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ABSTRACT
We defend the thesis that the use of text analytics can boost
the results of analyses based on Singular Value Decomposi-
tion (SVD). To demonstrate our supposition, first we model
the Digital Bibliography & Library Project (DBLP) as a
relational schema; over this schema we use text analytics
applied to the terms extracted from the titles of the articles.
Then, we apply SVD on the relationships defined between
these terms, publication vehicles, and authors; accordingly,
we were able to identify the more representative communi-
ties and the more active authors relating them to the most
meaningful terms and topics found in their respective pub-
lications. The results were semantically dense and concise,
also leading to performance gains.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra-
Singular Value Decomposition; H.2.8 [Database Applica-
tions]: Data mining

Keywords
DBLP, relational data, data analysis, matrix factorization,
singular value decomposition

1. INTRODUCTION
We consider the Digital Bibliography & Library Project
(DBLP) as a relational database over which we define an
extensive analytical process based on text and linear-algebra
analytical techniques. We model DBLP as a relational
schema in which its entities (authors, events, vehicles, and
terms) correspond to nodes of a graph representation, and
its relationships correspond to edges. We use text analyt-
ics techniques to process the terms found on the articles’
titles; then, we use Singular Value Decomposition (SVD),
a powerful algebraic technique – also known as spectral de-
composition – for matrix (graph) analysis.

2. RELATED WORK
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Singular value decomposition (spectral analysis) has been
explored in many scenarios. In the work of Prakash et al.
[6], the authors obtain the SVD from Laplacian representa-
tions, and then plot the vectors of the first matrix of the de-
composition against themselves in what they call EE-plots.
They found that such plots are very informative in what
concerns communities. In another work, Kang et al. [1] ex-
plain how to calculate SVD’s from billion-scale graphs, an
operation that has several performance issues. To do so,
they use MapReduce and Hadoop technologies for parallel
distributed processing.

Leting et al. [7] perform spectral analysis over signed
graphs. They found that such graphs have specific proper-
ties; in special, they found that when a graph is signed, its
communities are more clearly observed, even if the connec-
tions among them tend to increase. Maruhashi and Falout-
sos [5] introduce EigenDiagnostics, an algorithm that cal-
culates and combines several spectral measures to spot pat-
terns in graph-represented data. In another work, Kim et al.
[2] apply spectral analysis over blog data (or blogosphere).
They found a set of outstanding communities derived from
the relationships drawn from blogs and posts; also, they were
able to characterize and interpret the communities based on
the key terms used to compose the posts.

Our work differs from former proposals as we combine
text analytics with spectral analysis to gain deeper insight
from the computer science literature – we aim at identifying
main publication vehicles, authoritative authors, and preva-
lent communities, among other facts. In our experiments, we
demonstrate that by refining the data before the SVD fac-
torization, it is possible to pronouncedly improve the data
analysis.

3. SINGULAR VALUE DECOMPOSITION
Technique SVD is a matrix factorization method widely used
in applications such as signal processing and statistics [8].
Given an An×m matrix, let U be an nxr matrix whose
columns are the singular vectors orthogonal to Λ, and V T

be the rxm matrix whose columns are the singular vectors
orthogonal to Λ; then A can be defined by equality 1.

An×m = Un×rΛr×rV
T
r×m =

rank(A)∑
i=1

(λiui ⊗ vi) (1)

where the symbol ⊗ is the outer product of two given vec-
tors, and rank(A) is the rank of matrix A. The rank of a ma-
trix is the number of linearly independent rows (or columns)
in it; thus,rank(A)≤ min{m,n}.
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We use SVD for two reason: (1) Detect communities
and outstanding elements, according to which, after the
singular-factorization, the largest singular values will corre-
spond to subsets (communities) in which the elements both
of the rows and of the columns interact more intensely; also,
the largest values found in the singular vectors of matri-
ces Un×r and V Tr×m will correspond to line and column ele-
ments that are highly active, spotting outstanding elements
for the sake of analysis; and (2) Dimensionality Reduc-
tion, DBLP data has a high dimensionality in number of
rows and columns; however, its intrinsic dimensionality is
not that high, as many authors are inactive. It means that
many dimensions are redundant in respect to the most sig-
nificant data; for this reason we use technique low-rank ap-
proximation in order to restrict data to its most significant
elements. This technique is given by:

An×m ≈ Un×rΛ̃r×rV Tr×m (2)

where Λ̃ contains only the largest singular values, with the
others being replaced by zero.

4. METHODOLOGY
Here we present an overview of the seven steps of our
methodology: (1) Pre-processing and cleaning, (2) Model-
ing, (3) Relational transformation, (4) Selection, (5) Pro-
cessing SVD, (6) Analysis - SVD, and (7) Interpreta-
tion/Evaluation – as illustrated in Figure 1. In the following
sections, we provide details of each step.

4.1 Pre-processing and cleaning
DBLP data is full of redundancy, lack of conformity, non-
homogeneity, and noise. Therefore, before we can start pro-
cessing it, we must clean it up using multiple techniques ap-
plied to the papers’ titles, names of authors, events, and ve-
hicles. Our cleaning step includes the following techniques:
(a) ASCII conversion of characters; (b) tokenization, the
first step for text preparation in areas as natural language
processing (NLP) and information retrieval (IR); (c) removal
of stopwords, words that appear with high frequency in text
sentences, but that have no content that can help in in-
terpretation; and (d) stemming of the terms of the papers’
titles, the combination of different forms of a word in a word
representative joint, the stem.

4.2 Data modeling and relational transforma-
tion

Since DBLP is available in XML semi-structured format, it
is not readily adequate to be represented as a graph; XML
demands intense parsing operations, and does not support
aggregation for the task of weighting the edges of the graph
representation. Therefore, we firstly described DBLP as an
entity-relationship model, further transforming it into a re-
lational database. The model contains many-to-many rela-
tionships that describe the same information as that com-
prised by weighted graphs. This property is the focus of our
analysis by means of SVD algebra.

4.3 Data selection
As presented in Table 1, the main entities of the database
are Author and Article; the essence of DBLP’s literature or-
bits this two entities. The former corresponds to 1,054,199
instances and the latter corresponds to 1,801,576 instances.

These numbers are by far too large for algebraic processing,
therefore we filtered them out by analyzing their distribu-
tion.

Table 1: Entities involved in our analysis
Entity Number of entities

Authors 1,054,199
Articles 1,801,576
Events 3,050
Vehicles 4,262 (1,137 journals and 3,125 conferences)

4.3.1 Authors selection
One thing about DBLP is that it is heavily unbalanced in
respect to its authors’ production in number of articles. To
verify this aspect closely, we plotted the Authors-Articles
distribution in Figure 2(a). The plot shows a long-tail dis-
tribution in which the majority of authors has no more
than 22 articles - more precisely this portion corresponds to
1,016,354 authors, or∼ 96% of the instances. DBLP has also
over 80 authors with more than 300 articles, and a cham-
pion author with over 600 articles. The plot clearly depicts
a power-law distribution according to which the number of
authors (y) having a certain number of articles (x) varies as
a power of the number of articles, that is:

y ∝ 106x−2,06 (3)

If we look close, this distribution is an instance of the
Pareto Principle, or 80-20 rule, as ∼ 24% of the authors are
responsible for ∼ 76% of the articles; while ∼ 76% of the
authors are responsible for only ∼ 24% of the articles – see
Figure 2(b). This leaded us to restrict our analysis to the
24% more prolific authors, that is, the 255,455 authors with
4 or more articles.
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Figure 2: Authors-Articles distribution. (a) Num-
ber of articles × Number of authors. (b) Rank-plot
on Author index × Number of articles.

4.3.2 Terms selection
Articles carry more information than simply defining in-
stances; all of them have a title composed of a set of semantic
terms. The semantics of such terms can be used to interpret
and correlate DBLP data with richer details because specific
terms address specific areas and research interests. By con-
sidering the terms of the titles instead of the articles, we got
two advantages: since many terms appear recurrently in the
titles, there are 292,919 terms, much less than the number
of articles; and, interpreting key terms is simpler than in-
terpreting complex titles. The drawback is that many terms
appear in a frequency high enough to prevent valuable inter-
pretation (e.g., “complex” and “efficient”); therefore, in this
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Figure 1: Diagrammatic representation of our analytical process.

step, we select the most relevant terms from the titles of the
articles.

In order to choose the terms, we calculated their term
frequency (TF); thus, we counted them and plotted the re-
sults. In Figure 3, we can see the most frequent terms x
the term rank. There we can observe two things: (1) there
are too many terms with very low frequency; these terms
are considered irrelevant to semantic text analysis; (2) there
are many terms with very high frequencies - these terms are
also considered irrelevant.
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Hence, to restrict our space of terms, we interpreted the
distribution of the terms according to Lunh’s work [4] and
Zipf’s Law, which states that the most significative terms
(TS) are those that are not too common, and neither those
that are too rare; and, also, that the significance of the terms
is given by the Normal Distribution centered on the mean
(µ) of the TF-rank and standard deviation (σ), and given
by equation 4:

TS(i) = f(ri;µ, σ) =
1

σ
√

2π
e−(ri−µ)2/2σ2

(4)

where ri is the TF-rank of the term i, and TS(i) is the
significance value of the term i.

In our case µ = 2033.6 and σ = 412.1392, what gives us
the plot seen in Figure 4(a). In the plot, the terms near

the left end are high frequency terms, which are generally
too common to be significant; the terms near the far right
are low frequency terms, too rare to be significant. There-
fore, the most useful terms are in the mid-range, the core
of the importance given by a Normal Distribution. We use
the techniques of Liu and Hoeber [3] in order to algorithmi-
cally identify the best cut; the technique generated the curve
seen in Figure 4(b), which corresponds to re-calculated im-
portance of the terms after processing. Finally, we were left
with the 4,061 most significant terms.
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Figure 4: (a) TF-rank × Term significance (b)
Term × Re-calculated importance of the terms (re-
weighted).

5. EXPERIMENTS: SINGULAR VALUE
DECOMPOSITION AND ANALYSIS

For our experiments, we use datasets of vehicles (all the
conferences, workshops, and journals), authors, and terms,
selected as described in subsections 4.3.1 and 4.3.2. With
these sets of entities, we considered two experimental cases
as summarized in Table 2.

In order to apply the Singular Value Decomposition, we
represent, one at a time, each of the two experiment cases as
nxm matrices A where n is the number of Terms and m is
the number of Vehicles (cases 1) or Authors (case 2). This
matrix was based on a bipartite graph defined by entities
and relationships of our relational schema. After each pro-



Table 2: Dataset configurations used in the experi-
ments.

case 1: Terms (Luhn) x Vehicles
(Luhn)

Elements

Terms 4,061
Vehicles 3,014
Case 2: Terms (Luhn) x Authors Elements

Terms 4,360
Authors 255,455

cessing, we ended up with three matrices, Un×r, Λr×r, and
V Tr×m, as predicted by the SVD theory – Equation 1.

5.1 Case 1: Terms (Luhn) x Vehicles (Luhn)
In this case, we selected the terms based on Luhn’s the-
ory, what caused the number of terms to be much lower.
Though less terms, we ended up with terms that are not
too frequent, neither too rare; that is, now we use the 4,096
most significant terms in contrast to the elevated number of
20,905 terms of the former experiment.

In this case, the denser semantic content led us to a bigger
number of significant communities. Now, the singular values
sum up to 80% and 90% only when we consider the 19 up
to the 40 highest singular values – see Figure 5. This is a
more intuitive result because there are many disciplines and
interrelated disciplines in computer science; therefore, an
elevated number of communities is expected. We proceeded
the same way for selecting the most representative vehicles;
with Luhn’s theory we excluded the vehicles that were too
prolific and those that had too few publications every year.
From initial 4,254 vehicles, we went to 3,014.
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Figure 5: Scree-plot of the energy levels of the SVD
for Terms (Luhn) x Vehicles.

Here we use again the scores of the vectors vr and ur to
identify the most important terms and vehicles. In Table
3, we present 6 sample communities along with their most
important terms. One can observe a deeper specificity of
the communities due to the higher semantic density used in
the analysis. Furthermore, in Table 4, we review the most
important vehicles for the sample communities C2 and C16.
In community C2, the characterization of the community
is mainly given by conf/icip (International Conference on
Image Processing - IEEE ICIP), a traditional image pro-
cessing conference that is organized annually since 1994. In
community C16, in turn, there is a clear human-computer
interaction profile, as indicated by vehicles conf/chi (Hu-
man Factors in Computing Systems - ACM SIGCHI) which
was formed in 1982, and conf/hci (Human-Computer Inter-

action) founded in 1984. We can observe that an event is
more important if it is older.

Table 3: Terms (Luhn) x Vehicles (Luhn) – most
frequent terms in six communities.
Topic Most frequent terms

C2: image processing
and computer vision

imag, video, segment, recog-
nit, detect

C5: software engineering
and web

data, inform, softwar, web,
manag

C9: bio and parallel
computing

simul, protein, data, gene,
parallel

C16: interaction and
multimedia

fuzzi, interact, design, com-
put, video

C20: control systems
and programing

control, comput, stabil, lin-
ear, program

C29: chemical data pro-
cessing

molecular, chemic, structur,
studi, calcul

Table 4: Terms (Luhn) x Vehicles (Luhn) – top six
conference and journals in the second and sixteenth
community.

Vehicles (C2) Score #Articles

conf/icip 0.5670 13427
journals/ieicet 0.1835 12106
conf/icra 0.1774 11694
conf/icc 0.1587 6439
conf/vtc 0.1427 6875
Vehicles (C16) Score #Articles

conf/chi 0.2997 6903
conf/hci 0.2580 6323
journals/fss 0.2017 2669
conf/fuzzie 0.1804 6323
journals/nar 0.1304 2419

In this second experiment, we could observe that the SVD
processing was significantly improved by the selection of
terms based on the semantic filtering. In this case, the
communities were better characterized both in terms and in
vehicles, providing an insightful panorama of the computer
science research.

5.2 Case 2: Terms (Luhn) x Authors
In the last experiment, we joined authors and the terms of
the titles of the papers published by these authors. The
analysis, here, is supposed to indicate communities accord-
ing to the collaboration in between researchers rather than
the topics of vehicles. The SVD decomposition indicated a
large number – over 200 – of significant singular values in
λr as illustrated in Figure 6, an expected behavior since the
communities of authors obey to research groups, geograph-
ical proximity, and affinity in the area of expertise. As a
sample, we present two highly significant terms for 6 major
communities in Table 5. Based on these terms, we were able
to characterize each community and, also, to estimate how
active each community is, what is expressed by the order in
the table.

In Table 6, we used the score of matrix Vr×m in order to
track the most active authors in communities C2 and C4;
along with the score, we validated the profile of the authors
by checking the number of citations of each one at Microsoft
Academic Research repository. For example, in community
C2 the most important author is Thomas S. Huang with



19,988 citations; he is in the top 6 of the Most Prolific DBLP
Authors, having Pattern Recognition and Computer Vision
as his primary research area. The second most important
author is Wen Gao, with 16,336 citations, who is the top
4 most prolific author of DBLP; his research interests are
Pattern Recognition, Computer Vision and Multimedia. In
the same way, in community C4 the most authoritative au-
thor is Sudhakar M. Reddy, with 8,119 citations, who is the
573rd most prolific author of DBLP; his research interests
are Distributed and Parallel Computing. The second author
is Irith Pomeranz, with 5,563 citations, top 506 in DBLP,
and Distributed and Parallel Computing as his research in-
terests. These data demonstrated that the SVD method can
be quite effective and interpretable. Moreover, this analysis
is also applicable to other data domains with precision and
interesting analytical properties.
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Figure 6: Scree-plot of the energy levels of the SVD
for Terms (Luhn) x Authors.

Table 5: Terms (Luhn) x Authors – most frequent
terms in six communities.

Topic Most frequent
terms

C2: Pattern recognition and
image retrieval

imag, recognit, video,
learn, segment

C4: Graph Theory graph, problem, algo-
rithm, program, logic

C12: Image and Video Pro-
cessing

web, servic, video,
fuzzi, problem

C28: Intelligent Information
and Database Systems

databas, mobil, fuzzi,
queri, perform

C39: Visualization optim, visual, mobil,
semant, distribut

C50: Bioinformatics structur, protein, pre-
dict, scheme, sequenc

6. CONCLUSIONS
We presented an extensive analytical process suitable for
the relationships observed in relational databases. The pro-
posed process departs from the representation of the refer-
ences in between tuples (vertices) of the database as edges of
a graph, and involves techniques of text analytics combined
with Singular Value Decomposition. This way, our method-
ology is able to identify communities and outstanding ele-
ments according to the interrelationship that the elements of
the database define in the context of the relational schema.

We performed experiments over the DBLP dataset in or-
der to defend the thesis that the use of text analytics can
boost the results of SVD analysis. Our results demonstrated
that, with the aid of text-based techniques, the output of the

Table 6: Terms (Luhn) x Authors – top six author-
itative authors in the second and fourth communi-
ties.

Author (C2) Score #Articles

Thomas S. Huang 0.1115 605
Wen Gao 0.0840 606
HongJiang Zhang 0.0645 295
Chin-Chen Chang 0.0582 645
Edwin R. Hancock 0.0576 536
Barry L. Nelson 0.0552 255

Author (C4) Score #Articles

Sudhakar M. Reddy 0.0652 525
Irith Pomeranz 0.0636 448
Noga Alon 0.0525 443
Marek Karpinski 0.0467 268
Alan M. Frieze 0.04637 270
Wil M. P. van der Aalst 0.0424 280

SVD process is pronouncedly denser in terms of semantic
and specificity. Our results are explained by the use of tech-
niques that rely on Luhn’s theory and on Zipf’s law, what,
for the DBLP domain, produced a semantically concentrated
core of data to be processed before the SVD analysis; as con-
sequence, we achieved significant performance gains as well.
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