any function G′ ∈
V there exists a point z′ ∈ U such that the germ of G′ at z′ is (1, 2m)-
R+-equivalent to F . F is (1, 2m)-R+-stable iff the corresponding germs
of L and GCS(L) are (1, 2m)-Lagrangian stable, whenever realizable.
In view of definition 7.4, we also use the term affine-Lagrangian
stability for (1, 2m)-Lagrangian stability of L and GCS(L).

Definitions 7.1-7.9 are the ones we were looking for. The following
theorems show that the only affine-Lagrangian stable singularities of
GCS are singularities of the criminant, the smooth part of the Wigner
caustic and the “tangent” union of them.
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Theorem 7.10. Let λa 6= 1
2
. If F is the germ at (λa, a, κa) of a (1, 2m)-

R+-stable unfolding of f ∈ m2 then F is stably (1, 2m)-R+-equivalent
to the germ of the trivial unfolding (if f has A1 singularity) or to one
of the following germs at (0, 0, 0) of unfoldings of f(t) = t3

(7.4) A
A±k
2 : F (λ, x, t) = t3 + t

(
k∑

i=1

xiλ
i−1 ± λk+1

)
,

for k = 0, 1, 2, · · · , 2m

Proof. If f has A1 singularity than it is obvious that F is stably (1, 2m)-
R+-equivalent to the trivial unfolding. Now we assume that f has A2

singularity. Since F is stable than F is stable (1, 2m)-R+-equivalent to
F (λ, x, t) = t3 + tg(λ, x), where g is a smooth function-germ vanishing
at 0. If g is a versal unfolding of the function-germ λ 7→ g(λ, 0) with Ak

singularity we can reduce F to the form (7.4) by a diffeomorphism-germ
of the form (λ, x, t) 7→ (Λ(λ, x), X(x), t).

We show that these are the only (1, 2m)-R+-stable unfoldings. The
proof is based on the following lemma. ¤
Lemma 7.11. Unfoldings of A±

3 singularity are not (1, 2m)-R+-stable.

Proof. If f has A3 singularity then F is stable (1, 2m)-R+-equivalent
to F (λ, x, t) = ±t4 + t2g2(λ, x) + tg1(λ, x), where g1, g2 are smooth
function-germs vanishing at 0. Now we use the standard arguments of
the singularity theory that stability implies infinitesimal stability. In
the case of (1, 2m)-R+-equivalence the infinitesimal stability implies
the following condition:
(7.5)

E2 = E2

〈
∂F

∂t
|R2

〉
+E1

〈
1,

∂F

∂λ
|R2

〉
+R

〈
∂F

∂x1

|R2 , · · · ,
∂F

∂x2m

|R2

〉
+m2m+4

2 ,

where R2 denotes the t, λ-plane {x = 0}, E2 is the ring of smooth
function-germs in λ and t, m2 is the maximal ideal in E2 and E1 is the
ring of smooth function-germs in λ. Now we use the method in [22].

Let V = E2

/(E2

〈
∂F
∂t
|R2

〉
+ m2m+4

2

)
and let π : E2 → V be the projec-

tion. We have π(t3) = π(∓1/2tg2|R2 ∓ 1/4g1|R2) in V . Thus elements
π(tiλj) for i = 0, 1, 2 and j < 2m + 4− i form a basis of V over R. It
implies that dimR V = 6m + 9. Moreover ∂F

∂λ
|R2 = t

(
t∂g2

∂λ
|R2 + ∂g2

∂λ
|R2

)
.

Then

dimR π

(
E1

〈
1,

∂F

∂λ
|R2

〉)
≤ 4m + 7

and

dimR π

(
R

〈
∂F

∂x1

|R2 , · · · ,
∂F

∂x2m

|R2

〉)
≤ 2m.
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So if (7.5) held we would have dimR V ≤ 6m + 7 < 6m + 9, which is
impossible. Therefore F is not (1, 2m)-R+-stable and A3 singularity
has no (1, 2m)-R+-stable unfoldings. ¤

To study the Wigner caustic in the GCS set we consider the germ of
F at (1/2, a, κa).

Theorem 7.12. If F is the germ at (1
2
, a, κa) of a (1, 2m)-R+-stable

unfolding of f ∈ m2 then F is stably (1, 2m)-R+-equivalent (for λ =
1/2) to the germ of the trivial unfolding (if f has A1 singularity) or to
one of the following germs at (1

2
, 0, 0) of unfoldings of f(t) = t3

(7.6)

A
A±k
2 (1/2) : F (λ, x, t) = t3 + t

(
k∑

i=0

xi+1

(
λ− 1

2

)i

±
(

λ− 1

2

)k+1
)

,

for k = 0, 1, 2, · · · , 2m− 1

Proof. If f has A1 singularity than it is obvious that F is stably (1, 2m)-
R+-equivalent to the trivial unfolding. Now we assume that f has A2

singularity. Since F is stable than F is stable (1, 2m)-R+-equivalent to
F (λ, x, t) = t3 + tg(λ, x), where g is a smooth function-germ vanishing
at (1/2, 0). If g is a versal unfolding of the function-germ λ 7→ g(λ, 0)
with A±

k singularity on a manifold (λ-space) with the boundary (λ = 1
2
)

(see [1]) then we can reduce F to the form (7.6) by a diffeomorphism-
germ of the form (λ, x, t) 7→ (1/2 + (λ− 1/2)Λ(λ, x), X(x), t). ¤

Theorem 7.13. If the generating family F for L has A
A±k
2 singularity,

for k = 0, 1, 2, · · · , 2m, then E(L) is a germ of a smooth hypersurface
in R× R2m.

If F has AA0
2 singularity at (λa, a, κa) then E(L) is transversal at

(λa, a) to the fibers of projection π.

If F has A
A±k
2 singularity at (λa, a, κa) then E(L) is k-tangent at

(λa, a) to the fibers of projection π, a belongs to the criminant ∆(L) of
GSC(L) and the germ of ∆(L) at a is the caustic of A±

k singularity.

Proof. By Proposition 6.1 and the normal form of F for A
A±k
2 singularity

we obtain that

E(L) = {(λ, x) ∈ R× R2m :
k∑

i=1

xiλ
i−1 ± λk+1 = 0}.

It is easy to see that E(L) is the germ at (0, 0) of a smooth hypersurface
and E(L) is transversal at (0, 0) to {λ = 0} for k = 0 and E(L) is k-
tangent to {λ = 0} at (0, 0) for k = 1, 2, · · · , 2m. The germ of the



34 DOMITRZ & RIOS

criminat ∆(L) at 0 is described in the following way

{x ∈ R2m : ∃λ
k∑

i=1

xiλ
i−1±λk+1 = 0,

k∑
i=2

(i−1)xiλ
i−2±(k+1)λk = 0}.

So ∆(L) is a caustic of A±
k singularity. ¤

Theorem 7.14. If the germ at (1
2
, a, κa) of a generating family F for

L has A
A±k
2 (1/2) singularity, for k = 0, 1, 2, · · · , 2m − 1, then E(L) is

a germ of a smooth hypersurface in R× R2m.
If F has AA0

2 (1/2) singularity at (1
2
, a, κa) then E(L) is transversal

at (1
2
, a) to the fibers of projection π. The germ of GCS(L) at a is the

germ of a smooth hypersurface of R2m - the Wigner caustic E 1
2
(L).

If F has A
A±k
2 (1/2) singularity at (1

2
, a, κa) then E(L) is k-tangent at

(1/2, a, t) to the fibers of projection π. The germ of GCS(L) at a con-
sists of two tangent components: the germ of a smooth hypersurface -
the Wigner caustic E 1

2
(L) and the germ of the caustic of A±

k singularity

- the criminant ∆(L).

Proof. By Proposition 6.1 and the normal form of F for A
A±k
2 (1/2) sin-

gularity we obtain that

E(L) = {(λ, x) ∈ R× R2m :
k∑

i=0

xi+1(λ− 1/2)i ± (λ− 1/2)k+1 = 0}.

It is easy to see that E(L) is the germ at (1/2, 0) of a smooth hyper-
surface and E(L) is transversal at (1/2, 0) to {λ = 1/2} for k = 0 and
E(L) is k-tangent to {λ = 1/2} at (1/2, 0) for k = 1, 2, · · · , 2m− 1.

The Wigner caustic

E1/2(L) = {x ∈ R2m : x1 = 0}
is the germ of a smooth hypersurface. The germ of the criminat ∆(L)
at 0 is described in the following way

{x ∈ R2m : ∃τ
k∑

i=0

xi+1τ
i ± τ k+1 = 0,

k∑
i=1

ixi+1τ
i−1 ± (k + 1)τ k = 0}.

So ∆(L) is a caustic of A±
k singularity and E1/2(L) is tangent to ∆(L)

at 0. ¤
Remark 7.15. Not all (1, 2m)-R+-stable singularities can be realizable
as singularities of generating families F for L which are of the special
form given in Theorem 4.12. In the next section, in Theorem 8.7, we
prove that the AA2

2 singularity is not realizable for Lagrangian curves.
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8. Classifications of the GCS of Lagrangian curves

In this section, using the equivalence of GCS(L) introduced in sec-
tion 6, we classify the singularities of the Global Centre Symmetry set
of a Lagrangian curve L, that is, a curve L ⊂ (R2, ω).

To set the stage, we first state the results for the GCS of a curve on
the affine plane R2, when no symplectic structure on R2 is considered.

The results for this non-Lagrangian case, summarized in theorem 8.1
below, were obtained in [3], [16] and [10]-[11] by various methods. In the
appendix, this theorem is proved using the affine-invariant method of
chord equivalence, which is the analogous of (1, 2m)-Lagrangian equiv-
alence when no symplectic structure is considered.

Theorem 8.2 presents global results for the GCS of a convex curve,
some of which have not been stated before.

Theorem 8.1. Affine stable GCS of a smooth convex closed curve
M ⊂ R2 (no symplectic structure) consists of three components:
i) The CSS, a smooth curve with (possible) self intersections and cusps
singularities, ii) the Wigner caustic, a smooth curve with (possible)
self intersections and cusps singularities lying on the smooth part of
the CSS, and iii) the middle axes, which are smooth half-lines starting
at the the cusp points of the CSS.

In theorem 8.1, the CSS and the middle axes form, together, the
centre symmetry caustic Σ′(M).

Theorem 8.2. Let M be a generic smooth convex closed curve in R2.
The number of cusps of the Wigner caustic of M is odd and not smaller
than 3. The number of cusps of the CSS of M is odd and not smaller
than 3. The number of cusps of the Wigner caustic of M is not greater
than the number of cusps of the CSS of M .

Proof. The first statement, on the number of cusps of Wigner caustics,
was first proven by Berry [3] and the second statement, on the number
of cusps of CSS, was first proven by Giblin and Holtom [9]. The last
inequality follows immediately from the characterization in [9] of cusps
of E1/2(M) by the curvature ratio being 1 and cusps of CSS of M by the
derivative of the curvature ratio being 0, and from Rolle’s theorem. ¤

Figures of GCS(M) where the number of cusps of the CSS and of the
Wigner caustic are equal to three and neither curve is self intersecting
can be found in [9]. We picture below a case when the number of cusps
of the Wigner caustic is three and the CSS is self intersecting and the
number of its cusps is five, and another case when both the Wigner
caustic and the CSS are self intersecting and each one has five cusps.



36 DOMITRZ & RIOS

Figure 1. GCS of an oval in nonsymplectic plane: CSS with 5 cusps and
Wigner caustic with 3 cusps (the middle axes are not shown here).

Figure 2. Both the CSS and the Wigner caustic with five cusps.
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8.1. Affine symplectic invariant classification of GCS of La-
grangian curves. Let L be a smooth closed (Lagrangian) curve in the
symplectic affine space (R2, ω = dp ∧ dq). Using the (1, 2)-Lagrangian
equivalence introduced in the previous section (definition 7.8), we clas-
sify the singularities of GCS(L).

Let a+ = (p+
a , q+

a ), a− = (p−a , q−a ) ∈ L be a parallel pair on L and
aλ = λa+ + (1 − λ)a−, q̇λ = λq+

a − (1 − λ)q−a . Let S± be germs of
generating functions of L at a± satisfying the conditions in Proposition
4.11. Then the germ of generating family of L has the following form

F (λ, p, q, t) = 2λ2S+(
q + t

2λ
)− 2(1− λ)2S+(

q − t

2(1− λ)
)− pt.

The big front is described in the following way

E(L) =

{
(λ, p, q) ∈ R× R2 : ∃t ∂F

∂t
(λ, p, q, t) =

∂2F

∂t2
(λ, p, q, t) = 0

}
.

In the following propositions we present descriptions of different po-
sitions of E(L) with respect to the fiber bundle π in terms of the gen-
erating family F , generating functions S+ and S− and their geometric
interpretations.

Proposition 8.3. The following conditions are equivalent

(i) (λ, aλ) belongs the regular part of E(L),

(ii) ∃t ∂3F
∂t3

(λ, aλ, t) 6= 0, ∂F
∂t

(λ, aλ, t) = ∂2F
∂t2

(λ, aλ, t) = 0,

(iii) 1
λ

∂3S+

∂(q+)3
(q+

a ) + 1
1−λ

∂3S−
∂(q−)3

(q−a ) 6= 0,

(iv) 1
λ
κ(a+) + 1

1−λ
κ(a−) 6= 0, where κ(x) is the curvature of L at x.

Proof. Equivalence of (i) and (ii) follows from the definition of the
regular part of E(L). Equivalence of (ii) and (iii) is obtained by direct

calculations. (iv) is obvious since κ(a±) = ∂3S±
∂(q±)3

(q±a ). ¤

Proposition 8.4. The following conditions are equivalent

(v) the regular part of E(L) is tangent to the fiber of π at (λ, aλ),

(vi) ∃t (ii) is satisfied and ∂2F
∂λ∂t

(λ, aλ, t) = 0.

(vii) (iii) is satisfied and p+
a = ∂S+

∂q+ (q+
a ) = ∂S−

∂q− (q−a ) = p−a .

(viii) (iv) is satisfied and l(a+, a−) is bitangent to a+, a− to L.

Proof. All statements follow from Proposition 6.4 and Theorem 6.5. ¤

Proposition 8.5. The following conditions are equivalent

(ix) the regular part of E(L) is 1-tangent to the fiber of π at (λ, aλ),
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(x) ∃t (vi) is satisfied and

(8.1)

(
∂3F

∂λ∂t2
(λ, aλ, t)

)2

− ∂3F

∂t3
(λ, aλ, t)

∂3F

∂λ2∂t
(λ, aλ, t) 6= 0.

(xi) (vii) is satisfied and ∂3S+

∂(q+)2
(q+

a ) ∂3S−
∂(q−)3

(q−a ) 6= 0.

(xii) (iv) is satisfied and l(a+, a−) is 1-tangent to L at a+ and a−

Proof. (λ, aλ) is a regular point of E(L) =
{

(λ, p, q) : ∃t ∂F
∂t

= ∂2F
∂t2

= 0
}

.

By Proposition 8.3 it means that ∂3F
∂t3

(λ, aλ, t) 6= 0. It implies that there

exists a smooth function-germ T on R3 such that ∂2F
∂t2

(λ, p, q, t) = 0

iff t = T (λ, p, q). Then E(L) =
{
(λ, p, q) : ∂F

∂t
(λ, p, q, T (λ, p, q)) = 0

}
.

Then (ix) is equivalent to

(8.2)
∂

∂λ

(
∂F

∂t
(λ, p, q, T (λ, p, q))

) ∣∣
(λ,aλ) = 0

(8.3)
∂2

∂λ2

(
∂F

∂t
(λ, p, q, T (λ, p, q))

) ∣∣
(λ,aλ) 6= 0.

Using the formulae
(8.4)

∂T

∂λ
(λ, p, q) = −

(
∂2F

∂t3
(λ, p, q, T (λ, p, q)

)−1
∂2F

∂λ∂t2
(λ, p, q, T (λ, p, q))

it is easy to check that (8.2)-(8.3) are equivalent to (x). Equivalence of
(x) and (xi) is obtained by direct calculation and the last equivalence
is obvious. ¤
Proposition 8.6. The following conditions are equivalent

(xiii) the regular part of E(L) is 2-tangent to the fiber of π at (λ, aλ),
(xiv) ∃t (vi) is satisfied, (8.1) is not satisfied and

(
∂4F

∂λ3∂t

(
∂3F

∂t3

)3

− 3
∂4F

∂λ2∂t2

(
∂3F

∂t3

)2
∂3F

∂λ∂t2
+

+3
∂4F

∂λ∂t3
∂3F

∂t3

(
∂3F

∂λ∂t2

)2

− ∂4F

∂t4

(
∂3F

∂λ∂t2

)3

)(λ, aλ, t) 6= 0.

(xv) (vii) is satisfied,

∂3S+

∂(q+)3
(q+

a ) = 0 ∧ ∂4S+

∂(q+)4
(q+

a ) 6= 0

or
∂3S−

∂(q−)3
(q−a ) = 0 ∧ ∂4S−

∂(q−)4
(q−a ) 6= 0.
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(xvi) (iv) is satisfied and l(a+, a−) is 1-tangent to L at one of points
a+, a− and 2-tangent to L at the other.

Proof. We use the same notation as in the proof of Proposition 8.5.
(xiii) means that (8.2) is satisfied, (8.3) is not satisfied and

(8.5)
∂3

∂λ3

(
∂F

∂t
(λ, p, q, T (λ, p, q))

) ∣∣
(λ,aλ) 6= 0.

Using (8.4) it is easy to check that these conditions are equivalent to
(xiv). By direct calculation one can obtain that (xiv) is equivalent to
(xv) and (xvi) is obvious geometric description of (xv). ¤

Theorem 8.7. Let 1
λ

∂3S+

∂(q+)3
(q+

a ) + 1
1−λ

∂3S−
∂(q−)3

(q−a ) 6= 0 (for statements

(1)-(2) below, λ = 1/2).

(1) If the chord l(a+, a−) is not bitangent to L at a+, a− then the
germ of F at (1/2, a1/2, q̇1/2) has AA0

2 (1/2) singularity and the
germ of GCS at a1/2 is a smooth curve (the smooth part of the
Wigner caustic).

(2) If the chord l(a+, a−) is 1-tangent to L at a+ and at a− then the
germ of F at (1/2, a1/2, q̇1/2) has AA1

2 (1/2) singularity and the
germ of GCS at a1/2 is a union of two 1-tangent smooth curves
(the smooth part of the Wigner caustic and the smooth part of
the criminant).

(3) If the chord l(a+, a−) is 1-tangent to L at a+ and at a− then
the germ of F at (λ, aλ, q̇λ) for λ 6= 1/2 has AA1

2 singularity and
the germ of GCS at aλ is a smooth curve (the smooth part of
the criminant).

(4) If the chord l(a+, a−) is 1-tangent to L at one of the points
a+, a− and 2-tangent to L at the other point then the germ of
F at (λ, aλ, q̇λ) for λ 6= 1/2 is not (1, 2)-R+-stable. AA2

2 is not
realizable as a singularity of GCS of a Lagrangian curve.

Proof. By Proposition 8.3 if

(8.6)
1

λ

∂3S+

∂(q+)3
(q+

a ) +
1

1− λ

∂3S−

∂(q−)3
(q−a ) 6= 0

then the germ of a generating family F of L is a unfolding of the
function-germ with A2 singularity. Therefore we can reduce F to the
following form F ′(λ, p, q, t) = t3 + g(λ, p, q)t, where g is a smooth
function-germ vanishing at (λa, 0) (for λa = 0 or λa = 1/2).

By Proposition 8.4 if the chord l(a+, a−) is not bitangent to L at
a+, a− then ∂F ′

∂t∂λ
(1/2, 0, 0) 6= 0 and this implies that ∂g

∂λ
(1/2, 0) 6= 0. By

Theorems 7.12 and 7.14 we obtain (1).
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If the chord l(a+, a−) is tangent to L at a+, a− then by Proposition
8.4 we get that p+

a = p−a and ∂F ′
∂t∂λ

(λa, 0, 0) = 0 and this implies that
∂g
∂λ

(λa, 0) = 0. But dg|(λa,0) 6= 0 since ∂F
∂t∂p

(λa, a, q̇a) 6= 0.

By Proposition 8.5 if l(a+, a−) is 1-tangent to L at a+, a− then

(8.7)

(
∂3F ′

∂λ∂t2
(λa, 0, 0)

)2

− ∂3F ′

∂t3
(λa, 0, 0)

∂3F ′

∂λ2∂t
(λa, 0, 0) 6= 0.

But this implies that ∂2g
∂λ2 (λa, 0, ) 6= 0. Thus if λa = 1/2 by Theorems

7.12 and 7.14 we obtain (2) and otherwise by Theorems 7.10 and 7.13
we obtain (3).

Finally, let us assume that the chord l(a+, a−) is 1-tangent to L at

a+ and 2-tangent at a−. By Proposition 8.6 we get ∂2g
∂λ2 (λa, 0, ) = 0 and

(
∂4F

∂λ3∂t

(
∂3F

∂t3

)3

− 3
∂4F

∂λ2∂t2

(
∂3F

∂t3

)2
∂3F

∂λ∂t2
+

+3
∂4F

∂λ∂t3
∂3F

∂t3

(
∂3F

∂λ∂t2

)2

− ∂4F

∂t4

(
∂3F

∂λ∂t2

)3

)(λa, 0, 0) 6= 0.

Thus, ∂3g
∂λ3 (λa, 0, ) 6= 0. We know that ∂g

∂p
(λa, 0, ) 6= 0 since ∂2F

∂t∂p
(λa, a, q̇a) 6=

0. It is easy to see that ∂2F
∂t∂q

(λa, a, q̇a) = 0. Thus F has AA2
2 singularity

at (λa, a, q̇a) iff the following condition is satisfied

∂3F

∂λ∂q∂t
(λa, a, q̇a)

∂3F

∂t3
(λa, a, q̇a)− ∂3F

∂λ∂t2
(λa, a, q̇a)

∂3F

∂q∂t2
(λa, a, q̇a) 6= 0

By direct calculation it is easy to see that this is equivalent to

(q+
a − q−a )

λa(1− λa)

∂3S+

∂(q+)3
(q+

a )
∂3S−

∂(q−)3
(q−a ) 6= 0,

which is not satisfied, since l(a+, a−) is 2-tangent to L at a−. ¤
Corollary 8.8. Let L be a smooth closed convex curve in (R2, ω). The
middle axes and the whole CSS are not (1, 2)-Lagrangian stable. The
smooth part of the Wigner caustic is (1, 2)-Lagrangian stable, but the
cusp singularities of the Wigner caustic, seen as part of the GCS(L),
are not (1, 2)-Lagrangian stable.

Remark 8.9. A comparison of theorem 8.1 and corollary 8.8 shows
that, for the case of convex curves in R2, various singularities which
are affine stable are not affine-Lagrangian stable. In other words, there
is a breakdown of stability of various singularities due to the presence
of a symplectic form in R2 to be accounted for. Other examples of
breakdown of stability due to a symplectic form can be found in [4]-[6].
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Remark 8.10. Although the cusp singularities of the Wigner caustic
are affine-Lagrangian stable when the Wigner caustic is considered by
itself (corollary 5.2), they are not affine-Lagrangian stable when the
Wigner caustic is considered as part of the GCS. That is, the meeting
of the Wigner caustic and the CSS is not affine-Lagrangian stable.
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Gauthier-Villars, Paris, 1892.



42 DOMITRZ & RIOS

[19] P. de M. Rios, A. Ozorio de Almeida, On the propagation of semiclassical
Wigner functions , J. Phys. A: Math. Gen. 35 (2002) 2609-2617.

[20] P. de M. Rios, A. Ozorio de Almeida, A variational principle for actions on
symmetric symplectic spaces, J. Geom. Phys. 51, No. 4, 404-441 (2004).

[21] P. de M. Rios, A semiclassically entangled puzzle, J. Phys. A: Math. Theor. 40
(2007) F1047-F1052.

[22] G. Wassermann, Stability of unfoldings in space and time, Acta Math.
135(1975), 57-128 .

[23] V. M. Zakalyukin, Reconstructions of fronts and caustics depending on a pa-
rameter and versality of mappings, J. Sov. Math. 27(1984), 2713-2735.

9. Appendix

Here we prove theorem 8.1. To do so, first we define affine stability.
Remind that, ∀λ ∈ R, the standard chord transformation

Γλ : Rn × Rn → TRn , (x+, x−) 7→ (x, ẋ) ,

is the chord transformation defined by the choices µ ≡ 0 and ρ ≡ 1/2.
Explicitly, x is given by the λ-point equation (3.1) and ẋ is given by
the standard chord equation

(9.1) ẋ =
1

2
(x+ − x−) .

One distinguishing feature of the standard chord transformation is
that it is bijective ∀λ ∈ R. Explicitly, its inverse is given by

Γ−1
λ : TRn → Rn × Rn , (x, ẋ) 7→ (x+, x−) ,

(9.2) x+ = x + 2(1− λ)ẋ , x− = x− 2λẋ .

It follows that the standard extended chord transformation

Γ : R× Rn × Rn → R× TRn ,

(λ, x+, x−) 7→ (λ, Γλ(x
+, x−)) ,

with Γλ given by equations (3.1), (9.1), is also bijective. For this rea-
son, it is preferable to use the standard chord transformation Γ to the
tilted chord transformation Φ when no symplectic structure has to be
accounted for (as is also done in [7]).

Now, let M and M̃ be germs of m-dimensional smooth submanifolds

of Rn, n ≤ 2m, and let M and M̃ be the chord transformed cylinders

M = Γ(R×M ×M) , M̃ = Γ(R× M̃ × M̃) .
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Definition 9.1. Germs of GCS(M) and GCS(M̃) are chord equiv-
alent if there exists a diffeomorphism-germ Θ of R × TRn such that

M̃ = Θ(M) and the following diagram commutes:

idR × pr π
R× TRn −→ R× Rn −→ Rn

↓ Θ ↓ ↓
idR × pr π

R× TRn −→ R× Rn −→ Rn

where vertical arrows indicate diffeomorphism-germs, as follows:

Θ : R× TRn 3 (λ, x, ẋ) 7→ (Λ(λ, x), X(x), Ẋ(λ, x, ẋ)) ∈ R× TRn,

R× Rn 3 (λ, x) 7→ (Λ(λ, x), X(x)) ∈ R× Rn,

Rn 3 x 7→ X(x) ∈ Rn.

Remark 9.2. The chord equivalence is a special case of the equivalence
of cascades of projection defined in [15].

Now, let B = (B, b) ∈ iGLn
R = GL(n,R)nRn act standardly on Rn

(9.3) x 7→ Bx = Bx + b ,

and define its induced action on R× TRn as

idR × BΓ : (λ, Γλ(x
+, x−)) 7→ (λ, Γλ(Bx+,Bx−)) ,

(9.4) idR × BΓ : (λ, x, ẋ) 7→ (λ,Bx + b, Bẋ) ,

which clearly satisfies, on R× TRn,

(9.5) (idR × B) ◦ (idR × pr) = (idR × pr) ◦ (idR × BΓ) .

Also, let B = (β,B) ∈ R× iGLn
R and define its action on R× TRn as

BΓ : (λ, Γλ(x
+, x−)) 7→ (λ + β, Γλ+β(Bx+,Bx−)) ,

(9.6) BΓ : (λ, x, ẋ) 7→ (λ + β, Bx + b + βBẋ,Bẋ) .

Then, BΓ 6= idR × BΓ, but, if Rn ⊃ M 3 x 7→ x′ = Bx ∈ M ′ ⊂ Rn,

M = Γ(R×M ×M) , M′ = Γ(R×M ′ ×M ′) ,

we have that, as sets,

(9.7) ∀β ∈ R , BΓ(M) = (idR × BΓ)(M) = M′ .

Furthermore, if E(M) = (idR × pr)(M) , E(M)′ := (idR × pr)(M′) ,
with M and M′ related by equation (9.7), then, as sets, we have that

(9.8) E(M)′ = E(M ′) = E(B(M)) = (idR × B)(E(M)) ,
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(9.9) GCS(M)′ = GCS(M ′) = GCS(B(M)) = B(GCS(M)) .

Definition 9.3. Because equations (9.5) and (9.7)-(9.9) are satisfied
for the actions (9.3), (9.4) and (9.6) of the affine group iGLn

R and its
trivial R-extension, we say that the classification of singularities of
GCS(M) by chord equivalence is strongly affine invariant.

Definition 9.4. A singularity of GCS(M) is affine stable if it is a
stable singularity under its classification by chord equivalence.

9.1. Proof of theorem 8.1. Let M be a smooth closed convex curve
in R2. Let a+ = (a+

1 , a+
2 ), a− = (a−1 , a−2 ) be a pair of parallel point of

M . Then M is locally around a+ and a− described as follows:

(9.10) M+ : x+
2 = f+(x+

1 ), M− : x−2 = f−(x−1 ),

where f+, f− are smooth function-germs on R such that a+
2 = f+(a+

1 ),

a−2 = f−(a−1 ), df+

dx+ (a+
1 ) = df−

dx− (a−1 ) = 0.
By a affine transformation we can get that a+

1 = a−1 = 0.
Then M = Γ(R×M ×M) is locally around point

(a, ȧ) = (λ0a
+ + (1− λ0)a

−, 1/2(a+ − a−)) = (a1, a2, 0, ȧ2)

described as in the following way:

(9.11) x2 = λf+ (x1 + 2(1− λ)ẋ1) + (1− λ)f− (x1 − 2λẋ1) ,

(9.12) ẋ2 =
1

2

(
f+ (x1 + 2(1− λ)ẋ1)− f− (x1 − 2λẋ1)

)
.

Using a diffeomorphism-germ of R× TR2 of the form

(λ, x, ẋ) 7→
(

λ, x, ẋ1, ẋ2 − 1

2

(
f+ (x1 + 2(1− λ)ẋ1)− f− (x1 − 2λẋ1)

))

we show that (9.11)-(9.12) is chord equivalent to

(9.13) x2 = λf+ (x1 + 2(1− λ)ẋ1) + (1− λ)f− (x1 − 2λẋ1) , ẋ2 = 0.

Let f denote the following function-germ on R× TR2 at 0

f(λ, x, ẋ1) = λf+ (x1 + 2(1− λ)ẋ1) +

+ (1− λ)f− (x1 − 2λẋ1)− x2.

By definition of f we obtain that

(9.14) f(λa, a, 0) =
∂f

∂ẋ1

(λa, a, 0) = 0.

Now consider the following conditions for a+
1 = a−1 = 0:

(9.15)(
(1− λa)

d2f+

d(x+
1 )2

(a+
1 ) = −λa

d2f−

d(x−1 )2
(a−1 )

)
⇔ ∂2f

∂ẋ2
1

(λa, a, 0) = 0,
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(9.16)

(
(1− λa)

2 d3f+

d(x+
1 )3

(a+
1 ) = λ2

a

d3f−

d(x−1 )3
(a−1 )

)
⇔ ∂3f

∂ẋ3
1

(λa, a, 0) = 0,

(9.17)(
(1− λa)

3 d4f+

d(x+
1 )4

(a+
1 ) 6= −λ3

a

d4f−

d(x−1 )4
(a−1 )

)
⇔ ∂4f

∂ẋ4
1

(λa, a, 0) 6= 0.

The curve M is convex. It implies that there is no bitangent line to M
at points a+, a−. Therefore a+

2 6= a−2 and it implies that ∂f
∂λ

(λa, a, 0) 6= 0.
Then by the implicit function theorem the equation f(λ, x, ẋ1) = 0 may
be solved in the neighborhood of (λa, a, 0) ∈ R× R2 × R with respect
to λ. Thus we obtain

(9.18) λ = λa + g(x, ẋ1), ẋ2 = 0,

where g is a function-germ such that g(a, 0) = ∂g
∂ẋ1

(a, 0) = 0. This

implies that that at all smooth points, E(M) is transversal to the fibers
of π. So the criminant ∆(M) is empty for a convex curve M .

If (9.15) is not satisfied then the function-germ ẋ1 7→ g(a, ẋ1) is
locally equivalent to ẋ1 7→ ±ẋ2

1. Since g(x, ẋ1) is a deformation of
g(a, ẋ1) then by a diffeomorphism-germ of R×TR2 the form (λ, x, ẋ) 7→
(λ,X(x), Ẋ1(x, ẋ1), ẋ2) we reduce (9.18) to the following form

λ = λa ± ẋ2
1 + g0(x), ẋ2 = 0,

where g0 is a function-germ vanishing at a. By a diffeomorphism-germ

(9.19) (λ, x, ẋ) 7→ (λ− g0(x), x, ẋ)

we obtain
λ = λa ± ẋ2

1, ẋ2 = 0.

Then E(M) = {(λ, x) : λ = λa} is a smooth surface-germ transversal
to fibers of π. So GCS(M) is empty in this case.

If condition (9.15) is satisfied and (9.16) is not satisfied then ẋ1 7→
g(a, ẋ1) is locally diffeomorphic to ẋ1 7→ ±ẋ3

1. The function-germ
(λ, x, ẋ1) 7→ g(x, ẋ1) + λ0 − λ at (λa, a, 0) is a deformation of ẋ1 7→
g(a, ẋ1). By (9.15) and the implicit function theorem we have that

(9.20)
∂2g

∂ẋ1∂x1

(a, 0) 6= 0

if the following condition at a+
1 = a−1 = 0 is not satisfied

(9.21)
d2f+

d(x+
1 )2

(a+
1 ) =

d2f−

d(x−1 )2
(a−1 ) = 0.

We may assume that d2f+

d(x+
1 )2

(a+
1 ) d2f−

d(x−1 )2
(a−1 ) 6= 0 since M is a generic

convex curve. It is easy to see that (9.20) implies that (λ, x, ẋ1) 7→
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g(x, ẋ1) + λ0 − λ is the versal deformation. By a diffeomorphism-germ
of R × TR2 of the form (λ, x, ẋ) 7→ (λ − g0(x), X(x), Ẋ1(x, ẋ1), ẋ2) we
reduce (9.18) to the following form

λ = λa + ẋ3
1 + x1ẋ1, ẋ2 = 0.

Then E(M) is the cusp singularity (×R) in R3 and GCS(M) is a
singular set of E(M). So GCS(M) is a germ of a smooth curve.

Conditions (9.15)-(9.17) imply that ẋ1 7→ g(a, ẋ1) is locally equiva-
lent to ẋ1 7→ ±ẋ4

1. By (9.15)-(9.16) and the implicit function theorem
it is easy to show that

(9.22)
∂2g

∂ẋ1∂x2

(a, 0) = 0,
∂3g

∂ẋ2
1∂x2

(a, 0) 6= 0.

Together with (9.20) it imply that a function-germ (λ, x, ẋ1) 7→ g(x, ẋ1)+
λ0 − λ at (λa, a, 0) is the versal deformation of ẋ1 7→ g(a, ẋ1). Then
by a diffeomorphism-germ of R × TR2 of the form (λ, x, ẋ) 7→ (λ −
g0(x), X(x), Ẋ1(x, ẋ1), ẋ2) we reduce (9.18) to the following form

λ = λa ± ẋ4
1 + x2ẋ

2
1 + x1ẋ1, ẋ2 = 0.

Then E(M) is the swallow tail singularity and GCS(M) is a singular set
of E(M). So GCS(M) is composed of the smooth curve with the cusp
singularity (CSS) and of the smooth half-line of the self-intersections
starting at the cusp point and lying inside the cusp. This half line is a
part of the middle axis of M .

By Theorem 2.10 GCS(M) contains also the Wigner caustic E 1
2
(M).

For the classification of the Wigner caustic in GCS(M) we use the Γ-
chord equivalence with the extra assumption

(9.23) Λ(λ0, x) = λ0 , λ0 = 1/2 .

We use the same arguments as in the first part of the proof. In this
case (9.18) has the following form

(9.24) λ = 1/2 + g(x, ẋ1), ẋ2 = 0,

where g is a function-germ such that g(a, 0) = ∂g
∂ẋ1

(a, 0) = 0.

Since ∂f/∂x2(1/2, a, 0) = −1 6= 0 we obtain that

(9.25)
∂g

∂x2

(a, 0) 6= 0.

It implies that if (9.15) is not satisfied then g(x, ẋ1) is the versal defor-
mation of g(a, ẋ1). Thus we reduce (9.24) to

λ = 1/2± ẋ2
1 + x1, ẋ2 = 0.

In this case the Wigner caustic is a smooth curve x1 = 0.
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If (9.15) is satisfied but (9.16) is not satisfied (for λa = 1/2) we get
that (9.20) is satisfied. Together with (9.25) it implies that we can
reduce (9.24) to the form

λ = 1/2 + ẋ3
1 + x2ẋ1 + x1, ẋ2 = 0.

In this case the germ GCS(M) consists of the Wigner caustic which
is the cusp curve 27x2

1 + 4x3
2 = 0 and a germ of CSS(M) which is the

smooth curve x2 = 0 .

Remark 9.5. From the proof of this theorem we get conditions (9.15)-
(9.17) which distinguished various singularities of the GCS set of a
convex smooth curve. They were first presented in [9] in terms of
(derivatives of) the ratio of the curvatures of the curve M at points a+

and a−. Note that ∂(f±)2/∂(x±)2(a±) is the curvature of M at a±.

Remark 9.6. Although the possibility of self intersections of both the
CSS and the Wigner caustic have been illustrated in section 8 and
stated in theorem 8.1, no such possibility is found in its proof. This
is because the proof only concerns a local classification of singularities
and these self intersections are of global, or multilocal nature.

Remark 9.7. We used the standard extended chord transformation Γ
to define affine-stability and work out the proof of theorem 8.1 because
it is geometrically simpler than the tilted chord transformation Φ and is
the natural choice for non-Lagrangian cases, as studied in [7]. Γ allows
for the action (9.6) of R× iGLn

R to be globally defined on R×TRn and
Γ also has the property of affine rigidity, meaning that (9.4) defines an
action iGLn

R : TRn → TRn. By comparison, Φ is only linearly rigid (see
remark 3.2) and, via Φ, the similar action of R× iGLn

R is only defined
on a subset of R × TRn (pinched at λ = 0 and λ = 1). However,
theorem 8.1 can be similarly stated and proved using Φ instead of Γ.

Remark 9.8. Via Φ and the similar action of R× iSp2m
R on the proper

subset of R × TR2m, it is possible to introduce the notion of strong
affine symplectic invariance for an equivalence of GCS of Lagrangian
submanifolds by imposing, on the diagram of definition 7.1, commuta-
tivity also with respect to the projection T ∗R × TR2m → R × TR2m.
However, this stronger equivalence relation is so rigid in the Lagrangian
case that not even the singularities of the criminant are stable.
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