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Abstract. In [23] a nice looking formula is conjectured for a deformed product of functions on
a symplectic manifold in case it concerns a hermitian symmetric space of non-compact type. We
derive such a formula for simply connected symmetric symplectic spaces using ideas from geomet-
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the natural 2-dimensional symplectic manifoldsR2, H2, andS2. For R2 we obtain the well known
Moyal-Weyl product. The other cases show that the original idea in [23] should be interpreted with
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Introduction

In [23] Weinstein discusses the quantization by groupoids program as a way to obtain
an integral product which would deform the multiplication of the Poisson algebra of
functions on a symplectic manifoldM. Such a product would have the general form

( f g)(z) =
∫

M×M
f (x)g(y)K(x,y,z)dxdy,

with a kernelKh̄, depending on the deformation parameter ¯h, of the kindKh̄(x,y,z) =
h̄−dimM · exp(iS(x,y,z)/h̄), eventually multiplied by an “amplitude”A(x,y,z). It is ar-
gued in [23] that for hermitian symmetric spaces the functionS(x,y,z) should be the
symplectic area of a surface whose boundary is the geodesic triangle for which the points
x, y, andz are the midpoints of its sides, generalizing what is known forR2n.

In this paper we will derive such a formula (formula (6) below) for simply connected
symmetric symplectic spacesM by means of geometric quantization of the symplectic
groupoidM×M and its prequantization as described in [24]. Our approach is inspired
by the center-chord representation on euclidean spaces as described in [13]. We then
apply this procedure to three simple 2-dimensional examples: the euclidean planeR2, the
hyperbolic planeH2 ⊂R3 and the 2-sphereS2 ⊂R3. The first example, already worked
out similarly in [6], gives us the well known integral product formula of Groenewold and
Von Neumann for the Moyal-Weyl quantization of observables. In the hyperbolic plane
we see that we have to interpret the amplitude function in a rather large sense: the phase
function S is defined only on a proper subset ofH2×H2×H2, forcing the amplitude
function to be zero outside this (open) domain, andSblows up at the boundary of this



domain. In the 2-sphere there is the additional complication that midpoints do not always
determine a unique triangle (see also [15]).

Preliminaries

Let (M,ω) be a symplectic manifold and let ¯h∈ R+ be a parameter. Let(Y,θ) be a
prequantization of(M,ω/h̄), meaning thatπ : Y →M is a principalS1-bundle equipped
with a connection formθ whose curvature isω/h̄ (which implies that the group of
periods ofω is a discrete subgroup ofR). Using the identity representation of the
circle S1 ⊂ C on C, we letL → M be the associated complex line bundle overM with
connection∇ and compatible hermitian structure. It follows that we can identifyY with
the subset ofL of points of length 1 (with respect to the hermitian structure). We now
assume that the curvature of∇ also equalsω/h̄, which implies thatω/h̄ represents an
integral cohomology class. This imposes a quantization condition on ¯h in caseω is not
exact.

Our purpose is to construct a mapF (M)×F (M) → F (M) by means of geometric
quantization ofM×M as a symplectic groupoid, whereF (M) stands for some space
of functions onM. We will usually think ofF (M) as the set of smooth functions on
M, but analytical consideration (which will not be pursued in this paper) might decide
otherwise. Our strategy will be to use a polarization such that the polarized sections
of geometric quantization can be identified with functions onM (usually these sections
form the Hilbert space, but here we will interpret them as observables). Using a groupoid
structure on the prequantization, we construct the looked-for product. To make this
work, we will have to restrict our attention to symplectic spaces with a complete affine
connection for which geodesic inversion with respect to a point is a symplectomorphism,
and whose first homology group is zero, bringing us in the category of simply connected
symmetric symplectic spaces, which includes all simply connected hermitian symmetric
spaces [3].

In our construction we will use extensively the results of [24], as well as its notation,
but we will restrict to the barest minimum of terminology. For more of that, the interested
reader is referred to [24] and the references therein (see also [17]).

Prequantization of the pair groupoid

The construction starts by giving the manifoldM × M the symplectic structure
(ω,−ω). More precisely, ifα andβ denote the canonical projectionsM×M →M onto
the first and second factor, then the symplectic form onM×M is α∗ω−β ∗ω. The mani-
fold Y×Y is in a natural way a principalS1×S1-bundle overM×M. Taking the quotient
of the diagonal action ofS1 onY×Y, eiφ · (y1,y2) = (eiφ ·y1,eiφ ·y2), we obtain a prin-
cipal S1-bundle[Y] = Y×Y/S1 → M×M. We will denote points in[Y] as[y1,y2] with
yi ∈ Y. The inducedS1-action is taken to be eiφ · [y1,y2] = [eiφ · y1,y2] = [y1,e−iφ · y2].
Moreover, the 1-form(θ ,−θ) induces a connection form[θ ] ≡ [θ ,−θ ] on [Y], whose
curvature is(ω/h̄,−ω/h̄). We thus obtain a (particular) prequantization ofM×M. We



let [L]→M×M be the associated complex line bundle with connection and compatible
hermitian structure. And as before we identify[Y] with the subset of[L] of points of
length 1.

We define the diagonal sectionε0 : M → [Y] asε0(m) = [y,y] with y ∈ Y such that
π(y) = m. This section is horizontal for the connection[θ ]. It then follows from [24,
theorem 3.1, proposition 3.2] that there exists a unique groupoid structure on[Y] with
given properties. In our case this means that there exists a smooth map� with values in
[Y] and defined on pairs[x,y1], [y2,z] ∈ [Y] such thatπ(y1) = π(y2). Using thatS1 acts
transitively on the fibres ofY → M, and the diagonalS1 action onY×Y, this condition
means that there exists az′ ∈Y such that[y2,z] = [y1,z′]. With such a representation of
the points, this “multiplication”� is given by

[x,y]� [y,z] = [x,z] . (1)

The central polarization

The next step in the geometric quantization procedure is the choice of a polarization
on M×M. We want a polarization that “mixes” both factors ofM, but for genericM
we know of no natural choice for such a polarization. We thus seek symplectic spaces
for which we can define a rather natural mixing polarization. Here is the idea. For any
complete affine connection∇ onM we can define a smooth map:

F : TM→ M×M ; F(m,v) = (expm(−v),expm(v)) ,

where expm : TmM → M denotes the geodesic flow at timet = 1, starting atm∈ M and
in the direction of the tangent vectorv ∈ TmM. Since expm is a diffeomorphism in a
neighborhood of 0∈ TmM, F is a diffeomorphism in a neighborhood of the zero section
of TM. We defineU ⊂ TM, as a maximal connected and symmetric (with respect to
inversion in the fibres of the tangent bundle) open neighborhood of the zero section on
whichF is a diffeomorphism, and its imageV = F(U)⊂M×M. If the (complete) affine
connection∇ has no closed geodesics, thenU = TM andV = M×M.

On TM we have a natural foliationFv whose leaves are just the fibresTmM of the
tangent bundle. Our idea is that its imageP = F∗Fv should be a polarization for the
restriction of the symplectic form(ω,−ω) toV. An elementary computation shows that
P is a polarization onV if and only if for eachm∈M the map expm(v) 7→ expm(−v) is
a symplectomorphism on expm(U ∩ TmM) ⊂ M. We thus require that the symplectic
manifold M admits a complete affine connection for which geodesic inversion is a
symplectomorphism. In this way, we arrive in the category of symmetric symplectic
spaces [3], [17], which includes the category of hermitian symmetric spaces because the
connection associated to the natural (complete) metric on a hermitian symmetric space
satisfies this condition. When this condition is satisfied, we obtain a (real) polarization
P onV ⊂ M×M, which we will call thecentral polarization. Moreover, as is obvious
from the definition ofP via Fv, the space of leavesV/P is naturally isomorphic toM,
seen either as the diagonal inM×M or as the zero section inTM.



Central polarized sections

We now claim that there exists a sections0 : V → [Y] which is horizontal in the
direction ofP and which coincides withε0 on its domain of definition. The easiest
way to construct this section is by pulling back all structures onM×M to TM by means
of the mapF . More precisely, we defineΩ as the closed 2-formF∗(ω,−ω) onTM and
(B,Θ) as the principalS1-bundle with connection overTM obtained by pulling back
the bundle([Y],θ). Obviously the curvature form ofΘ is Ω/h̄. As argued above,Ω is
identically zero on the fibres ofTM, i.e., on the leaves ofFv. The sectionε0 of [Y]
gets transformed to a sectionε ′0 of B aboveM seen as the zero section ofTM. Since
the fibres ofTM are simply connected and since the curvature ofΘ is identically zero
on these fibres, we can extend the sectionε ′0 to a global sectionσ : TM → B which is
horizontal when restricted to a leaf ofFv. Restricting this section toU we obtainσ0 and
then pushing it toV by means ofF we obtain our sections0 as claimed.

More explicitly, let (m1,m2) ∈ V ⊂ M ×M be arbitrary. We can define the curve
γ : [0,1]→V ⊂M×M by γ(t) = F(m, tv), with TM⊃U 3 (m,v) = F−1(m1,m2). More
or less by construction,s0(m1,m2) is the end point of the horizontal lift ofγ starting at
ε0(m). But the two componentsγ1(t) = expm(−tv) andγ2(t) = expm(tv) of the curveγ

form together the geodesic fromm1 to m2 with m as midpoint. Choosingµ ∈ π−1(m)
arbitrary, we thus can definẽγi(t) as the horizontal lift ofγi(t) in Y starting atµ. Together
they form a horizontal lift inY above the geodesic betweenm1 andm2. By definition of
the connection form on[Y], the curvẽγ(t) = [γ̃1(t), γ̃2(t)] ∈ [Y] is the horizontal lift ofγ
starting atε0(m) = [µ,µ]. It follows thats0(m1,m2) = [x,y] in whichx andy are the end
points of a horizontal curve above the geodesic (unique inV) betweenm1 andm2.

Definition 1 We will call the sections of[L] above V that are covariantly constant in the
direction ofP central polarized sections orP-constant sections.

Viewing [Y] as a subset of[L], the sections0 constructed above isP-constant.
Moreover, it is a smooth nowhere vanishing section. It follows that central polarized
sectionss : V → [L] are in 1-1 correspondence with functionsf that are constant on the
leaves ofP, i.e., with functions onM = V/P. The identification is given bys= f ·so,
or, more precisely, bys(m1,m2) = f (m12) ·s0(m1,m2), wherem12 is the midpoint of the
geodesic betweenm1 andm2.

The product of sections

We now stop the geometric quantization program and we turn our attention to the
groupoid structure on[Y]. We extend formula (1) to[L] by the following prescription.
Any p ∈ [L] can be written in a unique way asp = λ [x,y] with λ ∈ [0,∞) and [x,y] ∈
[Y]⊂ [L]. Now, for pi = λi [xi ,yi ] such thatπ(y1) = π(x2) we define

p1� p2 = λ1λ2[x1,y1]� [x2,y2] .

With this extended quasi-groupoid structure (quasi because now not every element has
an inverse), we construct a product on sections of[L]. If s1 ands2 are two sections of[L]



(not necessarily aboveV, not necessarilyP-constant), we define a new sections1 } s2

of [L] by

(s1 }s2)(m1,m3) =
∫

M
s1(m1,m2)�s2(m2,m3)dm2 .

In this formula the measuredm2 is the Liouville measure onM associated to the sym-
plectic formω. The integration makes sense because all groupoid productss1(m1,m2)�
s2(m2,m3) lie in the same fibre of[L] : the one above(m1,m3). Of course there is no
guarantee that this integral converges, but we will not deal with these delicate analytical
issues here.

A particular case

We now, for the moment, restrict our attention to the case in which the metricg has no
closed geodesics, i.e., the case in whichF is a diffeomorphism fromTM ontoM×M. In
that caseP-constant sections of[L] are globally defined sections. For twoP-constant
sectionssi = fi ·s0, i = 1,2 with fi ∈C∞

h̄ (M) we thus get the formula

(s1 }s2)(m1,m3) =
∫

M
f1(m12) f2(m23)s0(m1,m2)�s0(m2,m3)dm2 , (2)

in which mjk denotes the midpoint of the geodesic betweenmj and mk. Sinces0 is
nowhere vanishing, there must be a constantλ such thats0(m1,m2)� s0(m2,m3) =
λs0(m1,m3). In order to determine this constant we argue as follows. We choosex1, x2,
x3, andx′3 such thats0(m1,m2) = [x1,x2], s0(m2,m3) = [x2,x3], ands0(m1,m3) = [x1,x′3].
Note that we may take the samex1 andx2 beacuse of the equivalence relation defining the
points in[Y]. It follows from formula (1) thats0(m1,m2)�s0(m2,m3) equals[x1,x3]. But
we know thatx1 andx2 are the endpoints of a horizontal lift above the geodesic between
m1 andm2, and similarly for the pairsx2,x3 andx1,x′3. We thus have a geodesic triangle
m3m2m1 and a horizontal lift starting atx3 abovem3, passing throughx2 andx1 and
coming tox′3, again abovem3. It follows thatx′3 = λx3 with λ ∈ S1 the holonomy (with
respect to the principalS1-bundle[Y]) of the geodesic trianglem3m2m1. In particular
we have[x1,x3] = λ [x1,x′3]. Now if ∆(m3m2m1) is any 2-chain whose boundary is the
geodesic trianglem3m2m1, thenλ = exp(i

∫
∆(m3m2m1) ω/h̄). The result does not depend

upon the choice for∆ because the curvature formω/h̄ represents an integral cohomology
class.

We are thus led to introduce the phase functionS̃(m3,m2,m1) =
∫

∆(m3m2m1) ω repre-
senting the symplectic area of the surface∆(m3m2m1) whose boundary is the geodesic
triangle with corners atm3, m2, andm1. Actually S̃ is in general multiple valued because
there is (in dimensions higher than 2) no unique such 2-chain∆, but this indeterminacy
disappears when taking the exponential. On the other hand, in order to be sure that such
a 2-chain exists for all geodesic triangles, we further restrict our attention to spacesM
without homology in dimension 1. This excludes for instance the 2-torus, but all simply
connected hermitian symmetric spaces satisfy this condition, and thus in particular the
hermitian symmetric spaces of compact and non-compact type.



Substituting these results in formula (2) we obtain( f1 ·s0 } f2 ·s0)(m1,m3) =
g(m1,m3) ·s0(m1,m3), whereg is given by

g(m1,m3) =
∫

M
f1(m12) f2(m23)eiS̃(m3,m2,m1)/h̄dm2 . (3)

If we forget the trivializing sections0, we thus have associated to two functionsf1, f2
on M a new functiong on M×M. In general, the products1 } s2 of two P-constant
sections will not beP-constant. In terms of the functiong this means that, in general,
the functiong : M ×M → C is not constant on the leaves ofP, i.e., of the form
g(m1,m3) = ĝ(m13) for some function̂g : M →C with m13 the midpoint of the geodesic
betweenm1 andm3.

The skewed product of functions onM

In order to get a central polarized section, i.e., in order to associate to two functionsf1
and f2 onM a new functionf1? f2 onM (not onM×M), we integrate (average) formula
(3) over the leaves ofP. This is easily done in terms of the fibres ofTM and we get

( f1 ? f2)(m) =
∫

TmM
dv g(m1,m3) =

∫
TmM

dv g(F(m,v))

=
∫

TmM
dv

∫
M

dm2 f1(m12) f2(m23)eiS̃(m3,m2,m1)/h̄ , (4)

with (m1,m3) = F(m,v) andmjk the midpoint on the geodesic betweenmj andmk.
It remains to be decided what measuredv to use onTmM for our averaging procedure,

but there exists a rather canonical way to obtain one. Using thatF is a global diffeomor-
phism (we are still in that case),F∗(ω,−ω) is a symplectic form onTM, and thus we
have its Liouville volume formdµTM(m,v) on TM. On the other hand, the zero section
of TM is diffeomorphic to the symplectic manifold(M,ω), and thus on the zero section
of TM we have its Liouville volume formdµM(m). It follows that there exists a unique
volume formdvm(v)≡ dvon each fibreTmM such thatdµM(m)∧dvm(v) = dµTM(m,v).
In the sequel it will be this choice for the measure onTmM that we will use in our
averaging procedure.

Definition 2 The skewed product of two functions f1 and f2 on M is given by (4).

Definition 3 The composition of central polarized sections< s1 } s2 > corresponds
to the skewed product of functions via the identification of central polarized sections
with functions on M: if si = fi · s0, i = 1,2 are two central polarized sections, then

< s1 } s2 >
def= ( f1 ? f2) · s0 is the product central polarized section; it is an averaged

version of the product s1 }s2.

We call this product theskewed productto emphasize the distinction of its construc-
tion to some more well known noncommutative products of functions on symplectic
manifolds, thestar productdefined in the context of deformation quantization (see [1])



and thetwisted productdefined via symbol mapping homomorphism (see [22], for in-
stance), although the latter is often also called star product and these two are often con-
fused as if the same.

In order to write the skewed product in a nicer way, we look at the mapΨm :
(v,m2) 7→ (m12,m23) from TmM×M to M×M. We conjecture that this map is injective;
it certainly needs not be surjective as can be seen in the case of the hyperbolic plane.
If we denote bydm12 the Liouville measure on the first factor ofM×M and bydm23
the Liouville measure on the second factor, then there exists a positive functionAm on
Wm = Ψm(TmM×M)⊂ M×M such thatΨ∗

m(Amdm12dm23) = dvmdm2. Associated to
Wm we define the setW ⊂ M3 asW = {(m12,m23,m) ∈ M3 | (m12,m23) ∈ Wm}. We
then can interpret the family of functionsAm as a single functionA : W → [0,∞) by
A(m12,m23,m) = Am(m12,m23).

In order to better understand the amplitude functionA, we define the mapG : M3 →
W ⊂ M3 by the following sequence of maps:

(m3,m2,m1) 7→ (F−1(m1,m3),m2)≡ (m,v,m2) 7→ (Ψm(v,m2),m)≡ (m12,m23,m) .

If we interpretM3 as the description of the space of all geodesic triangles by their
three corners(m3,m2,m1), the mapG can be seen as the “coordinate change” to the
description of these triangles by the midpoints of their sides(m12,m23,m≡ m13). The
assumption that the mapsΨm are injective translates as the statement thatG is a bijection
from M3 to W. The mapG and the functionA are then related by

(G−1)∗(dm1dm2dm3) = A·dm12dm23dm13 . (5)

Still under the assumption thatG : M3 →W is bijective, we define the functionSonW
by S= S̃◦G−1. The functionScan thus be described as the symplectic area of a surface
∆ whose boundary is the geodesic triangle with given midpoints for its sides.

Theorem 1 Let M be a symmetric symplectic space without closed geodesics and denote
by A the symplectic jacobian (5) of the map G−1 : W → M3, which relates the three
vertices(m3,m2,m1) of a triangle to the three midpoints of its sides(m′,m′′,m). Let
S(m′,m′′,m) be the symplectic area of a geodesic triangle determined by its midpoints
and denote by Wm the slice W∩ (M×M×{m}). Then the skewed product of functions
on M associated to the composition of central polarized sections M×M → [L] is given
by:

( f1? f2)(m) =
∫ ∫

Wm

f1(m′) f2(m′′)eiS(m′,m′′,m)/h̄A(m′,m′′,m)dm′dm′′ . (6)

Except for the important restriction of the integration toWm instead ofM×M, this is
the kind of product as conjectured in [23].

The general case

We have derived formula (6) under the assumption thatF is a global diffeomorphism
from TM to M×M. If this is not the case, we were led to introduce the subsetsU ⊂ TM



andV = F(U) ⊂ M×M, and the sectionso defined only aboveV. It follows that the
integration procedure which led us to formula (3) can only be performed for those values
of m2 such that(m1,m2) and(m2,m3) both lie inV.

The next step of averaging over the leaves ofP should also be done with care. These
leaves are only defined inV (elsewhereP is not defined), which means in terms ofTM
that we have to integrate, not over the whole tangent spaceTmM, but only over the part
in U , i.e., overTmM∩U . On the other hand, the argument which led to the measuredv
remains valid: the pull-back byF of the Liouville measure onV toU gives us a measure
onU . The zero section still carries its natural Liouville measure, and thus there exists a
natural measuredvm on TmM∩U such that it completes the natural Liouville measure
on the zero section to the pull back of the Liouville measure onV. We conclude that in
the general case, formula (4) can still present an integral product of functions, provided
we restrict integration to the appropriate subset ofTmM×M.

In the general case, the mapΨm need not be injective, not even on the relevant subset
(TmM ∩U)×M as described above, as can be seen in the example of the 2-sphere.
However, inspired by the example of the 2-sphere, we conjecture that there still exists
a positive functionAm on Wm = Ψm((TmM ∩U)×M) such thatΨ∗

m(Amdm12dm23) =
dvmdm2. We also conjecture thatΨm is injective outside a closed subset of measure zero
in (TmM∩U)×M (see further in [17] proposition 6.1). This means that we can copy the
arguments leading to formula (6), and that this formula is also valid in the general case,
but with the new subsetWm.

Example I: The Euclidean plane R2

Let M = R2 be the Euclidean plane with the symplectic formω = dp∧dq= d(pdq).
The (unique) prequantization is the bundleY = M ×S1 with connection form ¯hθ =
pdq+ dϕ. The mapF , a global diffeomorphism, is given asF(p,q;vp,vq) = (p−
vp,q− vq; p+ vp,q+ vq). A horizontal lift of the curve(p+ tvp,q+ tvq) is given by
(q+ tvq, p+ tvp,exp( i

h̄(pt+ 1
2t2vp)vq)). A simple calculation yieldsso(p1,q1; p2,q2) =

[(p1,q1;1),(p2,q2;exp( i
2h̄(p1+ p2)(q2−q1))] , where we used the equivalence relation

on [ , ] to put the first phase equal to 1. From this and formula (1) the phase factorλ in
so(m1,m2)�so(m2,m3) = λso(m1,m3) is given by

λ = exp( i
2h̄{(p1 + p2)(q1−q2)+(p2 + p3)(q2−q3)+(p3 + p1)(q3−q1)}) .

A trivial calculation shows that this is indeed exp(iS̃(p3,q3; p2,q2; p1,q1)/h̄) with
S̃ the symplectic area (oriented with respect to the volume formdp∧ dq) of the tri-
angle with corners at(p3,q3), (p2,q2), and (p1,q1). In this example, the change of
coordinates(v,m2) 7→ (m12,m23) is a linear bijection with Jacobian14, which implies
that the amplitude functionA = 1

4 is constant. Moreover, in the Euclidean plane, the
areaS̃(p3,q3; p2,q2; p1,q1) is four times the area of the triangle determined by its mid-
points, i.e.,S(p,q; p12,q12; p23,q23) = 4S̃(p,q; p12,q12; p23,q23). In this way we obtain
the usual formula of Von Neumann and Groenewold that defines the Moyal-Weyl quan-
tization of the Euclidean plane (see [6]).



Example 2: The hyperbolic plane H2

Our next example is the hyperbolic planeH2 which we interpret as one sheet of
the 2-sheeted hyperboloid inR3 determined by the equationsz2 − x2 − y2 = 1 and
z> 0. We introduce the Lorentzian metric〈 | 〉L by the formula〈(x,y,z)|(x′,y′,z′)〉L =
zz′−xx′−yy′.

This metric induces a surface element, which we take as symplectic form. An ele-
mentary but tedious calculation shows that the oriented hyperbolic area of a triangle
determined by its three cornersa,b,c∈ H2 ⊂ R3 is given by the formula

S̃(a,b,c) = 2Arg
(

1+ 〈a|b〉L + 〈b|c〉L + 〈c|a〉L + iDet(abc)
)

,

where Arg denotes the argument of a complex number; it lies in the interval(−π,π).
This formula is derived in [9] and [20] in the context of relativistic addition of velocities.

The next steps are to express the area of a hyperbolic triangle as a function of its
midpoints and to determine the change of coordinates(v,m2) 7→ (m12,m23). A straight-
forward calculation shows that ifa,b,c∈H2 ⊂R3 are the corners of a hyperbolic trian-
gle, and ifα,β ,γ ∈H2⊂R3 denote the midpoints of the three sides, then the area of the
triangle is given by the simple formula (see [17] or [19] for two independent derivations)

S(α,β ,γ) = 2Arg
(√

1−Det(αβγ)2 + iDet(αβγ)
)

= 2arcsin(Det(αβγ)) . (7)

The same analysis shows that the map(a,b,c) 7→ (α,β ,γ) is injective onto the triples
(α,β ,γ) satisfying Det(αβγ)2 < 1, justifying the formula forS. It follows immediately
that the subsetsWα are given as

Wα = {(β ,γ) ∈ H2×H2 | Det(αβγ)2 < 1} . (8)

A lengthier straightforward computation shows that the amplitude function is given by

A(α,β ,γ) = 16〈α|β 〉L · 〈β |γ〉L · 〈γ|α〉L ·
(

1−Det(αβγ)2
)−5/2

. (9)

The fact that this amplitude function diverges on the boundary ofWα shows that we
correctly restricted integration to this subset and that it is optimal.

Corollary 1 The skewed product of two functions on the hyperbolic planeH2 at a point
α ∈ H2 is given by integration over apropersubset Wα ⊂ H2×H2 determined by (8).

Example 3: The sphere S2

In the last example we consider the compact hermitian symmetric spaceS2 seen as
the unit sphere inR3, i.e., determined by the equationz2 + x2 + y2 = 1. We equipR3

with the Euclidean metric〈 | 〉E given by〈(x,y,z)|(x′,y′,z′)〉E = zz′+xx′+yy′.



As for the hyperbolic plane, we take the induced surface element as symplectic form.
And again, an elementary but tedious calculation shows that the oriented spherical area
of a triangle determined by its three cornersa,b,c∈ S2 ⊂ R3 is given by the formula

S̃(a,b,c) = 2Arg
(

1+ 〈a|b〉E + 〈b|c〉E + 〈c|a〉E + iDet(abc)
)

, (10)

i.e., by exactly the same formula as in the hyperbolic case, except that we use the
Euclidean metric instead of the Lorentzian one. However, this formula needs more
explanation than its hyperbolic counter part, because onS2 there are several triangles
with the same three corners. The area given by formula (10) is the area of the triangle
whose three corners area, b, andc and whose three sides all have length less thanπ.

Elementary geometry shows that the subsetU ⊂ TS2 is given by those tangent vectors
that have length less thanπ/2. In fact, if v ∈ TmS2 has lengthπ/2, the two points
expm(−v) and expm(v) are antipodal, and thus there is a circle of pairs(m,v) having
these antipodal points as image underF . It follows that the imageV = F(U) is the set
of pairs (m1,m2) such thatm1 6= −m2. And indeed for any two non-antipodal points
there is a unique geodesic with length less thanπ joining them. The integration over
m2 in formula (3) has to be done over all thosem2 such that the two pairs(m1,m2) and
(m2,m3) belong toV. Since in the definition ofV we only exclude antipodal points,
this means that we have to leave out a set of measure zero in the integration overm2.
In other words, we can maintain formula (3) as it stands. The factor eiS̃(m3,m2,m1)/h̄ in
the integration overm2 in (3) is defined except on a set of measure zero (whenm2 is
antipodal to eitherm1 or m3).

The integration overv∈ TmM should not be done over the whole ofTmM but only over
TmM ∩U , i.e., over tangent vectors of length less thanπ/2. This corresponds exactly
to integrating over the leaves ofP because two (pairs of) points inV ⊂ S2×S2 lie
on the same leaf ofP if and only if they have the same midpoint on the geodesic
segment joining them. Since we avoid antipodal pairs, there exists a unique geodesic
segment of length less thanπ joining (m1,m2), on which the midpoint is given by
the normalized average(m1 + m2) · (〈m1 + m2|m1 + m2〉E)−1/2 ∈ S2. Thus, the space
of leaves is characterized byS2, which is the space of midpoints, and the distance
of such a midpoint to one of its endpoints is less thanπ/2, justifying the restriction
to integrate only over tangent vectors of length less thanπ/2. It means that we only
consider triangles whose sides are all shorter thanπ.

It remains to express the phase functionS̃ in terms of midpoints and to compute the
amplitude functionA. Contrary to the hyperbolic case, there always exists a geodesic
triangle with given midpointsα,β ,γ ∈ S2. More precisely, ifa,b,c ∈ S2 ⊂ R3 are the
corners of a spherical triangle, and ifα,β ,γ ∈S2⊂R3 denote the midpoints of the three
sides, then the oriented areaSof the triangle is given as (see [17], [19])

S(α,β ,γ) = 2Arg
(

η

√
1−Det(αβγ)2 + iDet(αβγ)

)
, (11)

whereη is a sign: the same as the majority of signs among the three scalar products
〈α|β 〉E , 〈β |γ〉E , and〈γ|α〉E (provided they are all non zero). We see that it is (up to the
factorη) the same formula as in the hyperbolic case. Unlike the hyperbolic case, we do



not have a restriction on the midpoints, a fact which is corroborated by the fact that for
points on the unit sphere, the determinant Det(αβγ)2 is always less than or equal to 1.

However, the calculations leading to the formula forS show that, if all three sides
of a triangle have length less thanπ, then all three scalar products〈α|β 〉E , 〈β |γ〉E , and
〈γ|α〉E have the same sign, where the sign should be interpreted as a function onR
defined as being+1 for positive values,−1 for negative values, and 0 for zero. Thus,
the setWα is

Wα = {(β ,γ) ∈ S2×S2 | sign〈β |γ〉E = sign〈α|β 〉E = sign〈α|γ〉E } . (12)

Moreover, the calculations also show that if all three inner products are zero, then there is
an infinity of triangles having the given points as midpoints (roughly a set parametrized
by a point onS2). But this set has measure zero inWα and hence can be neglected in the
integration. Note that even though the triangle itself is not uniquely determined by its
midpoints, its area is (see also [17] proposition 6.1).

SinceWα is only a quarter ofS2×S2 (with respect to the natural measure), we must
treat the restriction of the integration toWα in formula (6) seriously. If the three inner
products do not all have the same sign, there still exists a triangleabc(unique if no inner
product is zero) but at least one of its sides will be longer than or equal toπ (conditions
similar to (12) appear in the other cases). Computing the amplitude function, we find

A(α,β ,γ) = 16
∣∣∣〈α|β 〉E · 〈β |γ〉E · 〈γ|α〉E

∣∣∣ ·(1−Det(αβγ)2
)−5/2

. (13)

Summary and comparisons

Formula (6) defines a product of functions on a symplectic manifold, whose form
was conjectured in [23], in the spirit of the central (Weyl) representation of quantum
observables [13] and strict deformation quantization [14]. We have derived this skewed
product for simply connected symplectic spaces which admit a complete affine connec-
tion for which geodesic inversion is a symplectomorphism, using only basic ideas from
geometric quantization and groupoids. The main ingredients of our construction are the
prequantization of the pair groupoid, the central polarization, the product of sections
using the groupoid structure and finally the averaging procedure.

Further investigations on the properties of this product is work in progress (see
also [15]), but we remark that stationary phase evaluation of the skewed product of
two oscillatory functions brings in the composition of central generating functions of
canonical relations, as defined in [17] (see also [10], as well as [18] for an independent
partial proof of Theorem 6.1 in [17]). Also remark that, onR2n, this connection between
the skewed product of oscillatory functions and the composition of central generating
functions is a very important feature of semiclassical analysis [13].

We end this section by briefly comparing this work with a few others in the literature.
The well known formal deformation quantization [1], as developed by Fedosov [5]

among others (in particular Moreno & Ortega-Navarro [11]), differs from our approach
from the start by considering, not generic ¯h-dependent functions onM, but the ring of
polinomials in h̄ with coefficients inC∞(M). Important questions of whether or how



such formal products converge are already second to whether or how some important
functions (e.g. oscillatory) can be appropriately treated in this context (see [16], [12]).

In the approach to quantization by means of pseudodifferential operators and symbol
mapping, also not as general in scope (eitherp-localized symbols, or finite dimension
functional spaces), the work of Unterberger & Unterberger [21], forH2, and the work of
Varilly & Gracia-Bondia [22], forS2, are close to the object of this paper and constitute
excellent treatments of these fundamental examples in a context of Weyl quantization.

For the integral product defined by Karasev [7] based on Berezin’s quantization [2],
the functions to be multiplied stand in bijection to (anti)holomorphic functions on a
Kahler manifoldM. In his more recent collaboration with Osborn [8], an approach closer
to this paper was developed for functions on cotangent bundles: the product obtained for
functions onT∗H2 is defined on a subset ofT∗H2×T∗H2 that is the natural extension
of (8).

Finally, the work of Bieliavsky on solvable symmetric symplectic spaces [4] is also
close to the object of this paper, in these more specific cases (solvable), and defines an
integral product (with asymmetric kernel) which is very close to the skewed product. A
comparison between the two approaches shall be reported elsewhere.
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