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Introdução
Nas últimas aulas:

MMQ: aproximar função y = f (x) por uma função F(x),
combinação linear de funções conhecidas,

f (x) ≈ a0g0(x) + a1g1(x) + . . .+ amgm(x) = F(x),

tal que a distância entre f (x) e F(x), [(f − F, f − F)]1/2,
seja mínima.
Aproximação polinomial, trigonométrica.

Interpolação Polinomial: aproximar função y = f (x)
por um polinômio de ordem n, Pn(x), tal que

yk = f (xk) = Pn(xk), k = 0,1,2, . . . , n.

Fórmula de Lagrange, Newton.



Integração Numérica
Integrar numericamente função y = f (x) em dado
intervalo [a,b]: integrar aproximação de f (x), polinômio
Pn(x), no intervalo [a,b].

Queremos resolver integrais da forma:

∫ b

a

ω(x)f (x) dx,

onde ω(x) ≥ 0 e contínua em [a,b].
ω(x) é função peso.

Aproximar integral com Fórmulas de Quadratura ou
Fórmulas de Integração Numérica:

∫ b

a

ω(x)f (x) dx ≈
n
∑

k=0

Akf (xk)



Fórmulas de Quadratura Interpolatória
Sejam

1) x0, x1, . . . , xn n+ 1 pontos distintos em [a,b];
2) f0, f1, . . . , fn n+ 1 valores de função y = f (x);
3) Pn(x) polinômio de interpolação de y = f (x)

sobre n+ 1 pontos considerados,

Pn(x) =
n
∑

k=0

fkℓk(x).

Então,
∫ b

a

ω(x)f (x) dx ≈
n
∑

k=0

Akfk

onde Ak =
∫ b

a
ω(x)ℓk(x) dx.



Fórmulas de Newton-Cotes
Para calcular integral numericamente de f (x) em um
intervalo finito [a,b] tal que

a = x0 < x1 < · · · < xn−1 < xn = b,

xk+1 − xk = h, k = 0,1, . . . , n− 1;
ω(x) = 1,

então
∫ b

a

f (x) dx =

∫ xn

x0

f (x) dx ≈
n
∑

k=0

fk

∫ xn

x0

ℓk(x) dx.

ℓk(x) para argumentos igualmente espaçados torna
∫ xn

x0

ℓk(x) dx = h

∫ n

0

u(u− 1) . . . (u− (k − 1))(u− (k+ 1)) . . . (u− n)
k(k − 1) . . . (k − (k − 1))(k − (k+ 1)) . . . (k − n)

du



Fórmulas de Newton-Cotes do tipo fechado
Caso 1: n = 1, x0, x1, polinômio do 1o. grau.
Regra do Trapézio

∫ x1

x0

f (x) dx ≈
h

2
[f (x0) + f (x1)]

Dividindo intervalo [a,b] em N sub-intervalos de
amplitude h = b−a

N , aplicar Regra do Trapézio em cada
sub-intervalo [xj, xj+1], j = 0,1, . . . ,N− 1 (cada intervalo
tem 2 pontos).

Regra do Trapézio Generalizada
∫ xN

x0

f (x) dx ≈

≈
h

2

�

f (x0) + 2 [f (x1) + f (x2) + . . .+ f (xN−1)] + f (xN)
	



Fórmulas de Newton-Cotes do tipo fechado
Caso 2: n = 2, x0, x1, x2, polinômio do 2o. grau.
Regra 1

3 de Simpson
∫ x2

x0

f (x) dx ≈ h

�

1

3
f (x0) +

4

3
f (x1) +

1

3
f (x2)

�

Dividindo intervalo [a,b] em (número par) 2N
sub-intervalos de amplitude h = b−a

2N , aplicar Regra 1
3 de

Simpson em cada sub-intervalo [x2j, x2j+2],
j = 0,1, . . . ,N− 1 (cada intervalo tem 3 pontos).

Regra 1
3 de Simpson Generalizada

∫ x2N

x0

f (x) dx ≈

≈
h

3
[f (x0) + 4f (x1) + 2f (x2) + . . .+ 4f (x2N−1) + f (x2N)]



Fórmulas de Newton-Cotes do tipo fechado
Caso 3: n = 3, x0, x1, x2, x3, polinômio do 3o. grau.
Regra 3

8 de Simpson

∫ x3

x0

f (x) dx ≈
3

8
h [f (x0) + 3f (x1) + 3f (x2) + f (x3)]

Pode-se derivar a
Regra 3

8 de Simpson Generalizada
do mesmo modo que os casos anteriores, com quatro
pontos por sub-intervalo de amplitude h = b−a

3N , com
total de sub-divisões sendo múltipla de 3.



Erro nas fórmulas de Newton-Cotes
Teorema - Erro com n ímpar
Se os pontos xj = x0 + jh, j = 0,1, . . . , n dividem [a,b] em um número
ímpar de intervalos iguais e f (x) tem derivada de ordem (n+ 1)
contínua em [a,b], então a expressão do erro para as fórmulas de
Newton-Cotes do tipo fechado, com n ímpar, é dada por:

R(f ) =
hn+2f (n+1)(ξ)

(n+ 1)!

∫ n

0
u(u− 1) . . . (u− n) du,

para algum ponto ξ ∈ [a,b].

Teorema - Erro com n par
Se os pontos xj = x0 + jh, j = 0,1, . . . , n dividem [a,b] em um número
par de intervalos iguais e f (x) tem derivada de ordem (n+ 2)
contínua em [a,b], então a expressão do erro para as fórmulas de
Newton-Cotes do tipo fechado, com n par, é dada por:

R(f ) =
hn+3f (n+2)(ξ)

(n+ 2)!

∫ n

0

�

u−
n

2

�

u(u− 1) . . . (u− n) du,

para algum ponto ξ ∈ [a,b].



Erro nas fórmulas de Newton-Cotes
Regra do Trapézio
Erro sobre intervalo [x0, x1], com n = 1:

R(f ) =
h3f ′′(ξ)

2!

∫ 1

0
u(u− 1) du =

h3f ′′(ξ)

2!

�

−
1

6

�

=

= −
h3

12
f ′′(ξ), x0 < ξ < x1

Assim,
∫ x1

x0

f (x) dx ≈
h

2
[f (x0) + f (x1)]



Erro nas fórmulas de Newton-Cotes
Regra do Trapézio
Erro sobre intervalo [x0, x1], com n = 1:

R(f ) =
h3f ′′(ξ)

2!

∫ 1

0
u(u− 1) du =

h3f ′′(ξ)

2!

�

−
1

6

�

=

= −
h3

12
f ′′(ξ), x0 < ξ < x1

Assim,
∫ x1

x0

f (x) dx =
h

2
[f (x0) + f (x1)]−

h3

12
f ′′(ξ), x0 < ξ < x1



Erro nas fórmulas de Newton-Cotes
Regra do Trapézio Generalizada
Adicionar N erros da Regra do Trapézio, com N = b−a

h :

∫ x1

x0

f (x) dx ≈
h

2
[f (x0) + 2 (f (x1) + . . .+ f (xN−1)) + f (xN)]



Erro nas fórmulas de Newton-Cotes
Regra do Trapézio Generalizada
Adicionar N erros da Regra do Trapézio, com N = b−a

h :

∫ xN

x0

f (x) dx =
h

2
[f (x0) + 2 (f (x1) + . . .+ f (xN−1)) + f (xN)]

−
Nh3

12
f ′′(ξ)

=
h

2
[f (x0) + 2 (f (x1) + . . .+ f (xN−1)) + f (xN)]

−
(b− a)

12
h2f ′′(ξ), x0 < ξ < xN



Erro nas fórmulas de Newton-Cotes
Regra 1

3 de Simpson
Erro sobre intervalo [x0, x2], com n = 2:

R(f ) =
h5f (4)(ξ)

4!

∫ 2

0
(u− 1)u(u− 1)(u− 2) du =

h5f (4)(ξ)

4!

�

−
4

15

�

=

= −
h5

90
f (4)(ξ), x0 < ξ < x2

Assim,
∫ x2

x0

f (x) dx ≈
h

3
[f (x0) + 4f (x1) + f (x2)]



Erro nas fórmulas de Newton-Cotes
Regra 1

3 de Simpson
Erro sobre intervalo [x0, x2], com n = 2:

R(f ) =
h5f (4)(ξ)

4!

∫ 2

0
(u− 1)u(u− 1)(u− 2) du =

h5f (4)(ξ)

4!

�

−
4

15

�

=

= −
h5

90
f (4)(ξ), x0 < ξ < x2

Assim,
∫ x2

x0

f (x) dx =
h

3
[f (x0) + 4f (x1) + f (x2)]−

h5

90
f (4)(ξ), x0 < ξ < x2



Erro nas fórmulas de Newton-Cotes
Regra 1

3 de Simpson Generalizada
Adicionar N erros da Regra 1

3 de Simpson, com N = b−a
2h :

∫ x2N

x0

f (x) dx ≈

≈
h

3
[f (x0) + 4f (x1) + 2f (x2) + . . .+ 2f (x2N−2) + 4f (x2N−1) + f (x2N)]



Erro nas fórmulas de Newton-Cotes
Regra 1

3 de Simpson Generalizada
Adicionar N erros da Regra 1

3 de Simpson, com N = b−a
2h :

∫ x2N

x0

f (x) dx =

=
h

3
[f (x0) + 4f (x1) + 2f (x2) + . . .+ 2f (x2N−2) + 4f (x2N−1) + f (x2N)]

−
Nh5

90
f (4)(ξ)

=
h

3
[f (x0) + 4f (x1) + 2f (x2) + . . .+ 2f (x2N−2) + 4f (x2N−1) + f (x2N)]

−
(b− a)

180
h4f (4)(ξ), x0 < ξ < x2N



Erro nas fórmulas de Newton-Cotes

Regra 3
8 de Simpson (Simples e Generalizada):

Simples

R(f ) = −
3h5

80
f (4)(ξ), x0 < ξ < x3

Generalizada

R(f ) = −
(b− a)h4

80
f (4)(ξ), x0 < ξ < x3N,

com N = b−a
3h .



Polinômios Ortogonais
Para utilizar fórmulas de quadratura de Gauss,
precisamos saber mais sobre polinômios ortogonais.

Sejam ϕ0(x), ϕ1(x), . . . família de polinômios de graus
0,1, . . .. Se

�

ϕi(x), ϕj(x)
�

= 0, para i 6= j,

(ϕi(x), ϕi(x)) 6= 0, para ϕi(x) 6= 0,

então ϕ0(x), ϕ1(x), . . . são ortogonais.
Considerando produto escalar

(f , g) =

∫ b

a

ω(x)f (x)g(x) dx,

com ω(x) ≥ 0 e contínua em [a,b]; ω(x) é função peso.



Polinômios Ortogonais
Polinômios ortogonais mais conhecidos (e tabelados):

Legendre
Polinômios P0(x), P1(x), . . . obtidos usando prod. escalar

(f , g) =

∫ 1

−1
f (x)g(x) dx,

com ω(x) = 1, a = −1, b = 1.

Tchebyshev
Polinômios T0(x), T1(x), . . . obtidos usando prod. escalar

(f , g) =

∫ 1

−1

1
p

1− x2
f (x)g(x) dx,

com ω(x) = 1p
1−x2

, a = −1, b = 1.



Polinômios Ortogonais
Polinômios ortogonais mais conhecidos (e tabelados):

Laguerre
Polinômios L0(x), L1(x), . . . obtidos usando prod. escalar

(f , g) =

∫ ∞

0
e−xf (x)g(x) dx,

com ω(x) = e−x, a = 0, b =∞.

Hermite
Polinômios H0(x),H1(x), . . . obtidos usando prod. escalar

(f , g) =

∫ ∞

−∞
e−x

2
f (x)g(x) dx,

com ω(x) = e−x
2
, a = −∞, b =∞.



Fórmulas de Quadratura de Gauss
Fórmulas usadas para calcular valor aproximado de

∫ b

a

ω(x)f (x) dx

através de
∫ b

a

ω(x)f (x) dx ≈
n
∑

k=0

Akf (xk),

onde Ak =
∫ b

a
ω(x)ℓk(x) dx.



Quadratura de Gauss
Procedimento

1. Determinar o polinômio ortogonal ϕn+1(x), segundo o produto
escalar conveniente, com função peso ω(x) e em [a,b].

2. Calcular as raízes x0, x1, . . . , xn de ϕn+1(x).

3. Determinar polinômios de Lagrange ℓk(x), k = 0,1, . . . , n,
usando os pontos x0, x1, . . . , xn obtidos.

4. Calcular Ak =
∫ b

a
ω(x)ℓk(x) dx, k = 0,1, . . . , n.

5. Calcular valor de f (x) em x0, x1, . . . , xn.

6. Calcular
∫ b

a
ω(x)f (x) dx ≈

n
∑

k=0

Akf (xk).

Obs.: Vale para qualquer produto escalar. Para
produtos escalares dados (Legendre, Tchebyshev,
Laguerre, Hermite), itens 1 a 4 já executados e
tabelados. Basta calcular os f (xk) e calcular a soma.



Fórmula de Quadratura de Gauss-Legendre
Para resolver integrais na forma

∫ 1

−1
f (x) dx

(para intervalo diferente, fazer mudança de variável).
Usando tabela (Tabela 1 do livro-texto):

xi Ai
N = 2

0.5773502691 (1)0.1000000000

N = 3
0.7745966692 0.5555555555
0.0000000000 0.8888888888



Fórmula de Quadratura de Gauss-Tchebyshev
Para resolver integrais na forma

∫ 1

−1

1
p

1− x2
f (x) dx

(para intervalo diferente, fazer mudança de variável).
Usando tabela (Tabela 2 do livro-texto):

xi Ai
a = −1/2
N = 2

0.7071067811 (1)0.1570796326

N = 3
0.8660254037 (1)0.1047197551
0.0000000000 (1)0.1047197551



Fórmula de Quadratura de Gauss-Laguerre
Para resolver integrais na forma

∫ ∞

0
e−xf (x) dx

(para intervalo diferente, fazer mudança de variável).
Usando tabela (Tabela 3 do livro-texto):

xi Ai
N = 2

0.5857864376 0.8535533905
(1)0.3414213562 0.1464466094

N = 3
0.4157745567 0.7110930099

(1)0.2294280360 0.2785177335
(1)0.6289945082 (−1)0.1038925650



Fórmula de Quadratura de Gauss-Hermite
Para resolver integrais na forma

∫ ∞

−∞
e−x

2
f (x) dx.

Usando tabela (Tabela 4 do livro-texto):

xi Ai
N = 2

0.7071067811 0.8862269254

N = 3
(1)0.1224744871 0.2954089751

0.0000000000 (1)0.1181635900



Erro nas Fórmulas de Gauss
Todas as fórmulas (Gauss-Legendre, Gauss-Tchebyshev,
Gauss-Laguerre, Gauss-Hermite) possuem erro com
derivadas de f de ordem 2n+ 2, onde n é o índice do
último ponto considerado no cálculo da integral.


