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Abstract. A nonholonomic system, for short “NH,’’ consists of a configuration space Qn, a
Lagrangian L(q, q̇, t), a nonintegrable constraint distribution H ⊂ T Q, with dynamics gov-
erned by Lagrange–d’Alembert’s principle. We present here two studies, both using adapted
moving frames. In the first we explore the affine connection viewpoint. For natural Lagrangians
L = T −V , where we take V = 0 for simplicity, NH-trajectories are geodesics of a (nonmetric)
connection∇NH which mimics Levi-Civita’s. Local geometric invariants are obtained by Car-
tan’s method of equivalence. As an example, we analyze Engel’s (2–4) distribution. This is the
first such study for a distribution that is not strongly nonholonomic. In the second part we study
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G-Chaplygin systems; for those, the constraints are given by a connection φ : T Q→ Lie(G)

on a principal bundle G ↪→ Q → S = Q/G and the Lagrangian L is G-equivariant. These
systems compress to an almost Hamiltonian system (T ∗S, Hφ, �NH ), �NH = �can+(J.K),
with d(J.K) �= 0 in general; the momentum map J : T ∗Q→ Lie(G) and the curvature form
K : T Q→ Lie(G)∗ are matched via the Legendre transform. Under an s ∈ S dependent time
reparametrization, a number of compressed systems become Hamiltonian, i.e., �NH is some-
times conformally symplectic.Anecessary condition is the existence of an invariant volume for
the original system. Its density produces a candidate for conformal factor. Assuming an invari-
ant volume, we describe the obstruction to Hamiltonization. An example of a Hamiltonizable
system is the “rubber’’Chaplygin’s sphere, which extends Veselova’s system in T ∗SO(3). This
is a ball with unequal inertia coefficients rolling without slipping on the plane, with vertical
rotations forbidden. Finally, we discuss reduction of internal symmetries. Chaplygin’s “mar-
ble,’’ where vertical rotations are allowed, is not Hamiltonizable at the compressed T ∗SO(3)

level. We conjecture that it is also not Hamiltonizable when reduced to T ∗S2.

“Nonholonomic mechanical systems (such as systems with rolling contraints)
provide a very interesting class of systems where the reduction procedure has to
be modified. In fact this provides a class of systems that give rise to an almost
Poisson structure, i.e., a bracket which does not necessarily satisfy the Jacobi identity’’
(Marsden and Weinstein [2001]).

1 Introduction and outline

Cartan’s moving frames method is a standard tool in Riemannian geometry.1 In an-
alytical mechanics, the method goes back to Poincaré [1901], perhaps earlier, to
Euler’s rigid body equations, perhaps much earlier, to the cave person who invented
the wheel. Let q ∈ R

n be local coordinates on a configuration space Qn, and consider
a local frame, defined by an n× n invertible matrix B(q),

Xj = ∂

∂πj

=
n∑

i=1

bij

∂

∂qi

,
∑

π̇jXj =
∑

q̇i

∂

∂qi

, π̇ = A(q)q̇, A = B−1.

(1.1)
In mechanical engineering (Hamel [1949], Papastavridis [2002]), moving frames are
disguised under the keyword quasi-coordinates, nonexisting entities π such that

∂f

∂πj

=
∑

i

∂f

∂qi

∂qi

∂πj

=
∑

i

∂f

∂qi

bij = Xj(f ).

Let {εi}i=1,...,n be the dual coframe to {Xj }, εi = “dπi’’=∑j aij dqj .

1 Cartan [1926]; there is a recent English translation from the Russian translation (Cartan
[2001]). One of the most important applications was the construction of characteristic classes
by Alan’s advisor, S. S. Chern. Our taste for moving frames in mechanics is a small tribute
to his influence.
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1.1 Moving frames: Lagrangian and Hamiltonian mechanics

The Euler–Lagrange 1-form may be rewritten as:2

n∑
r=1

(
d

dt

∂L

∂q̇r

− ∂L

∂qr

− Fr

)
dqr

=
n∑

k=1

⎛
⎝ d

dt

∂L∗

∂π̇k

− ∂L∗

∂πk

+
n∑

i=1

∂L∗

∂π̇i

n∑
j=1

γ i
kj π̇j − Rk

⎞
⎠ εk = 0, (1.2)

where L∗(q, π̇, t) = L(q, B(q)π̇, t) is the Lagrangian written in “quasi-coordi-
nates’’ and Rk =∑s Fsbsk are the covariant components of the total force (external,
Fext, and constraint force λ). The so-called Hamel transpositional symbols γ i

kj =
γ i
jk =

∑n
s,	=1 bskb	j (∂ais/∂q	− ∂ai	/∂qs) are precisely the moving frame structure

coefficients (Koiller [1992]).
If the velocities are restricted to a subbundle H ⊂ T Q, a constraint force λ

appears. The d’Alembert–Lagrange principle3 implies that λ belongs to the anihilator
Ho ⊂ T ∗Q of H, hence exerting zero work on admissible motions q̇ ∈ H:

[L] := d

dt

∂L

∂q̇
− ∂L

∂q
− Fext = λ ∈ Ho, q̇ ∈ H. (1.3)

Using moving frames, constraints can be eliminated directly. If Ho is spanned by
the last r forms εJ , s + 1 ≤ J ≤ n (s = n− r), then equations of motion result from
setting the first s Euler–Lagrange differentials equal to zero:

d

dt

∂L∗

∂π̇k

− ∂L∗

∂πk

+
n∑

i=1

∂L∗

∂π̇i

n∑
j=1

γ i
kj π̇j − F ext

k = 0 (1 ≤ k ≤ s). (1.4)

Strikingly, the Hamiltonian counterparts of (1.2) and (1.4) are simpler, although
less known.4 The philosophy is to fight against Darboux’s dictatorship. In terms of the
local coframe {εi}1≤i≤n, any element pq ∈ T ∗Q can be written as pq =∑miεi(q).
The natural 1-form α on T ∗Q keeps the familiar confusing expression α := pdq =
mε. Consequently, the canonical symplectic form � := dα may be written as

� := dp ∧ dq = dm ∧ ε +mdε. (1.5)

The second term mdε, which deviates from Darboux’s format, is not a nuisance; it
carries most valuable information. For instance, Kostant–Arnold–Kirillov–Souriau’s
bracket in T ∗G, G a Lie group, can be immediately visualized: take a (left- or right-)

2 Atributed to Hamel, but certainly known by Poincaré. Quasi-coordinates can be found in
Whittaker [1937] and were first used in mechanics by Gibbs; see Pars [1965].

3 According to Sommerfeld [1952], this gives the most natural foundation for mechanics.
4 A “moving frames operational system’’ for Hamiltonian mechanics in T ∗Q was given in

Koiller, Rios, and Ehlers [2002].
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invariant coframe and apply H. Cartan’s “magic formula’’ on dε. So moving frames
are ideally suited when a Lie symmetry group G is present.5

Example: Mechanics in SO(3)

To fix notation, we now review the standard example. The Lie algebra basis Xi ∈
sO(3) = TISO(3), i = 1, 2, 3 (infinitesimal rotations around the x, y, z-axis at the
identity) can either be right or left transported, producing moving frames on SO(3)

denoted {Xr
i } and {X	

i }, respectively. Let {ρi}1≤i≤3 and {λi}1≤i≤3 denote their dual
coframes (right- and left-invariant forms in SO(3)). To represent angular momenta,
we use Arnold’s notations (Arnold [1989]): capital letters mean objects in the body
frame, lowercase objects in the space frame. Thus for instance, 	 = RL, where L is
the angular momentum in the body frame and 	 is the angular momentum in space;
likewise ω = R� relate the angular velocities. The canonical 1-form in T ∗SO(3) is
given by

α = 	1ρ1 + 	2ρ2 + 	3ρ3 = L1λ1 + L2λ2 + L3λ3,

so

�can =
∑

d	iρi + 	1dρ1 + 	2dρ2 + 	3dρ3

=
∑

dLiλi + L1dλ1 + L2dλ2 + L3dλ3,

where by Cartan’s structure equations, dλ1 = −λ2 ∧ λ3, . . . and dρ1 = ρ2 ∧ ρ3, . . .

(cyclic). A left-invariant metric is given by an inertia operator L = A�. Euler’s rigid
body equations follow immediately.

Poisson action of S1 on SO(3)

Consider the left S1 action on SO(3) given by exp(iφ) ·R := S(φ)R, where S(φ) is
the rotation matrix about the z-axis:

S(φ) :=
⎛
⎝ cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0
0 0 1

⎞
⎠ , S(−φ)S′(φ) =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ = X3.

Two matrices are in the same equivalence class iff their third rows, which we denote by
γ , called the Poisson vector, are the same: R1 ∼ R2 ⇐⇒ R−1

1 k̂ = R−1
2 k̂ = γ ∈ S2.

So we have a principal bundle π : SO(3) → S2, γ = π(R) = R−1k̂ = R†k̂. The
derivative of π is

γ̇ = π∗(Ṙ) = −(R−1ṘR−1)k = −(R−1Ṙ)(R−1)k = −[�]γ = −�× γ = γ ×�,

(1.6)

5 As we learned from Alan at the banquet, the etymology for symplectic is “capable to join,’’
themes and people. The latter is one of the most important aspects of the symplectic “creed.’’
Provocation: taking moving frames, adapted to some other mathematical structure for Q,
would the non-Darboux term provide a local symplectic invariant?
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where we used the customary identification6 [�] ∈ sO(3) ↔ � ∈ R
3, Arnold

[1989]. The lifted action to T ∗SO(3) has momentum map J = 	3.

Connection on S1 ↪→ SO(3)→ S2

Take the usual bi-invariant metric 〈〈 , 〉〉 on SO(3) so that both {X	
i } and {Xr

i } are
orthonormal moving frames. The tangent vectors to the fibers are (d/dφ)S(φ) ·R =
X

right
3 . Consider the mechanical connection associated to 〈〈 , 〉〉, namely, that horizon-

tal and vertical spaces are orthogonal. The horizontal spaces are generated by X
right
1

and X
right
2 . The connection form is φ = ρ3. The horizontal lift of γ̇ to R is the tangent

vector Ṙ such that
�hor = R−1Ṙ = [γ̇ × γ ]. (1.7)

Note that �hor is the −90 degrees rotation of γ̇ inside Tγ S2. The curvature of this
connection κ = dρ3 is the area form of the sphere.

Reduction of S1 symmetry

It is convenient for reduction to use (a, 	3), a ∈ R
3, a ⊥ γ ,

L := a × γ + 	3γ, (1.8)

where a is a vector perpendicular to γ . The vector a has an intrinsic meaning: Con-
sider a moving frame e1, e2 in S2, with dual coframe θ1, θ2. Then vγ = v1e1 + v2e2
parametrizes T S2, and pγ = a · dγ = p1θ1 + p2θ2 parametrizes T ∗S2, a =
p1e1 + p2e2. Here a · dγ ,

∑
γidγi = 0 denotes both an element of T ∗S2 and the

canonical 1-form. Our parametrization for SO(3) is R(φ, γ ) = S(φ) ·R(γ ), R(γ ) =
rows(e1, e2, γ ). Then L = p2e1 − p1e2 + 	3γ corresponds to 	 = (p2,−p1, 	3)

along the section φ = 0. The right-invariant forms are compactly represented as

ρ3 = dφ − (de1, e2), ρ1 + iρ2 = −i exp(iφ)(θ1 + iθ2). (1.9)

Lifting v ∈ T S2 to an horizontal vector in T SO(3) is simple:

�hor = [(v1e1+v2e2)×γ ] = [v2e1−v1e2] or hor(v) = v2X
r
1−v1X

r
2. (1.10)

Hence any vector Ṙ ∈ T SO(3) can be written as Ṙ = ω1X
	
1 + ω2X

	
2 + ω3X

	
3

with ω1 = v2, ω2 = −v1. Any covector pR ∈ T ∗SO(3) can be written as pR =
p1π

∗(θ1)+ p2π
∗(θ2)+ 	3ρ3.

The reduced symplectic manifold J−1(	3)/S
1 ≡ T ∗S2 can be explicitly con-

structed, taking the section φ = 0. Let i : T ∗S2 → T ∗SO(3),

i(γ, p1, p2) = (R(γ ), 	), 	 = (p2,−p1, 	3). (1.11)

6 We will drop the [•] and • in what follows and mix all notation, hoping no confusion will
arise. Equation (1.6) is one half of every system of ODEs for S1-equivariant mechanics in
SO(3). Of course, we also obtain γ̇ = −� × γ by differentiating Rγ = k (we could use
the notation γ = K , but we won’t).
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Then from (1.9) we get i∗ρ2 = −θ1, i∗ρ1 = θ2, and i∗d = di∗ yields

i∗dρ1 = dθ2, i∗dρ2 = −dθ1, i∗dρ3 = i∗ρ1 ∧ i∗ρ2 = −θ2θ1 = θ1θ2.

We get immediately

�red
T ∗S2 = i∗(�T ∗SO(3)) = d(p1θ1 + p2θ2)+ 	3area = �can

T ∗S2 + 	3areaS2 . (1.12)

All references to the moving frame disappear, but the expression �can
T ∗S2 = d(p1θ1 +

p2θ2) suggests that whenever a natural mechanical system in T ∗SO(3) reduces to
T ∗S2 ≡ T S2, there is a preferred choice for the moving frame {e1, e2}γ : namely, that
which diagonalizes the Legendre transform Tγ S2 → T ∗γ S2 ≡ Tγ S2 of the reduced
(Routh) Lagrangian.

1.2 Nonholonomic systems

A NH system (Q, L, H) consists of a configuration space Qn, a Lagrangian L :
T Q × R → R, and a totally nonholonomic constraint distribution H ⊂ T Q. The
dynamics are governed by Lagrange–d’Alembert’s principle.7 Usually L is natural,
L = T − V , where T is the kinetic energy associated to a Riemannian metric 〈 , 〉,
and V = V (q) is a potential. By totally nonholonomic, we mean that the filtration
H ⊂ H1 ⊂ H2 ⊂ · · · ends in T Q. Each subbundle Hi+1 is obtained from the
previous one by adding to Hi combinations of all possible Lie brackets of vector
fields in Hi . To avoid interesting complications we assume that all have constant
rank. Equivalently, let Ho ⊂ T ∗Q the codistribution of “admissible constraints’’
annihilating H; dually, one has a decreasing filtration of derived ideals ending in zero.

Internal symmetries of NH systems: Noether’s theorem

An internal symmetry occurs whenever a vector field ξQ ∈ H preserves the La-
grangian. For natural systems ξQ is a Killing vector field for the metric. Noether’s
theorem from unconstrained mechanics remains true. The argument (see Arnold,
Kozlov, and Neishtadt [1988]) goes as follows: denote by φξ (s) the one-parameter
group generated by ξ and let φ(s, t) = φξ (s) · q(t), so φ′ = d

ds
φ = ξQ(φ), where

q(t) is chosen as a trajectory of the nonholonomic system. Differentiating with re-
spect to s the identitly L(φ(s, t), d

dt
φ(s, t)) = const after a standard integration by

parts we get d
dt

( ∂L
∂q̇

φ′) = [L]φ′. This vanishes precisely when φ′ = ξQ ∈ H, so

Iξ := ∂L
∂q̇
· ξ = const.

7 “Vakonomic’’ mechanics uses the same ingredients, but the dynamics are governed by the
variational principle with constraints, and produce different equations; see, e.g., Cortés, de
Léon, de Diego, and Martínez [2003]. The equations coincide if and only if the distribution
is integrable. In spite of many similarities, there are striking differences between NH and
holonomic systems. For instance, NH systems do not have (in general) a smooth invariant
measure. Necessary and sufficient conditions for the existence of the invariant measure were
first given (explicitly in coordinates) by Blackall [1941].
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External symmetries: G-Chaplygin systems

External (or transversal) symmetries occur when group G acts on Q, preserving the
Lagrangian and the distribution H, meaning that g∗Hq = Hgq . In the most favorable
case one has a principal bundle action Gr ↪→ Qn→ Sm, m+ r = n, where H forms
the horizontal spaces of a connection with 1-form φ : T Q→ Lie(G). These systems
are called G-Chaplygin.8

Terminology

Since Bates and Śniatycki [1993], and Bloch, Krishnaprasad, Marsden, and Murray
[1996], several authors have called attention to these two types of symmetries. Re-
duction of internal symmetries was already described in Śniatycki [1998]. To stress
the difference, reduction of external symmetries is called compression here. The word
reduction will be used for internal symmetries.

LR systems

Veselov and Veselova [1986], Veselov and Veselova [1988] considered Lie groups
Q = G with left-invariant metrics, with constraint distributions given by right trans-
lation of D ⊂ Lie(G), i.e., the constraints are given by right-invariant forms. For a
LR-Chaplygin system, in addition there is a decomposition Lie(G) = Lie(H) ⊕ D,
where H is a Lie subgroup such that Adh−1D = h−1Dh = D. Therefore,
H ↪→ G → S = G/H is a H -Chaplygin system; the base S is the homogeneous
space of cosets Hg. Fedorov and Jovanovic [2003] considered the case where G is
compact and Lie(H) is orthogonal to D with respect to the bi-invariant metric.9

Compression of G-Chaplygin systems

From symmetry, it is clear that the Lagrange–d’Alembert equations compress to the
base T S.10 In covariant form, the dynamics take the form [Lφ] = F(s, ṡ), where
Lφ(s, ṡ) = L(s, h(ṡ)) is the compressed Lagrangian in T S; h(ṡ) is the horizontal

8 A“historical’’remark (by JK). Chaplygin considered the abelian case. During a post-doctoral
year in Berkeley, way back in 1982, I became interested in NH systems with symmetries.
Alan directed me to two wonderful books: Hertz [1899] Foundation of Mechanics and
Neimark and Fufaev [1972]. In the latter I learned about (abelian) Chaplygin systems,
presented in coordinates. I said to Alan that I would like to examine nonabelian group
symmetries, and Alan immediately made a diagram on his blackboard, and told me: “well,
then, the constraints are given by a connection on a principal bundle.’’ This was the starting
point of Koiller [1992].

9 These conditions are not met in the marble and rubber Chaplygin spheres (see Section 3.2);
however, Veselov’s result (Theorem 3.3 below) on invariant volume forms still holds.

10 The full dynamics can be reconstructed from the compressed solutions, horizontal lifting
the trajectories via φ, since the admissible paths are horizontal relative to the connection.
This last step is not “just’’ a quadrature; in the nonabelian case, a path-ordered integral is
in order. For G = SO(3), Levi [1996] found an interesting geometric construction.
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lift to any local section and F is a pseudogyroscopic force.11 In order to write F

explicitly, take group quasi-coordinates (s, ṡ, g, π̇). Write q = gσ(s), with g ∈ G

and a local section σ(s) of Q→ S. Fix a basis Xk for the Lie algebra, [XK, XL] =∑
cJ
KLXJ , X(π̇) = ∑

π̇IXI . Any tangent vector q̇ ∈ Tσ(s)Q can be written as
q̇ = dσ(s)·ṡ+X((̇π))·σ(s). Horizontal vectors are represented by π̇ = b(s)·ṡ, where
b(s) is an r×m matrix. The connection 1-form may be written as φ(q̇) = π̇−b(s) · ṡ.
Then

[Lφ] = F(s, ṡ), F =
r∑

K=1

(
∂L

∂π̇k

)∗ m∑
j=1

⎛
⎝bKi

∂qj

− bKj

∂qi

+
r∑

U,V=1

bUibVj c
K
UV

⎞
⎠ ṡj .

(1.13)

1.3 Main results

Using the moving frames method we present results on two aspects of nonholonomic
systems.

• Cartan’s equivalence, using Cartan’s geometric description of NH systems via
affine connections (Cartan [1928]). The objective is to find all local invariants.

• Chaplygin systems: compression of external symmetries, reduction of internal
symmetries. The objective is to generalize Chaplygin’s “reducing factor’’ method
(Chaplygin [1911]), namely, verify if Hamiltonization is possible (via conformally
symplectic structures).

Results on Cartan’s equivalence

In Section 2 we analyze NH systems under the affine connection perspective. We
pursue the (local) classification program proposed by Cartan [1928] using his equiv-
alence method. See Koiller, Rodrigues, and Pitanga [2001] and Tavares [2002] for a
rewrite of Cartan’s paper in modern language. Cartan’s method of equivalence is a
powerful method for uncovering and interpreting all differential invariants and sym-
metries in a given geometric structure. In Ehlers [2002] NH systems in a 3-manifold
with a contact distribution were classified. Here we go one step further, looking at En-
gel’s distribution in 4-manifolds (see definition below). Our results are summarized in
Theorem 2.3. The “role model’’ here is the rolling penny example (no pun intended).
This is the first such study for a distribution that is not strongly nonholonomic. Next
in line is studying the famous Cartan 2–3–5 distribution.

Results on G-Chaplygin systems

Instead of using (1.13) in TS, we may describe the compressed system in T ∗S as an

11 This nonholonomic force represents, philosophically, a concealed force in the sense of Hertz
[1899], having a geometric origin. This force vanishes in some special cases, not necessarily
requiring the constraints to be holonomic. Equivalently, the dynamics in T S is the geodesic
spray of a modified affine connection. One adds to the induced Levi-Civita connection in
T S a certain tensor B(X, Y ). This NH connection in general is nonmetric (Koiller [1992]).
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almost Hamiltonian system12

iX�NH = dH, H = Hφ : T ∗S → R, �NH = �T ∗S
can + (J.K), (1.14)

where Hφ is the Legendre transform of the compressed Lagrangian. (J.K) is a semiba-
sic 2-form on T ∗S which in general is not closed. As one may guess, J is the mo-
mentum map, and K is the curvature of the connection. Ambiguities cancel, since J

is Ad∗-equivariant while K is Ad-equivariant. The construction is independent of the
point q on the fiber over s.

Under an s ∈ S dependent time reparametrization, dτ = f (s)dt , several interest-
ing compressed G-Chaplygin systems become Hamiltonian. A necessary condition is
the existence of an invariant volume (Theorem 3.3) whose density F produces a can-
didate f = F 1/(m−1), m = dim(S) for a conformal factor. Chaplygin’s “rubber’’ ball
(vertical rotations forbidden) is, as far we know, a new example, and generalizes the
well-known Veselova system in SO(3) (Proposition 3.6). We describe the obstruction
to Hamiltonization as the 2-form iXd(f �NH ) (Theorem 3.4) and we discuss further
reduction by internal symmetries. An example of the latter situation is Chaplygin’s
“marble’’ (a hard ball with unequal inertia coefficients rolling without slipping on
the plane). It is non-Hamiltonizable in T ∗SO(3), and our calculations suggest that
it is also non-Hamiltonizable when reduced to T ∗S2 (Theorem 3.8). Compare with
Borisov and Mamaev [2001].

What does Hamiltonization accomplish?

Why do we focus so much on the question of Hamiltonizability? The example of the
reduced equations for Chaplygin’s skate (after a two-dimensional Euclidean sym-
metry is removed) shows that changing time scale in a nonholonomic systems can
completely change its character. In this example (see, e.g., Koiller [1992]) the fully
reduced equations of motion are not Hamiltonian because every solution is asymp-
totic in forward and backward time to a point which depends on which solution you
choose. However, after rescaling time the fully reduced equations become Hamil-
tonian, namely, the harmonic oscillator. However, this Hamiltonian vector field is
incomplete because along one of the coordinate axes, the time rescaling is not de-
fined.13 In light of this example, why is time rescaling interesting? The answer is
that it is interesting mostly in the context of integrability, where no singularities are
removed in the phase space. See Section 3.

2 Nonholonomic geometry: Cartan equivalence

A Cartan nonholonomic structure is a triple (Q, G = 〈·, ·〉, H), where Q is an n-
dimensional manifold endowed with a Riemannian metric G and a rank r totally
12 For details, see Koiller, Rios, and Ehlers [2002], Koiller and Rios [2001]. The Hamiltonian

compression for Chaplygin systems was first explored, in the abelian case, by Stanchenko
[1985]. The nonclosed term was described as a semibasic 2-form, depending linearly on the
fiber coordinate in T ∗S, but its geometric content was not indicated there.

13 We thank one of the referees for this observation.
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nonholonomic distribution H. Our motivation for studying such a structure is a
free particle moving in Q, nonholonomically constrained to H, with kinetic energy
T = 1

2 〈·, ·〉. The nonholonomic geodesic equations are obtained by computing accel-
erations using the Levi-Civita connection associated with G and orthogonally project-
ing the result onto H. The projected connection is called a nonholonomic connection
(Lewis [1998]), and was introduced by Cartan [1928]. A distribution H is strongly
nonholonomic if any basis of vector fields spanning H on U ⊂ Q, together with
their Lie brackets, span the entire tangent space over U . The equivalence problem
for nonholonomic geometry was revisited in Koiller, Rodrigues, and Pitanga [2001]
and the generalization to arbitrary nonholonomic distributions was discussed. Engel
manifolds provide the simplest example involving distributions that are not strongly
nonholonomic.14

The main question we address is the following. Given two nonholonomic struc-
tures (Q, G, H) and (Q̄, Ḡ, H̄), is there a (local) diffeomorphism f : U ⊂ Q →
Ū ⊂ Q̄ carrying nonholonomic geodesics in Q to nonholonomic geodesics in Q̄?
In Cartan’s approach, this question is recast as an equivalence problem. The non-
holonomic structure is encoded into a subbundle of the frame bundle over Q called
a G-structure. The diffeomorphism f exists if the two corresponding G-structures
are locally equivalent. Necessary and sufficient conditions for the G-structures to
be equivalent are given in terms of differential invariants found using the method of
equivalence.

Outline

Our main example is the equivalence problem for nonholonomic geometry on an
Engel manifold. Let Q be a four-dimensional manifold and H a rank two distribution.
H is an Engel distribution if and only if, for any vector fields X and Y locally spanning
H, and some functions a, b : Q→ R, the vector fields X, Y , Z = [X, Y ], and W =
a[X, Z]+b[Y, Z] form a local basis for T Q. By an Engel manifold, we mean a four-
dimensional manifold endowed with an Engel distribution. We begin by describing
the nonholonomic geodesic equations. In the spirit of Cartan’s program, we express
them in terms of connection 1-forms and (co)frames adapted to the distribution.
This formulation is particularly well suited to the problem at hand; the nonholonomic
geodesic equations are obtained by writing the ordinary geodesic equations in terms of
the Levi-Civita connection 1-form and crossing out terms corresponding to directions
complementary to H. We then set up the equivalence problem for nonholonomic

14 Historical remarks. Cartan [1928] introduced the equivalence problem for nonholonomic
geometry and studied the case of manifolds endowed with strongly nonholonomic distri-
butions. In his address, Cartan warned against attempts to study other cases because of
the “plus compliqués’’ computations involved. In the meantime strides have been made in
the equivalence method by Robert Gardner and his students that allow computations to be
made at the Lie algebra level rather than at the group level (Gardner [1989]). This together
with symbolic computation packages such as MathematicaTM make equivalence problems
tractable in many important cases. See Gardner [1989], Bryant [1994], Montgomery [2002],
Grossman [2000], Ehlers [2002], Hughen [1995], and Moseley [2001] for some applications.
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geometry and give a brief description of the equivalence method as it is applied to our
main example. We conclude this section by applying the method of equivalence to
the case of nonholonomic geometry on an Engel manifold. We derive all differential
invariants associated with the nonholonomic structure and show that the symmetry
group of such a structure has dimension at most four.

2.1 Nonholonomic geodesics: Straightest paths

Totally nonholonomic distributions

A distribution H is a rank r vector subbundle of the tangent bundle T (Q) over Q.
Let H1 = H+ [H, H] and Hi = [H, Hi], and consider the filtration

H ⊂ H1 ⊂ · · ·Hi ⊂ · · · ⊂ T Q.

H is totally nonholonomic if and only if, for some k, Hk = T Q at all points in
Q. For the present discussion we will assume that each Hi has constant rank over
Q. As a specific example, consider the Engel distribution H on R

4 with coordinates
(x, y, z, w), spanned by {X1 = ∂

∂w
, X2 = ∂

∂x
+w ∂

∂y
+ y ∂

∂z
}. There are, in fact, local

coordinates on any Engel manifold so that the distribution is given by this normal form,
see Montgomery [2002]. Then {X1, X2, X3 = [X1, X2]} spans the three-dimensional
distribution H1, and {X1, X2, X3, X4 = [X2, X3]} spans the entire T R

4.
A path c : R → Q is horizontal if ċ(t) ∈ Hc(t) for all t . Chow’s theorem

implies that if H is totally nonholonomic, then any two points in Q can be joined
by a horizontal path (see Montgomery [2002]). At the other extreme, the classical
theorem of Frobenius implies that H is integrable, which is to say that Q is foliated
by submanifolds whose tangent spaces coincide with H at each point, if and only if
[Xi, Xj ] ∈ H for all i and j (Warner [1971]).

In what follows we will need a description of distributions in terms of differential
ideals. Details can be found in Warner [1971] or Montgomery [2002]. Let I = H⊥
be the ideal in �∗(Q) consisting of the differential forms annihilating H. If H is rank
r , then I is generated by n − r independent 1-forms. The first derived ideal of I is
the ideal

(I)′ := {θ ∈ I|dθ ≡ 0 mod(I)}. (2.1)

If we set I(0) = I and I(n+1) = (I(n))′ we obtain a decreasing filtration

I = I(0) ⊃ I(1) ⊃ · · · ⊃ 0.

The filtration terminating with the 0 ideal is equivalent to the assumption that the
distribution is completely nonholonomic. We note that I (j) = (Hj )⊥ for j = 1, but
this is not true in general for j > 1 (see Montgomery [2002]). At the other extreme,
the differential ideal version of the Frobenius theorem implies that H is integrable if
and only if (I)′ ⊂ I (Warner [1971]).

For the Engel example, the 1-forms η1 = dy−wdx and η2 = dz−ydx generate
the ideal I. Notice that dη2 = η1 ∧ dx so η2 ∈ I(1) but dη1 cannot be written in
terms of η1 or η2; therefore, η1 /∈ I(1).
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The nonholonomic geodesic equations

There are two different geometries commonly defined on a nonholonomic struc-
ture (Q, G = 〈·, ·〉, H): sub-Riemannian geometry and nonholonomic geometry. In
sub-Riemannian geometry one is interested in shortest paths. The length of a path
c : [a, b] → Q joining points x and y is 	(c) = ∫ √〈ċ, ċ〉dt . The distance from
x to y is d(x, y) = inf(	(c)) taken over all horizontal paths joining x to y. In non-
holonomic geometry one is interested in straightest paths, which are solutions to the
nonholonomic geodesic equations. Hertz [1899] was the first to notice that shortest
�= straightest unless the constraints are holonomic.15

The nonholonomic geodesic equations are obtained by computing the acceleration
of a horizontal path c : R→ Q using the Levi-Civita connection associated with G
and orthogonally projecting the result onto H. It is convenient to adopt the following
indicial conventions:

1 ≤ I, J, K ≤ n,

1 ≤ i, j, k ≤ r (= rank(H)), (2.2)

r + 1 ≤ ν ≤ n.

Let e = {eI } be a local orthonormal frame for which the ei span H, and let η

= {ηI } be the dual coframe defined by ηI (eJ ) = δIJ , the Kronecker delta function.
We note that the ην annihilate H and the metric, restricted to H is g|H = η1 ⊗ η1 +
· · ·+ηr ⊗ηr . The Levi-Civita connection can be expressed in terms of local 1-forms
ωIJ = −ωJI satisfying Cartan’s structure equation dη = −ω ∧ η (Hicks [1965]).

A horizontal path c : R → M is a nonholonomic geodesic if it satisfies the
nonholonomic geodesic equations⎡

⎣ d

dt
(vi)+

∑
j

vjωij (ċ)

⎤
⎦ ei = 0, (2.3)

where 1 ≤ i, j,≤ r and vi = ηi(ċ) are the quasi-velocities.

Example: The vertical rolling penny

Astandard example of a mechanical system modeled by a nonholonomic Engel system
is that of a coin rolling without sliping on the Euclidean plane. Consider a coin of
radius a rolling vertically on the xy-plane. The location of the coin is represented by
the coordinates (x, y, θ, φ). The point of contact of the coin with the plane is (x, y),
the angle made by the coin with respect to the positive x-axis is θ , and the angle made
by the point of contact, the center of the coin, and a point marked on the outer edge
of the coin is φ. The state space can be identified with the Lie group SE(2)× SO(2)

where the first factor is the group of Euclidean motions locally parametrized by x,

15 The terminology straightest path for a nonholonomic geodesic was, in fact, coined by Hertz
himself.
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y and θ . The mass of the coin is m, the moment of inertia in the θ direction is J

and the moment of inertia in the φ direction is I . The kinetic energy, which defines a
Riemannian metric on the state space, is

T = m

2
(dx ⊗ dx + dy ⊗ dy)+ J

2
dθ ⊗ dθ + I

2
dφ ⊗ dφ. (2.4)

The penny rolls without slipping giving rise to the constraints

ẋ = (a cos θ)φ̇, ẏ = (a sin θ)φ̇. (2.5)

Consider the orthonormal frame (X1, X2, X3, X4), where

X1 :=
√

2

ma2 + I

(
a cos θ

∂

∂x
+ a sin θ

∂

∂y
+ ∂

dφ

)
,

X2 :=
√

2

J

∂

∂θ
,

X3 :=
√

2

m

(
− sin θ

∂

∂x
+ cos θ

∂

∂y

)
,

(2.6)

X4 :=
√

2

m

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
.

Note that the constraint subspace isH = span{X1, X2}, andH(1) = span{X1, X2, X3}.
The dual coframe is (η1, η2, η3, η4), where

η1 :=
√

ma2 + I

2
dφ, η2 :=

√
J

2
dθ,

η3 :=
√

m

2
(− sin θdx + cos θdy), η4 :=

√
m

2
(cos θdx + sin θdy − dφ).

(2.7)
To compute the Levi-Civita connection form, we determine ω = [ωIJ ] such that

ωIJ = −ωJI and dη = −ω ∧ η. Using simple linear algebra, we find

ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
2

√
m

J(ma2+I )
η3 1√

2

√
m

J(ma2+I )
η2 0

− 1√
2

√
m

J(ma2+I )
η3 0 − 1√

2

√
m

J(ma2+I )
η1 0

− 1√
2

√
m

J(ma2+I )
η2 1√

2

√
m

J(ma2+I )
η1 0 −

√
2√
J
η2

0 0
√

2√
J
η2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.8)

so, in particular,

ω12 = −ω21 = 1

2

√
m

J(ma2 + I )
η3.
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Let c : R→ Q be a nonholonomic geodesic given by ċ(t) = v1(t)X1+v2(t)X2.
From the structure equations we see immediately that ω12(ċ(t)) = −ω21(ċ(t)) = 0
and the nonholonomic geodesic equations reduce to d

dt
(v1) = d

dt
(v2) = 0. The

nonholonomic geodesics are solutions to (ẋ, ẏ, φ̇, θ̇ ) = AX1 + BX2. In particular,

ẋ =
√

2Aa cos θ(t)√
ma2 + I

, ẏ =
√

2Aa sin θ(t)√
ma2 + I

,

φ̇ =
√

2A√
ma2 + I

, θ̇ =
√

2B√
J

.

(2.9)

The trajectories are spinning in place (A = 0), rolling along a line (B = 0), or circles
(A, B �= 0).

2.2 Equivalence problem of nonholonomic geometry

Cartan’s method of equivalence starts by encoding a geometric structure in terms
of a subbundle of the coframe bundle called a G-structure. We begin this section
by describing the G-structure for nonholonomic geometry16. We then give a brief
outline of some of the main ideas behind the method of equivalence as it is applied
in our example of nonholonomic geometry on an Engel manifold. Details about the
method of equivalence can be found in Gardner [1989], Montgomery [2002], or
Bryant [1994]. We then derive the local invariants associated with a nonholonomic
structure on a four-dimensional manifold endowed with an Engel distribution.

Initial G-structure for nonholonomic geometry

A coframe η(x) at x ∈ Qn is a basis for the cotangent space T ∗x (Q). Alternatively,
we can regard a coframe as a linear isomorphism η(x) : Tx(Q) → R

n where R
n

is represented by column vectors. A coframe can then be multiplied by a matrix on
the left in the usual way. The set of all coframes at x is denoted F ∗x (Q) and has the
projection mapping π : F ∗x (Q) �→ x. The coframe bundle F ∗(Q) is the union of the
F ∗x (Q) as x varies over Q.Acoframe on Q is a smooth (local) section η : Q→ F ∗(Q)

and is represented by a column vector of 1-forms (η1, . . . , ηn)tr , where “tr’’ indicates
transpose. F ∗(Q) is a right Gl(n)-bundle with action Rgη = g−1η where g is a
matrix in Gl(n).

Let G be a matrix subgroup of Gl(n). A G-structure is a G-subbundle of F ∗(Q).
We now describe the G-structure encoding the nonholonomic geometry associated
with a nonholonomic structure (Q, G, H). Given a nonholonomic structure (Q, G, H)

we can choose an orthonormal coframe η = (ηi, ην)tr on U ⊂ Q so that the ην

annihilate H and use this coframe to write down the nonholonomic geodesic equations
as described above. On the other hand, given a coframe η̄ = (η̄i , η̄ν)tr on Q we can
construct a nonholonomic structure (Q, Ḡ = ∑ η̄i ⊗ η̄i + η̄ν ⊗ η̄ν, H̄) where H̄ is

16 This G-structure was first presented by Cartan in his 1928 address to the International
Congress of Mathematicians (Cartan [1928])
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annihilated by the η̄ν . How is η̄ related to η if it is to lead to the same nonholonomic
geodesic equations as η? In order to preserve H we must have ην − η̄ν = 0 (mod I ).
In matrix notation, any modified coframe η̄ must be related to η by(

η̄i

η̄ν

)
=
(

A b

0 a

)(
ηi

ην

)
, (2.10)

where A ∈ Gl(r), a ∈ Gl(n − r), and b ∈ M(k, n − r). If we were studying the
geometry of distributions, there would be no further restrictions. In order to preserve
the metric restricted to H, we must further insist that A ∈ O(r). We would then
have the starting point for the study of sub-Riemannian geometry (see Montgomery
[2002], Hughen [1995], or Moseley [2001]).

It is important to observe that in nonholonomic geometry we need the full metric
and not just its restriction to H (as in sub-Riemannian geometry) to obtain the equa-
tions of motion. Cartan [1928] showed that in order to preserve the nonholonomic
geodesic equations, we can only add covectors that are in the first derived ideal to
the ηi .

Since this fact is central to our analysis, we sketch the argument here (see Koiller,
Rodrigues, and Pitanga [2001] for details). Suppose η̄ = gη with connection 1-form
defined by dη̄ = −ω̄∧ η̄. For simplicity, assume that A = id; then ηj ≡ η̄j (mod I).
The geodesic equations are preserved if and only if ωij (T ) = ω̄ij (T ) for all T ∈ H,
in other words ωij ≡ ω̄ij (mod I). Note also that η̄ν ≡ 0(mod I). Subtracting the
structure equations for dηi and dη̄i , we get

dηi − dη̄i = −ωij ∧ ηj − ωiν ∧ ην + ω̄ij ∧ η̄j + ω̄iν ∧ η̄ν ≡ 0 (mod I).

Now η̄i = ηi + biνη
ν so we also have

dηi − dη̄i = dηi − (dηi + dbiνη
ν + biνdην) ≡ −biνdην (mod I).

Therefore, biνdην ≡ 0 (mod I) or, equivalently, biνη
ν ∈ I (1). This completes the

argument.
We further subdivide our indicial notation: let

r + 1 ≤ φ ≤ s (= rank H1), s + 1 ≤ � ≤ n.

Adapted coframes

A covector η = (ηi, ηφ, η�)tr) arranged so that

1. The ηφ and η� generate I ,
2. ds2|H =

∑
ηi ⊗ ηi ,

3. The η� generate the first derived ideal I (1),

is said to be adapted to the nonholonomic structure. In matrix notation, the most
general change of coframes that preserves the nonholonomic geodesic equations is
of the form η̄ = gη where
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g =
⎛
⎝A 0 b

0 a1 a2
0 0 a3

⎞
⎠ (2.11)

with A ∈ O(k), b ∈ M(n − s, k), a1 ∈ Gl(s − k), a2 ∈ M(n − s, s − k), and
a3 ∈ Gl(n− s). The set of all such block matrices form a matrix subgroup of Gl(n)

which we shall denote G0.
The initial G-structure for nonholonomic geometry on (Q, ds2, H) is a subbundle

B0(Q) ⊂ F ∗(Q) (or simplyB0 if there is no risk of confusion) with structure groupG0
defined above. All local sections of B0(Q) lead to the same nonholonomic geodesic
equations. In this way, the initial G-structure B0(Q) completely characterizes the
nonholonomic geometry.

TwoG-structures,B(Q)
πQ→ Q andB(N)

πN→ N , are said to be equivalent if there is
a diffeomorphism f : Q→ N for which f1(B(Q)) = B(N) where f1 is the induced
bundle map. (If we think of b ∈ B(Q) as a linear isomorphism b : TπQ(b)Q → R

n

then f1(b) = b ◦ (f∗)−1 where f∗ is the differential of f .) Our original question
as to whether there is a local diffeomorphism that carries nonholonomic geodesics
to nonholonomic geodesics can be answered by determining whether the associated
G-structures are locally equivalent.

2.3 A tutorial on the method of equivalence

Necessary and sufficient conditions for the equivalence between G-structures are
given in terms of differential invariants which are derived using the method of equiv-
alence. In this section, we briefly describe some of the main ideas behind the method
of equivalence as it is applied in our example. Details and other facets of the method
together with many examples can be found in the excellent text by Robert Gardner
(Gardner [1989]). One of the principal objects used in the method of equivalence is
the tautological 1-form. Let B(Q)

π→ Q be a G-structure with structure group G

whose Lie algebra is Lie(G). The tautological 1-form � on B(Q) is an R
n-valued

1-form defined as follows. Let η : U ⊂ Q→ B(Q) be a local section of B(Q) and
consider the inverse trivialization U ×G0 → B(Q) defined by (x, g)→ g−1η(x).
Relative to this section, the tautological 1-form is defined by

�(b) = g−1(π∗η), (2.12)

where b = g−1η. From (2.12) one can verify that the tautological 1-form is semibasic
(i.e., �(v) = 0 for all v ∈ ker(π∗)), has the reproducing property η̄∗� = η̄, where
η̄ is any local section of B(Q), and is equivariant: R∗g� = g−1�. The components
of the tautological 1-form provide a partial coframing for B(Q) and form a basis for
the semibasic forms on B(Q).

The following proposition reduces the problem of finding an equivalence between
G-structures to finding a smooth map that preserves the tautological 1-form. (See
Gardner [1989] or Bryant [1994] for a proof.)



Nonholonomic systems via moving frames 91

Proposition 2.1. Let B(Q) and B(N) be two G-structures with corresponding tau-
tological 1-forms �Q and �N , and let F : B(Q)→ B(N) be a smooth map. If G is
connected and F ∗(�N) = �Q, then there exists a local diffeomorphism f : Q→ N

for which F = f1, i.e., the two G-structures are equivalent.

To find the map F in this proposition we would like to apply Cartan’s technique
of the graph (see Warner [1971], p. 75): if we could find an integral manifold � ⊂
B(Q)×B(N) of the 1-form θ = �Q−�N that projects diffeomorphically onto each
factor, then � would be the graph of a function h : Q→ N for which h∗1�N = �Q.
By the above proposition the G-structures would then be equivalent. We generally
cannot apply this idea directly because �Q and �N do not provide full coframes
on B(Q) and B(N) as is required in the technique of the graph. In the example of
nonholonomic geometry on Engel manifolds, and indeed in many important examples
(see Gardner [1989], Hughen [1995], Moseley [2001], Montgomery [2002], Ehlers
[2002]), applying the method of equivalence leads to a new G-structure called an
e-structure. An e-structure is a G-structure endowed with a canonical coframe.

Differentiating both sides of (2.12) one can verify that d� satisfies the structure
equation

d� = −α ∧�+ T , (2.13)

where T is a semibasic 2-form on B(Q) and α is called a pseudoconnection: a Lie(G)-
valued 1-form on B(Q) that agrees with the Mauer–Cartan form on vertical vector
fields. Here, Lie(G) is the Lie algebra of G. Summarizing,

Pseudoconnection: α = g−1dg + semibasic Lie(G)-valued 1-form. (2.14)

The components of the pseudoconnection together with the tautological 1-form
do provide a full coframe on the G-structure, but unlike the tautological 1-form,
the pseudoconnection is not canonically defined. Understanding how changes in the
pseudoconnection affect the torsion is at the heart of the method of equivalence.

For any G-structure, that part of the torsion that is left unchanged under all possible
changes of pseudoconnection is known as the intrinsic torsion. The intrinsic torsion
is the only first-order differential invariant of the G-structure (Gardner [1989]). As an
example, the intrinsic torsion for the G-structure B of a general distribution (equation
2.10) is the dual curvature of the distribution (Cartan [1910], see also Montgomery
[2002]). In the case of a rank two distribution on a four-dimensional manifold, the
structure equations for the tautological 1-form � are

d

⎛
⎜⎜⎝

�1
�2
�3
�4

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

A11 A12 β13 β14
A21 A22 β23 β24
0 0 α33 α34
0 0 α34 α44

⎞
⎟⎟⎠ ∧

⎛
⎜⎜⎝

�1

�2

�3

�4

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

T 1

T 2

T 3

T 4

⎞
⎟⎟⎠ , (2.15)

where T I =∑J<K T I
JK�J ∧�K with T I

JK : B → R. The intrinsic torsion consists
of the terms T 3

12�
1 ∧ �2 and T 4

12�
1 ∧ �2. Note that the distribution is integrable if

and only if T 3
12 = T 4

12 = 0.
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Reduction and prolongation

There are two major steps in the equivalence method: prolongation and reduction (see
Gardner [1989] or Montgomery [2002]). In the case of nonholonomic geometry on
an Engel manifold a sequence of reductions lead to an e-structure. A brief outline of
the reduction procedure is as follows. The first step involves writing out the structure
equations for the tautological 1-form �. A semibasic Lie(G)-valued 1-form is added
to the pseudoconnection to make the torsion as simple as possible. Gardner [1989]
calls this step absorption of torsion. The action of G on the torsion is deduced by
differentiating both sides of the identity R∗g(�) = g−1�. The action of G is used to
simplify part of the torsion. The isotropy subgroup of that choice of simplified torsion
is then the structure group of the reduced G-structure. In the case of nonholonomic
geometry on an Engel manifold this procedure is repeated until an e-structure is
obtained.

Suppose that � is the canonical coframing on the resulting manifold B. The �i

form a basis for the 1-forms on B so we can write

d�I =
∑
J<K

cI
JK�J ∧�K. (2.16)

Relationships between the cI
JK are found by differentiating this equation. The result-

ing torsion functions provide the “complete invariants’’ for the geometric structure
(see Gardner [1989], p. 59, Bryant [1994], pp. 9–10, or Cartan [2001]).

Many important examples have integrable e-structures. An e-structure is inte-
grable if the cI

JK are constant (Gardner [1989]). In this case we can apply the following
result from Montgomery [2002].

Lemma 2.2. Let B be an n-dimensional manifold endowed with a coframing �. Then
the (local) group G of diffeomorphisms of B that preserves this coframing is a finite-
dimensional (local) Lie group of dimension at most n. The bound n is achieved if and
only if the e-structure is integrable. In this case the cI

JK are the structure constants
of G, G acts freely and transitively on B, and the coframe can be identified with the
left-invariant 1-forms on G.

The Jacobi identities are found by differentiating d� = ∑
J<K cI

JK�J ∧ �K .
Lie’s third fundamental theorem then implies that we can, at least in principle, recon-
struct the group G using the structure constants. In some circumstances one can also
conclude that B itself is a Lie group (see Gardner [1989], p. 72).

2.4 The nonholonomic geometry of an Engel manifold

The initial G structure for nonholonomic geometry on {Q, G, H}, where H is an
Engel distribution on a four-dimensional manifold M is the subbundle B0 ⊂ F ∗(Q)

with structure group G0 consisting of matrices of the form
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⎜⎜⎝

A11 A12 0 B14
A21 A22 0 B24

0 0 a33 a34
0 0 0 a44

⎞
⎟⎟⎠ , (2.17)

where A = [AIJ ] ∈ O(2), a33a44 �= 0, and B14 and B24 are arbitrary.
Let � = (�1, �2, �3, �4)tr be the tautological 1-form on B0. The structure

equations are

d

⎛
⎜⎜⎝

�1
�2
�3
�4

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

0 γ 0 β14
−γ 0 0 β24
0 0 α33 α34
0 0 0 α44

⎞
⎟⎟⎠ ∧

⎛
⎜⎜⎝

�1

�2

�3

�4

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

T 1
13�

1 ∧�3 + T 1
23�

2 ∧�3

T 2
13�

1 ∧�3 + T 2
23�

2 ∧�3

T 3
12�

1 ∧�2

T 4
13�

1 ∧�3 + T 4
23�

2 ∧�3

⎞
⎟⎟⎠ , (2.18)

where we have chosen the pseudoconnection so that the remaining T i
jk are zero.

�4 ∈ I (1) so d�4 = 0 mod (�3, �4) and we must therefore have T 4
12 = 0. Also,

�3 /∈ I (1) so d�3 �= 0 mod (�3, �4); therefore, the torsion function T 3
12 cannot

equal zero. The pseudoconnection for this choice of torsion is not unique. We can,
for instance, add arbitrary multiples of �4 to the βi4 and αi4.

Following Cartan’s prescription, we investigate the induced action of G0 on the
torsion. Let g ∈ G0. To simplify notation, functions and forms pulled back by Rg

will be indicated by a hat so, for instance, R∗g� = �̂ = (�̂1, �̂2, �̂3, �̂4)tr and

R∗g(T k
ij ) = T̂ k

ij . We have

⎛
⎜⎜⎝

�̂1

�̂2

�̂3

�̂4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

#
#

det(a−1)(a44�
3 − a34�

4)

det(a−1)(a33�
4)

⎞
⎟⎟⎠ . (2.19)

To determine the induced action of G0 on the torsion we differentiate both sides
of the identity R∗g�3 = �̂3. For �3, we compute

R∗g(d�3) = α̂33 ∧ �̂3 + α̂34 ∧ �̂4 + T̂ 3
12�̂

1 ∧ �̂2,

= det(A−1)T̂ 3
12�

1 ∧�2 (mod �3, �4),

and

d�̂3 = det(a−1)(a44d�3 − a34d�4) (mod �3, �4)

= det(a−1)(a44T
3

12�
1 ∧�2) (mod �3, �4).
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The induced action of G0 on T 3
12 is therefore

R∗g(T 3
12) =

det(A)

a33
T 3

12. (2.20)

Since T 3
12 �= 0 we can force it to equal 1 using the action of G0. The stabilizer

subgroup G1 for this choice of torsion consists of matrices of the form (2.17) with
a33 = ε where ε = det(A). Note that T 3

12�
1 ∧�2 is the (normalized) dual curvature

of the distribution.
The structure equations for the G1-structure B1 are

d

⎛
⎜⎜⎝

�1
�2
�3
�4

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

0 γ 0 β14
−γ 0 0 β24
0 0 0 α34
0 0 0 α44

⎞
⎟⎟⎠ ∧

⎛
⎜⎜⎝

�1

�2

�3

�4

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

T 1
13�

1 ∧�3 + T 1
23�

2 ∧�3

T 2
13�

1 ∧�3 + T 2
23�

2 ∧�3

T 3
13�

1 ∧�3 + T 3
23�

2 ∧�3 +�1 ∧�2

T 4
13�

1 ∧�3 + T 4
23�

2 ∧�3

⎞
⎟⎟⎠ . (2.21)

Let g ∈ G1. We write the inverse of g as

g−1 =

⎛
⎜⎜⎝

A11 A21 0 B̄14

A12 A22 0 B̄24
0 0 ā33 ā34
0 0 0 ā44

⎞
⎟⎟⎠ , (2.22)

so, in particular, ā33 = ε, ā34 = −εa34(a44)
−1, and ā44 = (a44)

−1. We have

R∗g� =

⎛
⎜⎜⎝

�̂1

�̂2

�̂3

�̂4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A11�
1 + A21�

2 + B̄14�
4

A12�
1 + A22�

2 + B̄24�
4

ā33�
3 + ā34�

4

ā44�
4

⎞
⎟⎟⎠ . (2.23)

For the next reduction we differentiate both sides of the identity R∗g�4 = �̂4. We have

R∗gd�4 = α̂44 ∧ �̂4 + T̂ 4
13�̂

1 ∧ �̂3 + T̂ 4
23�̂

2 ∧ �̂3 (mod �4),

= ā33((A11T̂
4
13 + A12T̂

4
23)�

1 ∧�3

+ (A21T̂
4
13 + A22T̂

4
23)�

2 ∧�3) (mod �4).

On the other hand,

d�̂4 = ā44d�4 = ā44(T
4

13�
1 ∧�3 + T 4

23�
2 ∧�3) (mod �4).

The induced action of G1 on the torsion plane (T 4
13, T

4
23) is therefore
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T̂ 4

13
T̂ 4

23

)
= ε

a44
A−1

(
T 4

13
T 4

23

)
. (2.24)

The torsion plane (T 4
13, T

4
23) �= (0, 0) since I (2) = 0 implies that d�4 ∧�4 �= 0 and

we have already established that T 4
12 = 0. We can therefore use the action to force

(T 4
13, T

4
23) = (0, 1). The torsion T 4

23�
2 ∧ �3 can be interpreted as the (normalized)

dual curvature of the rank three distribution H1. The statement that (T 4
13, T

4
23) �= (0, 0)

is equivalent to H not being integrable. To determine the subgroup that stabilizes this
choice of torsion, we investigate

R∗g
(

0
1

)
= ε

a44
A−1

(
0
1

)
=
(

0
1

)
. (2.25)

As A ∈ O(2), it must be of the form(
ε1ε2 0

0 ε2

)
, (2.26)

where ε1, ε2 ∈ {−1, 1}. We must also have a44 = ε1ε2 so that the stabilizer subgroup
G2 consists of matrices of the form⎛

⎜⎜⎝
ε1ε2 0 0 B14

0 ε2 0 B24
0 0 ε1 a34
0 0 0 ε1ε2

⎞
⎟⎟⎠ , (2.27)

where ε1, ε2 ∈ {−1, 1} and B14, B24 and a34 ∈ R. We compute

R∗g� =

⎛
⎜⎜⎝

�̂1

�̂2

�̂3

�̂4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ε1ε2�
1 − B14�

4

ε2�
2 − B24�

4

ε1�
3 − ε2a34�

4

ε1ε2�
4

⎞
⎟⎟⎠ . (2.28)

The structure equations are now

d

⎛
⎜⎜⎝

�1
�2
�3
�4

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

β14 ∧�4

β24 ∧�4

α34 ∧�4

0

⎞
⎟⎟⎠ (2.29)

+

⎛
⎜⎜⎝

T 1
12�

1 ∧�2 + T 1
13�

1 ∧�3 + T 1
23�

2 ∧�3

T 2
12�

1 ∧�2 + T 2
13�

1 ∧�3 + T 2
23�

2 ∧�3

�1 ∧�2 + T 3
13�

1 ∧�3 + T 3
23�

2 ∧�3

T 4
14�

1 ∧�4 +�2 ∧�3 + T 4
24�

2 ∧�4 + T 4
34�

3 ∧�4

⎞
⎟⎟⎠ .

B2 is not an e-structure, so again we differentiate both sides of the identity R∗g� = �̂

to determine the action of G2 on the torsion. After some computation, we find that
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d�̂1 = ε1ε2(T
1
13�

1 ∧�3 + T 1
23�

2 ∧�3 + T 1
12�

1 ∧�2)

− B14�
2 ∧�3 (mod �4),

d�̂2 = ε2(T
2
13�

1 ∧�3 + T 2
23�

2 ∧�3 + T 2
12�

1 ∧�2)

− ε1B24�
2 ∧�3 (mod �4),

d�̂3 = ε1(T
3
13�

1 ∧�3 + T 3
23�

2 ∧�3 +�1 ∧�2)

− ε2a34�
2 ∧�3 (mod �4).

Also,

R∗g(d�1) = ε2T̂
1
13�

1�3 + ε1ε2T̂
1

23 + ε1T̂
1

12�
1 ∧�2 (mod �4),

R∗g(d�2) = ε2T̂
2
13�

1�3 + ε1ε2T̂
2

23 + ε1T̂
2

12�
1 ∧�2 (mod �4),

R∗g(d�3) = ε1T̂
3
13�

1�3 + ε1ε2T̂
3

23 + ε1�
1 ∧�2 (mod �4).

Matching the �2 ∧�3 terms, we find that

T̂ 1
23 = T 1

23 − ε1ε2B14,

T̂ 2
23 = ε1T

2
23 − ε2B24, (2.30)

T̂ 3
23 = ε2T

3
23 − ε1a34.

We can therefore use the action of G1 to force T 1
23 = T 2

23 = T 3
23 = 0. The stabilizer

subgroup Gfinal for this choice of torsion consists of matrices of the form⎛
⎜⎜⎝

ε1ε2 0 0 0
0 ε2 0 0
0 0 ε1 0
0 0 0 ε1ε2

⎞
⎟⎟⎠ . (2.31)

The reduced structure group is discrete so we now have an e-structure Bfinal. The
tautological 1-form (�1, �2, �3, �4)

tr provides a full coframing for Bfinal. The Bfinal
structure equations are

d

⎛
⎜⎜⎝

�1
�2
�3
�4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

T 1
12 T 1

13 T 1
14 0 T 1

24 T 1
34

T 2
12 T 2

13 T 2
14 0 T 2

24 T 2
34

1 T 3
13 T 3

14 0 T 3
24 T 3

34
0 0 T 4

14 1 T 4
24 T 4

34

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

�1 ∧�2

�1 ∧�3

�1 ∧�4

�2 ∧�3

�2 ∧�4

�3 ∧�4

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.32)

where the T k
ij are functions on Bfinal. What remains is to determine any second order

relations between the torsion functions. To determine them we use the fact that d2 = 0.
After some computation, we find that T 4

14 = T 2
12 + T 3

13. We summarize these results
in the following theorem:
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Theorem 2.3. Associated to any nonholonomic Engel structure {Q, G = 〈·, ·〉,
H} there is a canonical G ∼= Z2 × Z2-structure Bfinal. The tautological 1-form
(�1, �2, �3, �4)

tr provides a canonical coframing for Bfinal. The Bfinal structure
equations are

d

⎛
⎜⎜⎝

�1
�2
�3
�4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

T 1
12 T 1

13 T 1
14 0 T 1

24 T 1
34

T 2
12 T 2

13 T 2
14 0 T 2

24 T 2
34

1 T 3
13 T 3

14 0 T 3
24 T 3

34
0 0 T 2

12 + T 3
13 1 T 4

24 T 4
34

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

�1 ∧�2

�1 ∧�3

�1 ∧�4

�2 ∧�3

�2 ∧�4

�3 ∧�4

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.33)

According to the framing lemma (Lemma 2.2) the largest Lie group of symmetries
of a nonholonomic structure on an Engel manifold is the dimension of Bfinal which
is four. In this case the T I

JK are constants and can be identified with the structure
constants of the four-dimensional Lie algebra of the symmetry group. The Jacobi
identities are obtained using the identity d2 = 0. We have computed them, and it ap-
pears that the set of possible symmetry algebras form a rather complicated subvariety
of the variety of all four-dimensional Lie algebras. We leave as an open problem the
classification of all possible four-dimensional symmetry algebras for nonholonomic
structures on an Engel manifold.

The rolling penny (continued )

An example of a structure with maximal symmetry is given by the rolling penny. A
Bfinal-adapted coframe for the penny-table system is

η1 =
√

ma2 + I

2
dφ,

η2 =
√

J

2
dθ, (2.34)

η3 =
√

J (ma2 + I )

2
(− sin θdx + cos θdy),

η4 =
√

m

2
(cos θdx + sin θdy − dφ).

The structure equations are

dη1 = 0,

dη2 = 0, (2.35)

dη3 = η1 ∧ η2 −
√

ma2 + I

m
η2 ∧ η4,

dη4 = 2

J

√
m

ma2 + I
η2 ∧ η3.
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The torsion functions are constant, so by the framing lemma (Lemma 2.2) we can
identify these constants with the structure constants Lie group of symmetries of this
system. We recognize them as the structure constants for the Lie algebra of the group
SE(2) × SO(2) which is isomorphic to the configuration space of the penny-table
system.

Bfinal-adapted frames and coframes

The e-structure Bfinal has a canonical coframing which descends to a coframing and
hence a framing, up to signs, on Q. There should be a relationship between this framing
and a canonical line field possessed by any Engel manifold. In this section we briefly
describe this relationship. If Q and H are both oriented, then Q is parallelizable and
the following constructions can be made globally (Montgomery [2002]).

Let η be a Bfinal adapted coframe on U ⊂ Q with dual frame X = {XI } defined
by ηI (XJ ) = δIJ . If η̄ is any other Bfinal-adapted coframe with dual frame X̄on U ,
then by Theorem 2.3, η̄ is related to η by η̄1 = ε1ε2η

1, η̄2 = ε2η
1, η̄3 = ε1η

3,
η̄4 = ε1ε2η

4. The dual frames are related in precisely the same way: X̄1 = ε1ε2X1,
X̄2 = ε2X2, X̄3 = [X̄1, X̄2] = ε1X3, and X̄4 = [X̄2, X̄3] = ε1ε2X4.

An important feature of an Engel distribution is the presence of a canonical line
field L ⊂ H (Montgomery [2002], Kazarian, Montgomery, and Shapiro [1997]). L

is defined by the condition that [L, H1] ⊂ H1. Here we are abusing notation, using
L for the line field or a vector field spanning L. We have

Corollary 2.4. Let η = ηI be a Bfinal-adapted coframe. Let X = {XI } be the dual
frame defined by ηI (XJ ) = δIJ ; then L = span(X1).

Proof. Suppose L is spanned by the vector field Y = aX1+bX2. Since η4 annihilates
H1 we have η4([X3, Y ]) = 0. Then

0 = η4([X3, Y ]) = X3η
4(Y )− Yη4(X3)− dη4(X3, Y ) = −dη4(X3, Y ).

But dη4 ≡ η2 ∧ η3 mod(η4), so we must have

0 = η2 ∧ η3(X3, Y ) = η2(X3)η
3(Y )− η3(X3)η2(Y ),

= −η3(X3)η2(Y ),

= −b.

L is therefore spanned by X1. This concludes the arguement.

There is a natural metric, associated with Bfinal, on Q given by gnat = η̃1 ⊗ η̃1 +
· · ·η̃4⊗ η̃4 where η̃ is any Bfinal-adapted coframe. Clearly all Bfinal-adapted coframes
induce this same metric; using the sub-Riemannian metric gnat|H we form L⊥ within
H so that H = L⊕ L⊥. By construction, X2 spans L⊥.



Nonholonomic systems via moving frames 99

3 Nonholonomic dynamics: Chaplygin Hamiltonization

Historically, Hamiltonization of nonholonomic systems started with Chaplygin’s last
multiplier method . In the new time, the dynamics obeys Euler–Lagrange equations
without extra terms; the gyroscopic force (1.13) “magically’’ disappears! When, after
a time reparametrization the compressed system can be described as a Hamiltonian
system, symplectic techniques can be employed. A number of NH systems have been
Hamiltonized, and some interesting ones are Liouville-integrable; see Veselov and
Veselova [1988], Kozlov [2002], Fedorov and Jovanovic [2003], Fedorov [1989],
Dragovic, Gajić, and Jovanovic [1998], Borisov and Mamaev [2002a], Borisov and
Mamaev [2002b], Borisov, Mamaev, and Kilin [2002], Borisov and Mamaev [2001],
Jovanovic [2003].

3.1 Compression to T ∗S, S = Q/G; existence of invariant measures

We recall from the introduction that the compressed system has a concise almost
Hamiltonian

dHφ = iXNH
�NH , �NH := �T ∗S

can + (J.K), d�NH �= 0 (in general),

where �T ∗S
can is the canonical 2-form of T ∗S and the (J.K) term is a semibasic 2-

form, which in general is nonclosed. It combines the momentum J of the G-action on
T ∗Q, and the curvature K of the connection. As this is important for the remaining,
we outline the derivation (see Koiller, Rios, and Ehlers [2002] for details). Given the
coframe coordinates m, ε(q) in T ∗Q (see 1.5) the Poisson bracket matrix relative to
εI , dmI is

[�] = [�]−1 =
(

0n In

−In E

)
(3.1)

with
EJK = mIdεI (eJ , eK) = −mIεI [eJ , eK ]. (3.2)

Let us consider the case of a principal bundle π : Qn→ Ss with Lie group Gr acting
on the left, r = n− s. Recall our convention: capital roman letters I, J, K, etc., run
from 1 to n. Lower case roman characters i, j, k run from 1 to s. Greek characters
α, β, γ , etc., run from s + 1 to n.

Fix a connection λ = λ(q) : TqQ→ Lie(G) defining a G-invariant distribution
H of horizontal subspaces. Denote by K(q) = dλ ◦ Hor : TqQ × TqQ → Lie(G)

the curvature 2-form (which is, as is well known, Ad-equivariant). Choose a local
frame ei on S. For simplicity, we may assume that

ei = ∂/∂si (3.3)

are the coordinate vector fields of a chart s : S → R
s .

Let ei = h(ei) be their horizontal lift to Q. We complete to a moving frame of
Q with vertical vectors eα which we will specify in a moment. The dual basis will
be denoted εi, εα and we write pq = miεi + mαεα . These are in a sense the “least
moving’’ among all the moving frames adapted to this structure. We now describe
how the n× n matrix E = (EIJ ) looks like in this setting.
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(i) The s × s block (Eij ). Decompose [ei, ej ] = h[ei, ej ] + V [ei, ej ] = V [ei, ej ]
into vertical and horizontal parts. The choice (3.3) is convenient, since ei and ej

commute: [ei, ej ] is vertical. Hence

Eij = −pq [ei, ej ] = −mαεα[ei, ej ]. (3.4)

Now by Cartan’s rule,

K(ei, ej ) = eiλ(ej )− ejλ(ei)− λ[ei, ej ] = −λ[ei, ej ] ∈ Lie(G).

Thus we showed that
[ei, ej ]q = −K(ei, ej ) · q (3.5)

Moreover, let J : T ∗Q→ Lie(G)∗ the momentum mapping. We have

(J (pq), Kq(ei, ej )) = pq(K(ei, ej ).q) = −pq [ei, ej ] (= Eij ).

Theorem 3.1 (the J.K formula).

Eij = (J (pq), Kq(ei, ej )). (3.6)

This gives a nice description for this block, under the choice [ei, ej ] = 0. Notice
that the functions Eij depend on s and the components mα , but do not depend on
g. This is because the Ad∗-ambiguity of the momentum mapping J is cancelled by
the Ad-ambiguity of the curvature K . The other blocks are not needed here, but we
include for completeness.

(ii) The r× r block (Eαβ). Choose a basis Xα for Lie(G). We take eα(q) = Xα ·q as
the vertical distribution. Choosing a point qo allows identifying the Lie group G with
the fiber containingGqo, so that id �→ qo. Through the mappingg ∈ G �→ gqo ∈ Gqo

the vector field eα is identified with a right-invariant (not left-invariant!) vector field
in G. The commutation relations for the eα [eα, eβ ] = −c

γ
αβeγ appear with a minus

sign. Therefore,
Eαβ = mγ c

γ
αβ. (3.7)

(iii) The s × n block (Eiα). The vectors [ei, eα] are vertical, but their values depend
on the specific principal bundle one is working with, and there are some noncanonical
choices. Given a section σ : US → Q over the coordinate chart s : US → R

m on S,
we need to know the coefficients b

γ

iα in the expansion

[ei, eα](σ (s)) = b
γ

iα(s)eγ .

Then
Eiα(σ (s)) = −mγ b

γ

iα(s). (3.8)

At another point on the fiber, we need the adjoint representation Adg : Lie(G) →
Lie(G), X �→ g−1∗ Xg, described by a matrix (Aµα(g)) such that

Adg(Xα) = Aµα(g)Xµ. (3.9)

Then
[ei, eα](g · σ(s)) = −mγ b

γ

iµ(s)Aµα(g). (3.10)
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The clockwise diagram

Starting on ps ∈ T ∗S we go clockwise to Pq ∈ Leg(H) ⊂ T ∗Q, for some q on the
fiber π−1(s) of Q over s.

H ⊂ T Q −→
Leg

Leg(H) ⊂ T ∗Q

↑
h

|

T S ←−
(Legφ)−1

T ∗S.

(3.11)

Taking differentials of all maps in (3.11) we obtain an induced principal connection
φ̂ in the bundle G ↪→ Leg(H)→ T ∗S. Let v, w, z ∈ Tps (T

∗S), V, W, Z horizontal
lifts at Pq ∈ Leg(H), and denote by K̂ the curvature of this induced connection.
The following proposition is basically a rephrasing of a result in Bates and Śniatycki
[1993].

Proposition 3.2.

d(J.K)(v, w, z) = cyclic(dJ (V ), K(W, Z)). (3.12)

Densities of invariant measures and a dimension dependent exponent

A necessary and sufficient condition for the existence of an invariant measure for
compressed Chaplygin systems was obtained by Cantrijn, Cortés, de Léon, and de
Diego [2002] (Theorem 7.5). Since in T ∗S there is a natural Liouville measure dvol =
ds1 · · · dsmdp1 · · · dpm, where (s, p) are coordinates in T ∗S, the density function F

produces an educated guess for a time reparametrization which may Hamiltonize the
compressed system. If dim(S) = m and f �NH is closed, the time-reparametrized
vector field XNH /f has the invariant measure f mdvol. XNH will have the invariant
measure f m−1ds1 · · · dsmdp1 · · · dpm. Working backwards, if a measure density F is
known so that F(s)dvol is an invariant measure for XNH , then the obvious candidate
for conformal factor is

f = F(s)
1

m−1 . (3.13)

This dimension dependent exponent will be relevant in the Chaplygin marble; see
Section 3.2.

Invariant measures for LR systems

Let Q = G be a unimodular Lie group and identify T G ≡ T ∗G via the bi-invariant
metric. Assume that H ⊂ G is a subgroup acting on the left and preserving the
distribution: Dhg = hDg = hDg (which boils down to Adh−1D = h−1Dh = D). The
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Legendre transform Leg : Lie(G)→ Lie(G) ≡ Lie∗(G) of a natural, left-invariant
Lagrangian, is represented by a positive symmetric transformation A : Lie(G) →
Lie(G), the inertia operator.

For each g ∈ G, let P 1
g and P 2

g be, respectively, the projections of Lie(G) relative

to the decomposition Lie(G) = Adg−1 Lie(H)⊕ Adg−1D. We can also think of P 2
g

as a map P 2
g : TgG → Dg, projection parallel to the vertical spaces Lie(H)g. Let

P 2
g o Legg : Dg → Dg. This map descends to the compressed Legendre transform

Legφ
s : TsS → TsS ≡ T ∗s S, where S = G/H is the homogeneous space whose

metric is induced by the bi-invariant metric on G. Consider the function

F(s) = det Legφ
s . (3.14)

The following result is a rephrasing of a theorem by Veselov and Veselova [1988];
see also Fedorov and Jovanovic [2003], Theorem 3.3.17

Theorem 3.3. The reduced LR-Chaplygin system in the homogeneous spaceT ∗(G/H)

always has the invariant measure

ν = F(s)−1/2ds1 · · · dsmdp1 · · · dpm, F (s) = det Legφ
s . (3.15)

The density can be also calculated by the “dual’’ formula

F(s) = det(A) det(P 2
g oA−1|g−1 Lie(H)g) (3.16)

(P 1
g is the projection over g−1 Lie(H)g parallel to g−1Dg).

The second formula may be easier to use if there are few constraints.

Almost Hamiltonian systems

Let � be a nondegenerate (but in general, nonclosed) 2-form on M2n, and H a
function on M . Denote (as usual) by X = XH the skew-gradient vector field defined
by iX� = dH . We say XH is almost Hamiltonian. If α is a closed 1-form, the vector
field X = Xα defined by iX� = α is called locally almost Hamiltonian. Distilling
a construction in Stanchenko [1985], we formalize an extension of the notion of a
conformally symplectic structure.

The 2-form � is called H (or α)-affine symplectic if there is a function f > 0
on M and a 2-form �o such that (i) iX�o ≡ 0; (ii) � − �o is nondegenerate; and
(iii) �̃ = f (�−�o) is closed.18

17 We do not need to assume D and Lie(H) to be orthogonal with respect to the bi-invariant
metric.

18 We must admit, however, that we found no example yet where the affine term is really
needed. This notwithstanding, at any point where X �= 0, the contraction condition yields
d = 2n equations on d(d − 1)/2 unknowns (local coordinate coefficients of �o). This
allows additional freedom to Hamiltonize X rather than just requiring conformality of �.
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The first condition implies that X does not “see’’ �o. Together with the third, we
get �̃(X/f, •) = dH so the vector field X/f is (truly) Hamiltonian with respect to
the symplectic form �̃.

The closedness condition can be restated as

d(�−�o) = (�−�o) ∧ θ, where θ = df/f. (3.17)

When (3.17) holds with α a closed (but not necessarily exact) 1-form, we say that �

is locally affine symplectic. The following proposition describes the obstruction to
Hamiltonization once f is given.

Theorem 3.4. Given a locally almost hamiltonian system (�, α) and an educated
guess f > 0, an affine term �o exists with d(f � − �o) = 0 if and only if
iXd(f �) = 0.

The proof is quite easy. The vector field X satisfies iX� = α. Since the same
equation holds by replacing X by X/f and � by f �, to expedite notation we may
assume f ≡ 1. Let us prove that �o exists if iXd� = 0. Since d(iX�) = dα = 0, we
see that the Lie derivative LX� = 0. Consider a regular point of X. By the flow box
theorem there are coordinates so that X = ∂/∂x1. Since LX� = 0, the coefficients
of this 2-form do not depend on the coordinate x1 (but there may exist terms with a
dx1 factor). However, our hypothesis i∂/∂x1d� = 0 ensures that there are no terms
containing a dx1 factor in d�. Thus d� can be thought of as a 3-form in the space of
the remaining coordinates. By Poincaré’s theorem d� = d�o, where �o is a 2-form
in the space of the remaining coordinates. Hence iX�o = 0 and d(�−�o) = 0, as
desired. The converse is even easier.

3.2 Examples: Veselova’s system and Chaplygin spheres (marble or rubber)

Veselov and Veselova [1986, 1988] considered one of the simplest nonholonomic LR-
Chaplygin systems, Q = SO(3) with a left-invariant metric L = T = 1

2 (A�, �),
and subject to a right-invariant constraint which, without loss of generality, can be
assumed to be ρ3 = 0. Hence the admissible motions satisfy ω3 = 0, where ω is
the angular velocity viewed in the space frame. This is a LR Chaplygin system on
S1 ↪→ SO(3)→ S2.

Chaplygin’s ball is a sphere of radius r and mass µ, whose center of mass is
assumed to be at the geometric center, but the inertia matrix A = diag(I1, I2, I3) may
have unequal entries. Thus its Lagrangian is given by 2L = (A�, �)+µ(ẋ2+ ẏ2+
ż2). The configuration space is the Euclidean group Q = SE(3).

In the case of the marble, the ball rolls without slipping on a horizontal plane, with
rotations about the z-axis allowed.19 Thus the distribution of admissible velocities is
19 Chaplygin [2002] showed that the 3D problem is integrable using elliptic coordinates in the

sphere; for n > 3 the problem is open. For basic informations, see Fedorov and Kozlov
[1995], pp. 147–149, on the 3D case and pp. 153–156 for the general n-dimensional case.
For a detailed account of the algebraic integrability of “Chaplygin’s Chaplygin sphere’’; see
Duistermaat [2000]. Schneider [2002] analyzed control theoretical aspects.
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defined by D : ż = 0, ẋ = rω1, ẏ = −rω2. Both Lagrangian and constraints are
preserved under the action of the Euclidean motions in the plane, together with the
vertical translations. G = SE(2)× R acts on Q via

(φ, u, v, w).(R, x, y, z) = (S(φ)R, eiφ(u+ iv), z+ w).

The dynamics could be directly reduced to D/G (see, e.g., Zenkov and Bloch [2003]),
but we will proceed in two stages. First, we Chaplygin-compress the dynamics from
T Q to T SO(3) using the translation subgroup of SE(3), regarding the constraint
distribution as an abelian connection on Q with base space S = SO(3) and fiber R

3;
the connection form is given by

αmarble := (dx − rρ2, dy + rρ1, dz). (3.18)

There is another S1 action on Q, this time acting on the first factor only: eiφ(R, z) =
(S(φ)R, z). This action preserves the Lagrangian but does not preserve the distribu-
tion: D(S(φ)R,z) �= e

iφ∗ D(R,z). However, its infinitesimal action is given by the right
vector field Xr

3 ∈ D. Noether’s theorem applies, so pφ = 	3 is a constant of motion.
Therefore, Chaplygin’s marble equations can be reduced, on each level set 	3, to
T (SO(3)/S1) = T S2.

In the case of Chaplygin’s rubber ball,20 rotations about the vertical axis are
forbidden (since such rotations would cause energy dissipation). Here the constraints
are defined by a subdistribution H ⊂ D with Cartan’s 2-3-5 growth numbers and, in
fact, defining a connection on SE(2)× R ↪→ Q→ S2 with 1-form

αrubber := (ρ3k̂, dx − rρ2, dy + rρ1, dz). (3.19)

The extrinsic viewpoint

For clarity we present the classical, direct derivation of the equations of motion,
following the “extrinsic viewpoint’’ advocated by the Russian Geometric Mechanics
school (Borisov and Mamaev [2002a]).
• For the rubber Chaplygin ball (and Veselova’s): in the space frame one has

	̇ = τ , where τ = λk̂ is the torque exerted by the constraint force. The torque is
vertical because (τ, ω) = 0 for all ω with third component equal to zero. Viewed in
the body frame,

L̇+�× L = λγ, (3.20)

Together (1.6), one gets a closed system of ODEs in the space (L, γ ) ∈ R
3 × R

3,
provided the relation between � and L is obtained. In Veselova’s example, � =
A−1L. The multiplier can be eliminated by differentiating the constraint equation
(�, γ ) = 0. After a simple computation, one gets

20 This problem was not studied by Chaplygin. For the physical justification, see Neimark and
Fufaev [1972] and Cendra, Ibort, de Léon, de Diego [2004]. As far as we know its integra-
bility has not yet been established. Formally, Veselova’s system is the limit of Chaplygin’s
rubber ball as r → 0.
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λ = (L, A−1γ × A−1L)

(γ, A−1γ )
. (3.21)

Besides the standard integrals of motion 2H = (A−1L, L), (γ, γ ) = 1, (A−1L, γ ) =
0, Veselov and Veselova [1988] showed that there is a quartic polynomial integral

G = (L, L)− (L, γ )2 (3.22)

and an invariant measure21

µ = f (γ )dL1 ∧ dL2 ∧ dL3 ∧ dγ1 ∧ dγ2 ∧ dγ3, f (γ ) = (A−1γ, γ )−1/2. (3.23)

• For Chaplygin’s marble: the angular momentum at the contact point in the space
frame � is constant. An engineer would argue that both gravity and friction produce
no torque at that point; a mathematician would use the fact that the admissible vector
fields Vi ∈ H given by

V1 := −r∂/∂y +X
right
1 , V2 := r∂/∂x +X

right
2 , V3 := X

right
3 (3.24)

preserve the Lagrangian, and would invoke NH-Noether’s theorem. Whichever ex-
planation chosen, differentiating RL = 	 = RL and Rγ = k, one gets Chaplygin’s
equations

L̇ = −�× L, γ̇ = −�× γ. (3.25)

These two form a coupled system, since again � is a linear function of L depending
only on γ :

L = Lγ (�) = A�+ µr2γ × (�× γ ) = Ã�− µr2(γ, �)γ, Ã := A+ µr2id.

(3.26)
A simple way to get this map is to look at the total energy

2T = (ω, 	) = (�, L) = (A�, �)+ µ(ẋ2 + ẏ2) = (A�, �)+ µr2(ω2
1 + ω2

2),

(3.27)
which can be also written as

2T = (�, L) = (A�, �)+µr2(�, γ × (�× γ )) = (�, A�+µr2γ × (�× γ ))).

(3.28)
The expression γ × (• × γ ) represents the projection in the plane perpendicular to
γ , and we get (3.26). An ansatz for the inverse of the map (3.26) is (Duistermaat
[2000]),

� = �(L, γ ) = (Lγ )−1(L) = Ã−1L+ α(L)Ã−1(γ ), (3.29)

and one gets the interesting expression for α(L) (which will be used in equation (3.48)
and Proposition 3.8):
21 The level sets of the four integrals are 2-tori, since there are no fixed points in the dynam-

ics. The existence of an invariant measure in the tori allows the explicit integration via
Jacobi’s theorem. Veselov and Veselova [1988] found a “rather unexpected connection with
Neumann’s problem.’’
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α(L) = µr2 (γ, Ã−1L)

1− µr2(γ, Ã−1γ )
. (3.30)

The function
f (γ ) := [1− µr2(γ, Ã−1γ )]−1/2 (3.31)

was found by Chaplygin to be the density of an invariant measure in R
6:

νR6 = f (γ )dγ1dγ2dγ3dL1dL2dL3. (3.32)

This follows from Veselova’s theorem, as F(γ ) = 1 − µr2(γ, Ã−1γ ) is (up to a
constant factor) the determinant of the linear map � �→ L = L(�; γ ). For direct
proofs of invariance of the measure, see Duistermaat [2000] or Fedorov and Kozlov
[1995].

A system of ODE’s for the rubber ball can be derived in a similar fashion. For
the angular momentum 	 at the contact point, we get the same equation (3.20) from
Veselova’s system, but the relation between � and L is (3.26), the same as in Chap-
lygin’s marble. Differentiating (�, γ ) = 0 the multiplier can be eliminated.

Hamiltonization of Veselova’s system

The compressed Lagrangian is

Lcomp = 1

2
(A(γ̇ × γ ), γ̇ × γ ), (3.33)

since � = γ̇ × γ ; the momentum map corresponding to the S1-action is J = 	3 =
(L, γ ). Thus (J.K) = 	3dρ3 = (A�, γ )dρ3, where dρ3 is the area form of S2. The
compressed Legendre transform is

γ̇ �→ a = ∂L∗

∂γ̇
= γ × A(γ̇ × γ ).

The nonholonomic 2-form in T ∗S2 is

�NH = da ∧ dγ + (A(γ̇ × γ ), γ )dρ3. (3.34)

Being a two-degrees of freedom system, a general result from Fedorov and Jovanovic
[2003] (Theorem 3.5) guarantees that this system is Hamiltonizable. In order to verify
that �NH is conformally symplectic, it is simpler to use γ̇ as coordinates, that is, we
pull back �NH to T S2 via Leg∗. We get

�NH = d(γ × A(γ̇ × γ ))) ∧ dγ + (γ, A(γ̇ × γ ))dρ3.

Proposition 3.5. Veselova’s system is conformally symplectic, d(f �NH ) = 0, with
conformal factor

f = f (γ ) = (A−1γ, γ )−1/2. (3.35)

As expected, it is the density of the Veselova invariant measure µ = f (γ )dLdγ

obtained via Proposition 3.3. The orthonormal frame in S2 diagonalizing (3.33) pro-
vides explicit coordinates for integration via the Hamilton–Jacobi method.



Nonholonomic systems via moving frames 107

Chaplygin’s rubber ball

The dynamics compress to T ∗S2, and by the same general result in Fedorov and
Jovanovic [2003], we know in advance that the system is Hamiltonizable. Choose a
moving frame e1, e2 in S2. The horizontal lift from γ̇ = v1e1 + v2e2 to Hor(γ̇ ) ∈
T (SE(3)) is easily done via (1.10):

Hor(γ̇ ) = v2(X
r
1 − r∂/∂y)− v1(X

r
2 + r∂/∂x).

Composing dαrubber = (ρ1∧ρ2,−rρ3∧ρ1, rρ2∧ρ3, 0) with Hor, we get Krubber =
(dSk̂, 0, 0, 0), where dS is the S2 area form. Thus for the term (J.K) we need only
the third component of the angular momentum, m3 = (M, γ ) = (A�, γ ), where we
insert (1.10) � = γ̇ × γ = v2e1 − v1e2. Therefore,

�NH = �T ∗S2 + (A(γ̇ × γ ), γ ) · dS. (3.36)

Here γ̇ = v1e1 + v2e2 ∈ T S2 corresponds to pγ = p1θ1 + p2θ2 via the Legendre
map Legcomp of the compressed Lagrangian

Lcomp = 1

2
A(v2e1 − v1e2, v2e1 − v1e2)+ 1

2
µr2(v2

1 + v2
2). (3.37)

Clearly, this system becomes Veselova for r = 0. Using Proposition 3.3 and Fedorov’s
result for two degrees of system, we get Proposition 3.6.

Proposition 3.6. The compressed rubber ball system is Hamiltonizable. The confor-
mal factor is

f = [det Legcomp]−1/2 (3.38)

= (I1I2I3)−1/2

(
(A−1γ, γ )+ µr2

[
γ 2

2 + γ 3
3

I2I3
+ γ 2

1 + γ 3
3

I1I3
+ γ 2

1 + γ 3
2

I1I2

]
+ µ2r4

I1I2I3

)−1/2

.

Proof. We checked using spherical coordinates and MathematicaTM.22

3.3 Chaplygin’s marble is not Hamiltonizable at the T ∗SO(3) level

The homogeneous sphere

In a nutshell, the dynamics in the homogeneous case are embarrassingly simple.
The angular velocity in space is constant, so the attitude matrix R evolves as a one-
parameter group R = exp([ω]t), so � and ω are constant. The vector γ (t) describes
a circle in the sphere perpendicular to ω, and L(t) the curve given by L(t) = (I +
µr2)ω−ω3γ (t). Provided 	 is not vertical, L and γ are never parallel. The invariant
tori are always foliated by closed curves and the two frequencies coincide. From

22 We can provide the (short) notebook under request. It should be investigated if the rubber
ball problem is integrable. Does a (quartic) integral still exist?
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the constraint equations we see that the motion of the contact point in the plane is
a straight line. Shooting pool with a perfect Chaplygin ball is very dull.23 Let us
use these simple results as template for our operational system. In terms of the right
coframe, we have

�NH = d	1ρ1 + d	2ρ2 + d	3ρ3 + 	1ρ2ρ3 + 	2ρ3ρ1 + 	3ρ1ρ2

− µr2(ω2ρ3ρ1 + ω1ρ2ρ3).
(3.39)

This formula holds in general. In the nonhomogeneous case one must write ω1 and
ω2 in terms of 	 and R ∈ SO(3): ω = R� = R�γ (R−1	) which seems to be a quite
involved expression, a haunting monster we will avoid, until a final confrontation in
Proposition 3.8. In the homogeneous case, life is much easier: ω = R 1

κ
IR−1m = 1

I
m,

so the dependence of ω on R disappears. The Hamiltonian is given by

H = 1

2

(
	2

1 + 	2
2

I + µr2

)
+ 	2

3

I
,

where

	1 =
(

1+ µr2

I

)
m1, 	2 =

(
1+ µr2

I

)
m2, 	3 = m3,

ω1 = m1

I
, ω2 = m2

I
, ω3 = m3

I
.

To obtain the equations of motion we solve⎛
⎜⎜⎜⎜⎜⎜⎝

ω1
ω2
ω3

	̇1

	̇2

	̇3

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 	3 −Iω2
0 −1 0 −	3 0 −Iω1
0 0 −1 Iω2 −Iω1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
ω1
ω2
ω3

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.40)

where we have used H	1 = 	1/(I + µr2) = m1/I = ω1, and similarly, H	2 =
ω2, H	2 = ω2. This gives, as expected

	̇1 = (Iω3)H	2 − Iω2H	3 = 0, 	̇2 = · · · = 0, 	̇3 = · · · = 0.

Thus ωi = mi/I = const, i = 1, 2, 3, and the vector field is simply X = ω1X
right
1 +

23 We found the following relevant information in www.ot.com/skew/five/myths. html (Top
Ten Myths in Pool or the Laws of Physics Do Apply): “4. If the cue is kept level, contacting
the cueball purely left or right of its center will make it curve as it rolls. (No! The rolling cue
ball can have two completely independent components to its angular momentum. Basically,
this means that it can rotate in the manner of a top while rolling slowly forward along a
straight line. In general, spin on a cue ball is of two types; follow/draw is the spin like tires
on a car, while English is the spin like a child’s toy ‘top.’ Separately, neither one will make
a ball curve! If they are combined—e.g., strike low-left giving left English and draw—then
the spin is called masse (“mass-ay’’), and the ball will curve as it travels.)’’
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ω2X
right
2 + ω3X

right
3 (no components in the fiber directions ∂/∂mi). We now use

Theorem 3.4. Using m as coordinates, the nonholonomic 2-form is given by

�NH =
(

1+ µr2

I

)
(dm1ρ1 + dm2ρ2)

+ dm3ρ3 + (m1ρ2ρ3 +m2ρ3ρ1 +m3ρ1ρ2)

so that d�NH = −µr2

I
(dm1ρ2ρ3 + dm2ρ3ρ1). It is easy to see that the equation

d�NH = �NH ∧ α has no solution. Indeed, suppose α = A1dm1 + A2dm2 +
A3dm3 + B1ρ1 + B2ρ2 + B3ρ3. Taking the exterior product, and looking at terms
like dm1dm2ρ2 we see that all the A’s must be zero. Examining the coefficient of
ρ1ρ2ρ3 we get B1m1 + B2m2 + B3m3 ≡ 0 so all the B’s are also zero.

Hence the homogeneous Chaplygin sphere, as simple at it can be, has no conformal
symplectic structure! In fact, it does not have an affine symplectic structure either. A
short calculation shows that

iXd�NH = µr2

I 2
(−dm1m2ρ3 + dm1ρ2m3 − dm2m3ρ1 + dm2ρ3m1) �= 0.

By continuity, for sufficiently close but different inertia coefficients the inequalities
persist. We have also done the calculation for the nonhomogeneous case and things
only get worse. But, it still remains a possibility: is the reduced system to T ∗S2

Hamiltonizable? The impatient reader can go directly to Theorem 3.8.

3.4 Chaplygin’s marble: Reduction to T ∗S2

Using (1.8), L = a×γ +	3γ , Chaplygin’s marble equations in (L, γ )-space directly
reduce to T ∗S2:

γ̇ = γ ×�, ȧ = −2Hγ + (γ, �) · (a × γ + 	3γ ) (3.41)

with

� = �(a, γ ; 	3) = Ã−1L+ µr2 (γ, Ã−1L)

1− µr2(γ, Ã−1γ )
Ã−1(γ ).

S1 reduction of the homogeneous sphere to T ∗S2

The homogeneous Chaplygin sphere when reduced to T ∗S2 produces a more inter-
esting system. Equations (3.41) become

γ̇ = 1

I + µr2
a, ȧ = ω3a × γ − 1

I + µr2
|a|2γ. (3.42)

One observes that (a, γ ) = 0 and that |a|2 is conserved. So at each level set, we get
an isotropic 3D oscillator with a Lorentz force.24

24 Alan Weinstein commented on more than one occasion that “unreduction’’ sometimes is
even nicer than reduction: unreducing a nontrivial system may lead to a trivial one. Alan
credits this to Guillemin and Sternberg; one reference could be Guillemin and Sternberg
[1980].
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Dimension count argument

In hindsight, we can give two simple arguments why the Chaplygin marble could
not be Hamiltonizable at the T ∗SO(3) level. First, if (T ∗SO(3), �NH , H) were
Hamiltonizable, the system would be Liouville integrable by “mere’’symmetries, due
to the existence of three independent first integrals H, 	3, 	

2
1+ 	2

2, 	
2
3. But it is known

that integrability of Chaplygin’s marble stems not from symmetries, but from a special
choice of separating coordinates (Duistermaat [2000]), namely, elliptic coordinates
on the sphere. Second, Stanchenko [1985] verified that Chaplygin’s density function
F (3.31) of the system in R

6 also gives an invariant measure on T ∗SO(3) (see also
Duistermaat [2000], Section 7),

νT ∗SO(3) = F(γ )dλ1dλ2dλ3dL1dL2dL3, F = [1− µr2(γ, Ã−1γ )]−1/2.

(3.43)
Were the compressed system Hamiltonizable in T ∗SO(3), the conformal factor (time

reparametrization) would be F(γ )
1

m−1 , with m = 3; see (3.13). But the correct time
reparametrization holds with m = 2 instead of m = 3. This strongly suggests that
Hamiltonization should be attempted after reduction of the internal S1 symmetry.

Phase locking

The fact that Chaplygin’s sphere is integrable implies an interesting phase locking
property. For simplicity, consider a resonant torus and a periodic solution, γ (T ) =
γ (0), L(T ) = L(0). We may assume that R(0) = identity, so R(T ) preserves both k

and 	. If we assume 	 �= ±k, then R(T ) must also be the identity (there is only one
orthogonal matrix with two different eigenvectors with equal eigenvalues 1). Since the
rotational conditions are reproduced after time T , there is a “planar geometric phase’’
(meaning a translation), �z = (�x, �y). From Duistermaat [2000], Section 11, one
knows this direction.

Proposition 3.7. On average, �z moves in the direction of 	× k.

In the normal direction k×(	×k) there is a “swaying motion,’’with zero average,
see Duistermaat [2000], (11.71), and Remark 11.11. This result depends on the explicit
solution in terms of elliptic coordinates, but the zero average can be proved in a more
elementary way, see Duistermaat, Section 8.2. In the direction 	× k one has

d

dt
(z(t), 	× k) = r(ω × k, 	× k) = r(ω, 	− 	3k) = r(2T − 	3ω3) > 0.

Duistermaat [2000] shows (in Section 9.2) that by a suitable change of coordinates,
one may assume that 	3 = 0, so in this equivalent problem, the velocity in this
direction is simply 2rT .

Chaplygin’s marble via the almost Hamiltonian structure

After this detour, we hope the reader will appreciate a concise way of describing this
system. The clockwise map is
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T (SO(3)× R
2) −→

Leg
T ∗(SO(3)× R

2) (�, ẋ, ẏ) �→ (M = A�, Px = µẋ, Py = µẏ)

↑ ↑
h h

| |

T SO(3) ←−
(Legφ)−1

T ∗SO(3) � ← L,

(3.44)
where (ẋ, ẏ) = rω×k, and (Px, Py) = µrω×k. We now compute the “gyroscopic’’
2-form

(J.K) = r(−Pxdρ2 + Pydρ1) = µr(−ẋdρ2 + ẏdρ1) = −µr2(ω2dρ2 + ω1dρ1).

(3.45)
To obtain ω1 and ω2 as functions in T ∗SO(3), we use the Legendre transformation:
ω = R� = RA−1M , so (J.K) is a combination of the basic forms ρ3 ∧ ρ1, ρ2 ∧ ρ3
(coefficients linear in M and functions of R).

S1 invariance

We claim that �NH is S1-invariant (S1 acting only in the first factor of Q = SO(3)×
R

3). For the canonical term this is a standard symplectic fact. The (J.K) term is
invariant as well: (3.45), written in terms of the left-invariant forms, depends only on
the Poisson vector γ :

(J.K) = µr2 (γ × (�(L, γ )× γ ), dλ) . (3.46)

In fact, the S1 action generated by the right-invariant vector field X
right
3 maintains the

projection γ fixed. We know (general nonsense) that the right-invariant vector fields
preserve the left-invariant forms: R∗φλi = λi . (Proof: (R∗φλi)(Ṙ) = λi(RφR[�]) =
�i .) Since under the left S1 action (actually under the left action of SO(3) on SO(3))
the value of � remains unchanged, the (J.K) term is preserved.

The twisted action generator and S1 reduction

MW reduction method works fine, although Xr
3 is the Hamiltonian vector field of

J = 	3, relative to the canonical symplectic form, but not relative to �NH . We
just change to the twisted S1-action generator X̃3, defined by i

X̃3
�NH = −d	3. A

simple computation gives X̃3 = Xr
3 − m2

∂
∂	1
+ m1

∂
∂	2

, where m1 = 	1 − µr2ω1,

m2 = 	2 − µr2ω2. The reduced manifold is the quotient of a level 	3 in T ∗SO(3),
identifying the flow lines φ̃. A concrete realization is achieved using (1.11). Taking
the pullback via i∗, the reduced form is then

�red = �can
T ∗S2 + 	3areaS2 − µr2(ω1dθ2 − ω2dθ1), (3.47)

where we recall the parametrizations p1θ1 + p2θ2 ∈ T ∗S2, R(γ ) = rows(e1, e2, γ ).



112 K. Ehlers, J. Koiller, R. Montgomery, and P. M. Rios

In (3.47) we must write ω1, ω2 explicitly in terms of p1, p2, 	3. To write this
explicitly, there is no other option than to confront the monster (which actually is not
that terrible): from � = R−1ω = ω1e1 + ω2e2 + ω3γ and (3.26), we get

ω = R(γ )�γ [R(γ )]†	, 	 = (p2,−p1, 	3), (3.48)

where �γ is explicitly given by (3.30).

Theorem 3.8. iXd(f �red) �= 0, f (γ ) = [1− µr2(γ, Ã−1γ )]−1/2.

Proof. We used spherical coordinates (fâute de mieux) and a MathematicaTM note-
book. It misses being conformally symplectic by very little (even in the homoge-
neous case).25

Our calculation shows that Chaplygin’s sphere is not affine symplectic even at
the T ∗S2 level, so Chaplygin’s sphere integrability is due to a specific nonholonomic
phenomenon. This observation is in accordance with the opening statement in Duis-
termaat [2000]:

“Although the system is integrable in every sense of the word, it neither arises
as a Hamiltonian system, nor is the integrability an immediate consequence
of the symmetries.’’

4 Recent developments and final comments

NH systems have a reputation of having peculiar (even rebellious) dynamic behavior
(Arnold, Kozlov, and Neishtadt [1988]). In spite of good progress, the general theory
for NH systems is way behind the theory of Hamiltonian systems. For instance,
although the groundwork for a Hamilton–Jacobi theory for NH systems has been set
up in Weber [1986], not much has been achieved since.

We have no intention (or competence) to make a survey of recent developments
in NH systems, especially regarding reduction of symmetries; nevertheless it may be
worth registering the intense activity going on. Recent books of interest are Cushman
and Bates [1997], Cortés [2002], Oliva [2002], Bloch [2003] and a treatise in the
mechanical engineering tradition is Papastavridis [2002].26 Reports on Mathematical
Physics has been publishing NH papers regularly, and Regular and Chaotic Dynamics
devoted large parts of vols. 1/2 (2002) to NH systems. For older eastern European
literature, see P. M. M. USSR, J. Appl. Math. Mechanics, which has strongly influenced
Chinese mechanics as well. For a historical account of NH systems, from a somewhat
“antireductionist’’ perspective, see Borisov and Mamaev [2002a].
25 Borisov and Mamaev [2002] showed by a subtle numerical evidence that, in the original time,

Chaplygin’s marble is not Hamiltonizable at any level of reduction. The question whether
Chaplygin’s marble is Hamiltonizable in the new time dt/dτ = f (γ ) was addressed in
Borisov and Mamaev [2001]. They provide a bracket structure in terms of the coordinates
(L, γ ) or the coordinates (L̃, γ ), with L̃ = L/f (γ ). Using a computer algebra program we
checked that the second brackets satisfy the Jacobi identity. However, we could not recover
Chaplygin’s equations for the L coordinates, even in the homogenous case.

26 Reviewed in Koiller [2003].
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4.1 Invariant measures and integrability

Kupka and Oliva [2001] and Kobayashi and Oliva [2003] find conditions ensuring
a special, but very interesting situation, where the Riemann measure in T Q induced
by the metric in Q is an invariant measure for the NH system. Invariant measures
for systems with distributional symmetries were characterized in Zenkov and Bloch
[2003].

Curiously, although a number of interesting NH systems have been solved using
Abelian functions, a precise definition for integrability of a NH system is still lacking
(Bates and Cushman [1999]). These examples suggest that the presence of an invari-
ant measure must be imposed as a necessary (although not sufficient) condition for
integrability (whatever it may be), see Kozlov [2002]. Most of them have enough
integrals of motion that the dynamics occur on invariant two-dimensional tori. Due to
the invariant measure, the flow becomes linear in these tori after a time rescaling. This
follows from Jacobi’s multiplier method and Kolmogorov’s theorem (Arnold [1989]).
Time reparametrization indicates the possibility of an affine symplectic structure. We
believe that characterizing NH systems possessing an affine symplectic structure (if
needed, after some reduction stage) could be an interesting project. As a first step, one
may examine the existing literature to see which examples fit. We list a few papers for
that purpose: Veselov and Veselova [1988], Veselov and Veselova [1986], Fedorov
[1989], Cushman, Hermans, and Kemppainen [1995], Zenkov [1995], Zenkov and
Bloch [2000], Dragovic, Gajić, and Jovanovic [1998], Jovanovic [2003], Fedorov and
Jovanovic [2003]. One can hope that the manifestly geometric character of (1.14) can
be instrumental to understand when, where and why Hamiltonization is possible.
Moreover, a prior geometric understanding of the invariant volume form conditions
is a more general question. It would be also interesting to tie the “Hamiltonizable’’
question with the invariants from the Cartan equivalence viewpoint, see below.

4.2 Nonholonomic reduction

The difficulties in reduction for general NH systems are explained in Śniatycki [2002].
There are four current theories of reduction of symmety for nonholonomic systems27:

(i) projection methods; see Marle [1995], Dazord [1994];
(ii) the distributional Hamiltonian approach, initiated by Bocharov and Vinogradov

[1977] and developed in Bates and Śniatycki [1993], Cushman, Kemppainen,
Śniatycki, and Bates [1995], Śniatycki [1998], and Cushman and Śniatycki
[2002].

(iii) bracket methods, initiated by Mashke and van der Schaft [1994], and developed
by Koon and Marsden [1998] and Sńiatycki [2001];

(iv) Lagrangian reduction; see Cendra, Marsden, and Ratiu [2001].

A few other references in this rapidly developing theme, besides those already
mentioned are Bates [2002], Koon and Marsden [1997], Cantrijn, de Léon, Marrero,
and de Diego [1998], Cortés and de Léon [1999], Marle [1998], Marle [2003].
27 We thank one of the referees for this information.
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Almost Poisson, almost Dirac approaches

Mashke and van der Schaft [1994] were the first to describe a NH system using an
almost-Poisson structure,28 ẋi = {xi, H }MS . This bracket, defined on the manifold
P = Leg(H) ⊂ T ∗Q, where Leg : T Q → T ∗Q is the Legendre transformation,
in general does not satisfy the Jacobi identity. They proved that the Jacobi identity
holds if and only if the constraints are integrable. In Koiller, Rios, and Ehlers [2002]
we gave a moving frames based derivation of the bracket structure. For some recent
work on the MS-bracket and also Dirac estructures (the latter introduced in Courant
[1990]), see Cantrijn, de Léon, de Diego [1999], Koon and Marsden [1998], Ibort,
de Léon, Marrero, and de Diego [1999], Clemente-Gallardo, Maschke, and van der
Schaft [2001]. In spite of these advances, a complete understanding of the NH bracket
geometry is still in order.29

4.3 G-Chaplygin systems via affine connections

Trajectories of the compressed system can be described as geodesics of an affine
connection∇NH in S (Vershik and Fadeev [1981], Koiller [1992]). For background in
this approach, see Lewis [1998] and references therein. Consider the parallel transport
operator along closed curves; if the holonomy group is always conjugate to a subgroup
of S0(m), then the connection is metrizable. This means that there is a metric such
that ∇NH is precisely the Levi-Civita connection of this metric. More generally, one
may want to know when the geodesics of ∇NH are, up to time reparametrization, the
geodesics of a Riemannian metric. This is a traditional area in differential geometry,
whose roots go back to the 19th century, and goes under the name of projectively
equivalent connections (Cartan [1937], Eisenhart [1925], Kobayashi and Nomizu
[1963], Sharpe [1997]). Grossman [2000] studies integrability of geodesics equations
via the equivalence method. Our problem, then, is to find conditions for the NH
connection to be projectively equivalent to a Riemannian connection. It would be
also interesting to tie the Hamiltonization question with the canonical system and
invariants of the Cartan equivalence method. When an internal symmetry group is
present, it would be desirable to construct a projected connection in S for each set of
conserved momenta, and address these issues in the reduced level.

Acknowledgments Our thanks to Hans Duistermaat for information on Chaplygin’s sphere and
the referees for very good criticism and suggestions. This is also a special occasion to thank our
mathematical family: Alan, of course; mathematical brothers and sisters from all continents
(especially Yilmaz Akyildyz and Henrique Bursztyn) and cousins (especially Tudor Ratiu and

28 Physicists are never shy to use the word “super’’ in their endeavors; on the other hand we,
mathematicians, prefer to use low-key terminology, like “almost-quasi-twisted-(freakaz-)-
‘oid’s’’; this certainly does not help our image problem with applied people, see Papastavridis
[2002] and Koiller [2003].

29 Observations by J. Marsden (joint work with H. Yoshimura), and by C. Marle in their
Alanfest talks are important steps in this direction.
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