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Cartan’s moving frames method is a standard tool in Riemannian geometry. 
We set up the machinery for applying moving frames to cotangent bundles and its 
sub-bundles defined by nonholonomic constraints. 
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1. Introduction 

This paper has a very modest scope: we present our “operational system” 
for Hamiltonian mechanics on cotangent bundles M = T*Q, based on moving 
frames. In a related work [lo], we present some concrete examples to convey the 
algorithmical nature of this formalism. 

A powerful tool in Riemannian geometry is the “method of moving frames”, 
introduced by l?lie Cartan. However, it actually appeared earlier in Lagrangian 
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mechanics (Poincare, 19Ol)l, later referred as the “quasi-coordinates” method. 
Cartan himself advocated applying moving frames in mechanics [5], in particular 
using his equivalence method. See [9] for a modern exposition of Cartan’s paper. 

When we use a moving frame and its dual coframe, the canonical symplectic 
form 0 on T*Q deviates from the Darboux format. This is not bad: we use this 
feature to encode information about the system. 

Moving frames are natural when dealing with Lie groups and with constrained 
systems, either vakonomic or nonholonomic (see [l] for background). Linear 
constraints define a distribution & of s-dimensional planes Eq c TqQ, where Q is 
an n-dimensional configuration space, s < n. 

2. Basic formalism 

2.1. Cofiame coordinates for T*Q 

Let {eI=azKdqK,I=l,... , n} a local coframe on Q. We denote by {eJ = 
b,&/dqL} the dual frame, defined by el(eJ) = 61~. The matrices A and B are 
inverses. 

DEFINITION 1. We call quasi-velocities (respectively, quasi-momenta 2, the 
coordinates (u, q) on TQ (respectively (m, q) on T*Q) defined by 

% = weI, p, = mm. (1) 

Rules of transformation are readily obtained: 

PJ mJ = PI &Z(eJ) = PIbIJ . 

It is easy to write w in terms of the trivialization (m, q) of T*Q, 

(2) 

w =pdq=mIeI. (3) 

This is the “canonical misunderstanding”: the expression rnzez is now a l-form 
on T*Q in coordinates (m, q). The same expression (see (1)) denotes an element 

pq = me(a) = m&q) E TPQ. (W e use heavier notation when we feel necessary. 

We could add a superscript # when thinking of ef either as a l-form on Q, or 
its pullback to T*Q. For the latter a double superscript could be used. However, 

'We thank Larry Bates (personal communication): moving frames were introduced by Euler 
[7]. Certainly moving frames were understood by the caveman who invented the wheel. 

2“Quasi-momenta” can be abbreviated without guilt by “momenta”: the angular momenta 
rnr correspond to er = infinitesimal rotations in Iw3. 
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we will try to keep the notation as simple as possible.) The basic idea of this 
work is to write the canonical 2-form in a non-Darboux format. The following is 
obvious and will be explored in Theorem 2. 

THEOREM 1. The canonical a-form in T*Q writes as 

R=du=dpAdq=dm~r\eI+mrdeI. (4 

2.2. Earnest coordinate vector fields and coframes 

We associate to the local trivialization (m, q), where pq = rnzcz, the lifted 
coframe for T*Q given by 

{EZ , dw) . (5) 

We will now describe the corresponding dual basis of vector fields on T*Q. 
It turns out that it is not {ez , a/amz}. In the correct version, the first set will 
acquire a fiber component, and will be denoted e;. 

DEFINITION 2. We call earnest coordinate vector fields for T*Q the coordi- 
nate frame associated to the parameterization (m, q): 

X& = 2- 
891 l(T7-t fixed) ’ 

a - = Ez . 

dmz - 

These vector fields are dual to the forms {dqz , dmz}, the differentials of the 
coordinate functions. The identification d/dmz G ez(q), a vertical vector field in 
T*Q, is the usual identification of a vector space with its tangent space (here, 

T,,(T,Q) = T;Q>. 
We claim that denoting a/dqz without subscript, is misleading. The vector 

fields X& = a/bl(mfixed) and d/kzl(pCxed) are different! Throughout this work 
we reserve unsubscripted notation a/i?qz for the vector field corresponding to the 
standard coordinates (p, q) for T*Q. Thus we write ej = b,&/aqr, thinking of it 
as a vector field in T*Q, assuming the standard (p, q) parameterization. 

In fact, we must go back to a standard “Advanced Calculus” class. If (q, p) and 
(q, m) are two sets of coordinates on a fibered manifold, the notation d/aqr in the 
two coordinate systems is ambiguous: they differ by a vertical component3. This 
could be surprising at first sight since the forms dqz in the coframes {dqz, dpz} 
and {dqz,dmz} are the same. They are simply the differentials of the functions 

3Differential forms are more reliable than vector fields in this regard. Perhaps this is another 
“feminine” property of forms. Prof. S. S. Chern insists that forms are of feminine gender, 
vectors masculine. 
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qz o r : T*Q + W (n : T*Q -+ Q is the bundle projection and qz : Q -P W is the 
I-th coordinate function). 

We introduce matrix notation. We write the (dual) pair frame-coframe in Q 
as a row array and column array, respectively: 

El 

e= h,...,e,), E= . . . ) 

( ) En 

Write 

Ez = or&J, that is, E=Adq, 

and we recall 

(el, . ..,en)=(d/dqi,...,d/dq,)B, 

Then rnr~z = pJdqJ implies (as we already saw) pJ 

LEMMA 1. (The importance of being earnest). 
(8). The corresponding coframes in T*Q are related by 

(E . e = In). (7) 

A = (aZJ) , (8) 

B = A-‘. 

= ?nZaZJ. 

(9) 

Assume e and dq relatea’ by 

where 

AZJ = mKaaKZ/%J . 

The corresponding dual frames in T*Q are related by 

(11) 

(12) 

Explicitly, 

x& = d/%J + mK(aaKZ/dqJ) & , d/dmJ = aJZd/&Z . (13) 

Summarizing: the vector fields X& and a/aqz are different, however, their differ- 
ence is a vertical vector field, their projections over TQ by 7rr* : T(T*Q) + TQ 
coincide. We say that X& acquires a spiritual component relative to the standard 
coordinates (p, q). 
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2.3. Extended frame {e;, &} for T(T*Q) and cofiame { ~1, dm~} for 

T* P’*Q) 
We now change part of the coordinate basis X& to vectors e;. The superscript 

* is a reminder that e; E T(T*Q), not TQ, and also a reminder that it has a 
spiritual component. A simple computation gives the following result. 

LEMMA 2. 

(:;)=(z3 Y&&J 

Dualizing, we get 

(14) 

In short, the transformation rules for the moving frame in T*Q are given (in 
shorthand notation), in terms of the standard coordinates (p, q) by: 

e* = d/iYqB + d/i?pAB = e + a/apAB , (16) 

a/am = alapAt, (equivalently e = Adq) . (17) 

The last equality is due to the identifications d/drnl = EZ, a/apz = dqz. The 
extended moving coframe in T;* (T*Q) is EZ, dmz, dual to e;, d/dmr E T,,(T*Q). 
The importance of being earnest: the frames {er} and {EJ} are dual in V = 
T,Q, V* = T,Q. The frames {&} and {dmJ} are dual in W = TiQ, W* = 

(T,*Q)*, but {ez, &} and {EJ, dmJ} are NOT dual in T(,,,)T*Q, Tip,(l,T*Q. The 
basic reason is that T(,,qjT*Q # T,Q x TiQ. 

3. Symplectic form in {e*, a/am} and Poisson brackets in {E, dm} 

After this quite dull preparation, we are finally able to write down a more 
interesting formula. 

THEOREM 2. In the basis {e*, a/am}, the canonical symplectic form L? = 

dp A dq = dmz A E? + rnzd$ becomes 

Pl{e*,a/h} = (f: -ig (18) 

with 

EJK = mZdcZ(eJ, eK> = -mZEZ[eJ, eK] . (19) 
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Proof: We use Theorem 1 and Cartan’s magic formula for differentiating 
1-forms4. By duality, the first term dml A ET yields a familiar matrix 

The “magnetic block” E (E for Euler) results from employing Cartan’s formula 

CZ$(~;, &) (inT*Q) = d&t, ed (in&) 

= eJEl(eK) - e&w) - v[e.h wl (20) 

and we observe that the first two terms vanish. q 

As the Poisson structure is a skew-symmetric tensor of type (0,2), it operates 
on two elements of ‘.Z?Yq (T*Q). It is natural to use the basis (~1, dmz}. 

THEOREM 3. The Poisson bracket matrix relative to ez, drnz is 

[q-l+]= (“-;, l-g. 

Equivalently, 

A=Cer*k+ C a a 
EJK - 

Z Z l<J<Kjn 8mJ AamK* 

We now observe that 

a a _ a 
EZJ- - 

&I-&J %Z =ezA&?$ 

where 
a 

e”z = e;(q) - ~EzJ-. 
dmJ 

The Poisson (0,2) tensor can also be written as 

(21) 

(22) 

(23) 

4Cartan’s formula is the deepest fact used in this paper. 
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The last equality is ridiculous. As er = bJ$/aqJ , & = & a1.1 (see (17)) and 

since A = B-l we have 

c a a a 
- =bJZ-- A- 

a a 
aKZ =aZKbJI- A- 

&J %--'K &J %-‘K 
a a a 

=(ip--- A-=-- 

&J &K &J 
Ad 
62 

Thus one could guess that i?z equals eI, but a brute force calculation gives 

e1 = e1 + mK am aaK,(b&‘LJ + h-tJhz)&. 
J 

The second term will not contribute when wedging with a/drnI and performing 
the summation. 

4. Examples 

4.1. Lie groups and KAKS bracket 

Let the configuration space be a Lie group Q = G, ez and EI dual left- 
invariant vector fields and forms. Let the structure constants be defined by 

[e J, eK] = C;K ez . Then 

EJK = m&I(eJ, eK) = -mIEI[eJ, eK] = -m& (25) 

does not depend on g E G. Write 

vu = xge; -t- z!e J E Tpg (T*G) , a = 1,2, 

so 

qvl, V2) = (Xl, 2) (; -o’)(52) = x22 - x1z2 + X1EX2 . (26) 

We denote X7 eJ(id) = L,-1 (n, VP”,) simply as Xa E 6 and therefore 

X1EX2 = -mreI(g)[Xr,X& = -(L,)*(p,)[X~“, Xk’]id. (27) 

What if we replace left by right-invariant vector fields _f~ and forms 8z? The 
basic formula stays the same, 

,n(Vr, Vs) = x2z1 - x122 + X1EX2 ) 
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but now Xj fJ(id) = +I (r* Vg) and 

X1EX2 = -mzez(g)[X1,X,], = -(Rg)*(pg)[Xfight, xFhtle. 

where 
[Xf’pht, xFhtle = -& x:x; fz . (28) 

Notice the extra minus sign arising from the Lie bracket structure. Here we used 
the well known Lie-group fact: if one extends vectors in P right invariantly the 
structure coeficients in the Lie bracket appear with opposite sign. 

Eqs. (26) and (27) lead to the KAKS (Kirillov-Arnold-Kostant-Souriau) 
bracket in the dual Lie algebra 9* found independently by S. Lie [13]. 

The commutation relations for the forms IZZ, dmz in T,*.,(T*G) are given by 

{dw, EJ) = ~ZJ , {dmz, dmJ} = EZJ = -mKcfJ. (29) 

The last commutation formula implies for f, g : G* + IIt, that at ,a E Q*, 

where df (p) E T,*G* is identified with $(P) E 0. 

4.2. Principal bundles with connection 

We use heretofore the following convention: capital roman letters I, J, K, 
etc., run from 1 to n. Lower case roman characters i, j, k run from 1 to s. Greek 
characters o, ,B, y, etc., run from s + 1 to n. 

Let 7r : Q” --f S* be a principal bundle with Lie group G’, where r = n - s. 
For definiteness, we take G acting on the left. Fix a connection X = X(q) : 
TqQ --) Q defining a G-invariant distribution & of horizontal subspaces. Denote 
by K(q) = dX o Hor : T,Q x T,Q --) G the curvature 2-form (which is, as well 
known, Ad-equivariant). 

Choose a local frame & on S. For simplicity, we may assume that 

are the coordinate vector fields of a chart s : S --$ IRS. 

Let ei = h&i) be the horizontal lift to Q. We complete to a moving frame 
on Q with vertical vectors e, which we will specify in a moment. The dual basis 
will be denoted ei, E, and we write pq = rniei + maE,. These are in a sense the 
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“least moving” among all the moving frames adapted to this structure. We now 

describe what the n x n matrix E = (EIJ) looks like in this setting. 

i) The s x s block (I$). Decompose [ei,ej] = h[&,~j] + V[ei,ej] = V[ei,ej] 
into vertical and horizontal parts. The choice (31) is convenient, since ei and Ej 

commute, [ei, ej] is vertical. Hence 

Eij = -p,[ei, ej] = -mae,[ei, ej] . (32) 

Now by Cartan’s rule, 

Wei, ej) = eiX(ej) - ejX(ei) - X[ei, ej] = -X[ei, ej] E 6. 

Thus we have shown that 

[ei, ejlq = --KC%, ej) - Q (33) 

Moreover, let J : T*Q ---f 6* be the momentum mapping. We have 

CJ(Pq)7 Kqki,ej)) = Pq (K(ei, ej).q) = -pq[ei, ej] (= Eij) . 
THEOREM 4. (The J. K. formula) 

% = (J(Pq), K,(ei, ej)) . (34 

This gives a nice description for this block, under the choice [Ei, Ej] = 0. Notice 

that the functions Eij depend on s and the components ma, but do not depend 

on g. This is because the Ad*-ambiguity of the momentum mapping J is can- 

celled by the Ad-ambiguity of the curvature K. 

ii) The T x r block (E,p). Choose a basis X, for 8. We take e,(q) = X, . q as 
the vertical distribution. Choosing a point q. allows for the identification of the 

Lie group G with the fiber containing Gq,, where id H qo. Through the mapping 

g E G H gqo E Gqo, the vector field en is identified to a right (not left!) invariant 

vector field in G. Thus the commutation relations for the e, are as in (28) so 

that [e,,,ep] = -c’ aO eY appears with a minus sign. Therefore 

Eap = rn,c& . (35) 

iii) The s x n block (Eia). The vectors [ei, e,] are vertical, but their values 

depend on the specific principal bundle one is working with. Given a section 
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TV : Us --+ Q over the coordinate chart s : Us -+ Rm on S, we need to know the 
coefficients bya in the expansion 

[ei, e,](a(s)) = bya eY . 

Then 
J!&&(s)) = -?7$ bZa(s). (36) 

At another point on the fiber, we need the adjoint representation Ad, : 0 --f 
8, X H g;lXg, described by a matrix (Aha( such that 

Then 

Ad&L) = Apa(g)Xp. (37) 

1% e&g - o(s)) = -m,b&(s)A,,(g) . (38) 

5. Nonholonomic mechanics 

Consider the Lagrange-d’Alembert equations 

d'A . 
XL . ; aL/hj - aL/aq = XA , AQ=O, (39) 

with q E IP, X E IV, A(q) a r x n matrix. For the regularity assumptions see 

[ll]. More intrinsically, the constraint equations define a s = n - r dimensional 
distribution & of subspaces Eq c T*Q. The constraint forces XA E T,*Q belong 
to the annihilator E”, of E, a distribution of r-dimensional subspaces Ei c TiQ. 

Under the Legendre transformation Leg : TQ + T*Q, p = $f, L + H = p . cj 

the Lagrangd’Alembert system (39) of equations (q, 0) E & H X’f”(q, (i) E TE 
transforms into the vector field (q,p) E Leg(l) H XzA(q,p) E TLeg(E) given by 
the differential-algebraic system 

O(X$A+& .) = -dH(.), . E T(T*Q), X E E”, r*XgA(q,p) E E4, (40) 

where 7r : T*Q + Q is the bundle projection. Here we identify the constraint 

forces (semibasic vectors) X(p, q) E T,,(T,*Q) c T(T*Q) as elements of Ei c 

T*Q. 
The ODES (39) restricted to (q,d) E & must satisfy XfA(q, 4) E TE (self- 

consistency requirement). In our view, self-consistency is precisely what tradi- 
tional texts in mechanics use to constm~ct the system of ODES, “eliminating the 
multipliers” X. This step involves differentiating the condition A(q)rj = 05. 

5The symplectic app roach seems to be merely an algebraic calculation, but this is not the case. 
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5.1. Equations of motion 

Consider an adapted frame ei, e, for & (this means that ei(q) E Ep) and its 
dual coframe pi, ea. Notice that we are not assuming that e, are orthogonal to 
Eq with respect to a given metric 6. Our approach emphasizes the Lie brackets of 

the frame vector fields, but many authors prefer to compute the almost Poisson 
bracket entirely within the bracket formalism using suitable projections. See 
e.g. [2]. We write in full the defining equation (40), 

O(Vjei +tiJa/amJ + &a/am, , Are; +Bla/arnr) = -dH(Ale; + BI a/arnz) , 

X;l;A = Vje5 + r&d/dmJ , X = X,d/cYm, , l = Are; + Bzd/CImz. (41) 

Here the superscript “d’A” stands for constrained Lagrange-d’Alembert, not to 
be confused with constrained variational type [I]. Using Theorem 2 we get 

-vkBk + &A, + riz~ AJ + vjEjzAz= -ARdH(ek) - Bsg. (42) 
s 

Equating the coefficients of AR and Bs we obtain the equations for nonholo- 
nomic systems. First notice that in the left-hand side there are no terms with 
B,, hence we are forced to work in the subset P of T*Q given by E = 0, 
cy=s+1,...,12. 

THEOREM 5. An “Operational System” for nonholonomic systems: 

(i) The condition 

dH 0 
am,y= ’ 

(~=s+l,...,n, (43) 

is equivalent to P = Leg(&), where Leg : TQ + T*Q is the Legendre trans- 
formation. Assume the hypothesis for the implicit function theorem (P in- 
tersects &I transversally) so we can solve for the m, = m,(q, mk) in terms 
of the n + s variables q, mk. 

Differentiation is automatically built in the algebra since we differentiate the 61. Equivalently, 
the almost Poisson bracket approach, first introduced by van der Schaft & Maschke [12], also 
requires a differentiation, namely taking the Lie bracket of vector fields satisfying the constraint 
equations. The referee pointed out an interesting question: intrinsically speaking, differentiating 
A(q) . tj = 0 uses the Levi-Civita connection of the metric, or is the calculation moving to a 
higher tangent bundle? For each constraint cxi = 0, we could perhaps differentiate the identity 
d(XdlA -I T*CY~) = 0 to get dc~(n*X~‘~, 0) = Llr*xd~Aai. 

‘When H comes from a natural Lagrangian L = T - V, it seems natural to choose er 
orthonormal with respect to T, as proposed by Cartan [5]. However, in the presence of symme- 
tries transversal to the constraints, it may be more interesting to choose the e, as vector fields 
generated by the symmetries (81. See Section 5.2. below. 
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(ii) The dynamic equations are given by: 

8H 
vi==, hi + vk EIC~ = -dHl(,,m)(ef) , (44 

where for m = (ma, m,) the m, are as in (i). 

(iii) The multipliers are explicitly given by 

A, = -I& - vjEja - dHI(*,+) (ei) . (45) 

The reader should not fear having difficulties in computing dHl(q,m)(ef). Recall 
the earnest duality {e;, a/arnJ} to {EK, dmL}, so it suffices to write 

dH = QIEZ + PJdrnJ , 

so dH(e;) = CXI, dH(a/dmJ) = PJ. 

w-9 

5.2. Reduction 

Identify a point of P with its coordinates (q,mk). Therefore, in order to 
compute the (n + a) x (n + s) ( a most)-Poisson 1 matrix, with respect to the basis 
EZ, dmk it suffices to cut the last r = n - s rows and columns of [A] in (21). This 
gives 

0 SXS 0 ISXS SXT 

VI constrained = 

( 

0 TXS o TXT OTXS , 

-&xS OS,, EC ) 

(47) 

where 

E& = -pp * [ej, 4 , j, k = 1,. . . ) s ) 

and pq E P c T*Q is the point with coordinates q, mk, m, satisfying 

(48) 

ma = m&7, mk) . (49) 

Notice that the middle rows and columns vanish. In the presence of transver- 
sal symmetries yielding a principal bundle G’ c+ Q” + S”, we can “zip” (com- 
press) the system down to an almost Poisson structure in T*S. Let H*(q, mi) = 

H(q, mi, mQ(q, mi)). S ince dH/am, = 0, we have aH*/dq = dH/dq, dH*/ami = 
DH/drna so the right-hand side in Theorem 5 is preserved under reduction. 

In many nonholonomic problems such as a rigid convex body rolling on a 
flat plane, the symmetry group (here W2) does indeed intersect the constraints 
transversally. Internal symmetries (that is, satisfying the constraints) will pro- 
duce conserved quantities [l] and the quest for integrability of the reduced system. 
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We have observed in examples [8] that compressed systems are sometimes confor- 
maZZy symplectic. In the Chaplygin sphere, interestingly enough, the compressed 
system to T*S0(3) h as an extra integral of motion arising from a conserved mea- 
sure, but it is not conformally symplectic. We will report on this work elsewhere. 

5.3. Final remarks 

We believe that moving frames can be useful for studying a manifold endowed 
with a skew symmetric structure (symplectic, Poisson, Dirac, Jacobi) together 
with some competing structure (for instance, homogeneous or Kahler), for which 
the Darboux charts could be cumbersome7. 

ODES for nonholonomic systems have been derived again and again, but the 
main question remains open: to construct a theory for nonholonomic systems, 
similar to the one that Hamilton and Jacobi created for holonomic systems. In 
future work we will present some ideas on the issues of symmetry, reduction 
and integrability. Here we just present two simple observations to conclude this 
papers. 

It is common knowledge that constraints count double in holonomic mechan- 
ics. The Lagrangian vector field is a spray: a restriction on 0 affects its “twin 
brother” in T(TQ). Constraints also count in double for nonholonomic sys- 
tems (well, perhaps 1 3/4). The rank of the almost Poisson tensor is indeed 
(2n - r) - T = 2n - 2r. Using the identification a/&n, z E, (a vertical vector), 
it follows that 

~H/~mct = q(*,m)(GY) = GY(Qwwb) = 4)(Q) * (50) 

Here we consider aH/ap E T,Q G (T,Q)* = (T,,T*Q)*. Therefore, condition (i) 
is a consequence of the constraint Q E Eq. This condition “does it twice”, in the 
construction of the reduced space P and in the projection to Q. The vanishing 
middle rows and columns in (47) means the almost Poisson bracket of ca with 
any differential < E Tp*9(T*Q) is zero. We call Ed an almost Casimir. As for 
an ordinary Casimir in Poisson geometry, this implies that eCY(X) = 0 for any 
constrained vector field X, equivalent to the statement that n*(X) E E. Any 
exact combination of the E~‘S will produce a bona fide Casimir function on P. 

‘Local symplectic geometry is considered to be trivial due to Darboux theorem. Global 
symplectic geometry is reputed to be difficult. Recently H. Hofer proposed introducing piecewise 
linear symplectic structures as a way to pass from local to global. Perhaps moving frames could 
be an alternative approach. 

‘These remarks are in line with the viewpoint that nonholonomic systems bear many simi- 
larities with holonomic systems, as pointed out by Prof. Sniatycki in this meeting. 
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Actually, these will be functions on Q, because the E, are basic differentials. Since 

we are interested in strictly nonholonomic systems, we may assume that no exact 
combinations existg. 

We finish with a spiritual observation, which we hope proper, both in terms of 

mathematics and religion as well. Mathematicians use a universal hand waving 

gesture to represent a Riemannian manifold, through a moving frame attached 

to it. A similar gesture to represent a symplectic manifold is in order. We believe 

that such a gesture (“mudra”) may be found in BuddhismlO. 
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‘This does not rule out “gauge conservation laws”, see eg. [4], which appear whenever a 
combination of group action generators satisfies the constraints. 

“Siddhartha’s right hand explores the Earth, (a Lagrangian submanifold); the left hand 
explores the spiritual fibre (another Lagrangian submanifold). In so doing, the earthly hand 
acquires a spiritual component. 


