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Abstract 
 

This article presents the system “Neural Connect 4”, a 
program that plays the game Connect Four. This system 
employs the multilayer perceptron architecture which is 
learning through the supervised backpropagation 
algorithm. The required knowledge for training comes 
from saved games. 

After a short introduction to the game itself, the 
symbolic algorithms used for training and evaluation are 
described. Comparisons are made within a connectionist 
approach: effective and ineffective learning techniques 
are shown and the results are discussed. 

“Neural Connect 4” proves that artificial neural 
networks are completely adequate for learning Connect 
Four, given that certain principles are observed. 

 
 

1. Introduction 
 

Connect Four is a popular board game, easy to learn, 
but difficult to master, since tactical knowledge is 
required to play well. 

The system “Neural Connect 4” is based on the neural 
network capacity of learning this knowledge adequately. 

The main purpose of the project is to prove the abilities 
of Neural Networks to perform well in non-trivial 
situations. 

Other systems using Neural Networks with board 
games may be found as references ([1], [2] and [7]). 

 
2. Description of the game 
 
2.1. Basics 
 

Connect Four is a game which is played with a vertical 
board of 7 x 6 positions (a matrix). Each player has 21 
one-color pieces available and, with these pieces, should 
be able to form vertical, horizontal, or diagonal 4-piece 

lines. The one who creates the first 4-piece line, wins the 
game. An interesting feature of Connect Four is the fact 
that the pieces actually may not be positioned freely on 
the board, but fall from above into the lowest free position 
of the column selected, e.g. if there are no pieces already 
in the chosen column, the piece falls down to the lowest 
vertical position; in case that there are pieces, it is 
positioned above the last one. In this way “piles” of 
pieces are formed. It is important to notice that, because 
of this fact, there are at most only 7 possibilities to put a 
piece (see example in Figure 1). 

 

 
Figure 1. An example of a situation during a 

game. Possible positions for the next move are 
marked with an X. 

 
2.2. Tactical knowledge 

 
The game is not as simple as it looks at first sight, 

because a lot of tactical knowledge is required to become 
a winner. Imminent lines of 4 are easily detected (and the 
algorithm that can do this without missing a single one, is 
quite simple). The real “kick” of the game is to actually 
force the opponent to permit (or even to contribute to) a 
line of four. This is done in two ways: 

 
2.2.1. Two open lines. Since each player is able to put 
only one piece at a time, two lines of three, which are 
open, i.e. which have free spaces to form lines of four, 
allow the opponent to close just one of them, and thus 

Proceedings of the VII Brazilian Symposium on Neural Networks (SBRN’02) 
0-7695-1709-9/02 $17.00 © 2002 IEEE 



enable the first player to form his line of four pieces on 
the other side that is still open (see example in Figure 2). 
 

 
Figure 2. An example of two open lines. White 
has to play either 2 or 6 in order to close the 

respective line of Black. However, since White is 
not able to close both possibilities in one move, 

Black wins the game. 
 

2.2.2. Forced open lines. In order to prevent losing the 
game it is necessary to close any open line of three that 
the opponent may form. If, however, this closure 
produces another open line of three, there will be a figure 
of a “forced open line” and the game is won (see example 
in Figure 3). 
 

 
Figure 3. Example of a forced open line. White 

has to play 6 in order to close Black’s line 
4,5,6,7. However, this opens the line 3,4,5,6 and 

Black wins the game playing 6. 
 

3. Description of the system 
 

The system consists of several symbolic procedures as 
well as five neural network structures. The symbolic 
algorithms were created in order to supply the necessary 
knowledge to train and test the neural networks. 

Neural Connect 4 provides four different symbolic 
solutions, which make use of different philosophies and 
techniques to play the game. None of these algorithms 
can be considered perfect, however, different levels of 
efficiency and computability may be clearly observed [1]. 

 

3.1. Iterative solutions 
  
     Naive 4: Naive 4 is the system’s weakest algorithm 
(see Figure 4). It plays randomly unless it finds an open 
line of three. If the algorithm created this line, it closes it 
to a line of four in order to win the game. If the system 
finds an open line of three of the opponent, it closes the 
line in order to avoid losing the game. Tactical elements 
are actually not considered. The algorithm is still 
instructed to not create accidentally an open line for the 
opponent. 

On an empirical basis of ten beginners, who have 
played against Naive 4, it can be said that this algorithm 
represents a challenge for players that are not able to 
analyze the situation on the board yet – these human 
players are only seeking to create easily detected open 
lines of three (especially vertical ones). Advanced 
players, however, do not find major difficulties in 
winning against Naive 4. 
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Figure 4. An analysis of performance for Naive 

4. 100 games were played in each comparison 
between Naive 4 and one of the other symbolic 

algorithms. 
 
Constructor/Destroyer: Constructor/Destroyer is a more 

sophisticated algorithm. Its assumption is that the game 
consists of constructing lines and destroying the ones of 
the opponent. Starting with creation or destruction of 
eventual lines of four, the algorithm searches for lines of 
three and lines of two, which, however, should have 
enough room to create a line of four later – otherwise, the 
consideration of  these possibilities does not make sense, 
since it would not be linked to an eventual winning 
situation. The results of the evaluation are stored in an 
array of points and the best move is chosen. Certainly, the 
highest (and “unreachable”) score is attributed to the 
construction of an own line of four, and the lowest score 
to a line of two. 
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The algorithm plays reasonably well, according to the 
documented diagram of relative performance (Figure 5). 
The only problem is the fact that it does not consider all 
of the tactical knowledge given above. 
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Figure 5. An analysis of performance for the 

Constructor/Destroyer algorithm. 
 
Constructor/Destroyer+: As the name suggests, the 

Constructor/Destroyer+ is an advanced version of the 
Constructor/Destroyer. It contains all elements of the 
Constructor/Destroyer, but also takes into account 
situations with two open lines and forced open lines. 

Tests have shown that the number of executed 
procedures makes it difficult to not end up in conflicts 
between one element and the other. The distribution of 
the points is the real challenge of this algorithm. 

This way, its somewhat disappointing performance 
when playing against the Constructor/Destroyer can be 
explained (Figure 6) – however,  the real difference may 
be seen in a match with a human player. In this case 
Constructor/Destroyer+ may perform much better than 
the other algorithms, since it perceives possible tactical 
tricks, part of any advanced player’s knowledge. 
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Figure 6. An analysis of performance for 
Constructor/Destroyer+. Notice that it is clearly 

better than all the other symbolic solutions. 
 

3.2. Recursive solutions 
 
     Search 4: Search 4 was created inspired in a classical 
approach [1] [4] [7]. This algorithm recursively searches 
for lines of four pieces (either own or of the opponent). 
After encountering a line of four, all branches of recursion 
starting at this point are cut off. Points are distributed 
according to the number of lines and final scores are 
written to a 7-position array of points. 

The algorithm has surprisingly proven not to be very 
efficient (Figure 7), considering its quality of game 
playing, as well as the necessary processing time, which 
can be up to 50 times greater than that of the iterative 
solutions. This way, Search 4 is definitely not worthwhile 
in the context of this game. 
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Figure 7. An analysis of performance for 

Search 4. It can be noticed that this algorithm is 
clearly weaker than Constructor/Destroyer and 

Constructor/Destroyer+. 
 
4. Neural networks 
 

Since the focus of this project is the application of 
artificial neural networks, the symbolic algorithms given 
above were mainly developed in order to supply training 
data for the network and to validate its learning success, 
not only by measuring its errors in the training situations, 
but also in real game situations playing against algorithms 
that have proven to be efficient. 

As a general network structure, a multilayer perceptron 
architecture was chosen with one hidden layer. The 
learning is reached using the backpropagation algorithm 
[5], and the sigmoid as its activation function [3]. 
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4.1.Topologies 
 
Altogether five different network architectures were 

created. Their differences lie only in the number of 
neurons in the hidden layer, which provokes a different 
number of synapses in layers 1 and 2 (more details in 
Figure 8). The purpose was to find out, how especially the 
number of hidden neurons would influence the learning 
results. 

Neurons Hidden Layer: 5 different configurations.

(84, 168, 336, 504 or 672 Neurons; being the  between 
the networks.)

main difference

Synapses 2: Varying according to Hidden Layer.

(All outputs are connected to all hidden neurons! One synapse per 
connection, i.e. 588, 1176, 2352, 3528 or 4704 synapses in this layer.)

: Varying according to Hidden Layer.Synapses 1

(Distribution of input signals to the Hidden Layer; Depending on the 
Hidden Layer, 1 Input is supplied from 1 to 4 hidden neurons.)

X

X

X

X

Inputs: 168 (All Networks)

 
 

Figure 8. Parameters of the 5 networks. 
 
It is important to notice that the number of inputs is 

always the same: each field on the board corresponds to 4 
inputs (42 x 4 = 168). Inputs are binary: 1 means that a 
certain feature applies and 0 that it does not apply. Entries 
by number mean: 

1 = empty 
2 = current color 
3 = opponent’s color 
4 = (void – shall be used in future versions) 
Since the rate of synapses of layer 1 and hidden neurons 

in network 1 is 2:1, the network makes use of a 
contraction method. In network 2, they are the same 
number and in network 3, the relation is the contrary, 
which means that the network is actually detailing the 
entries, thus becoming more powerful, but also much 
slower. 

Synapses in layer 2 connect all hidden neurons to 
output neurons, which means that it is actually a layer for 
analysis. 

The 7 outputs correspond to the 7 possible moves at 
each turn. The neurons supply an output value between 1 
and 0; the move with the highest value attributed will be 
chosen. 

 
4.2. Learning 

 
The learning algorithm used is classic backpropagation 

with a learning rate of 0.35. 
The learning system is based on saved games [6]. The 

algorithm assumes that – in order to win – the network 
must follow the steps of the game’s winner, meaning that 
it shall play the same way in the same situation. 

It may be deduced that the quality of the saved games is 
crucial, as they are the knowledge from which the neural 
network learns. 

Several tests were made concerning the quality of the 
learning process – some including learning for many days 
– and the respective results are given in the following 
item. 

 
5. Results 
 
5.1. Learning behavior 

 
5.1.1. Quality of learning. Quality of learning, i.e., the 
ratio of successes for a certain number of cases, depends 
on: 

- Number of cases trained. Although it seems that a 
huge amount of data contains a lot of knowledge, and the 
result of learning thousands of positions for a long time 
would result in a very powerful network, practical tests 
have shown the opposite in “Neural Connect 4”. 

As shown in Figure 9, the network is simply unable to 
assimilate huge game archives. 

- Available time. The available time for learning 
converts directly into the number of times that a game is 
presented to the net, making a great difference to its 
learning. The graph has a somewhat hyperbolic tendency 
(Figure 10), i.e. in the beginning - taken that the game 
archive is adequately chosen - the network generally 
jumps from high error-levels to much lower rates (about 
1-2% at most). 
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Comparison Network with 84 Hidden Neurons 
and with 672 Hidden Neurons (100 Games)
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Figure 9. Analysis of learning with a 100 

random games archive. The network with 672 
hidden neurons is very slow in adjusting itself, 

whereas the network with 84 neurons is 
completely unable of learning this form of data. 

 

Comparison Network with 84 Hidden Neurons 
and with 672 Hidden Neurons (10 Games)
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Figure 10. Longtime quality analysis for the 

smallest and the largest network (84 and 672 
hidden neurons). 

 
- Network topology. The network topology is very 

important to the success of learning. Once chosen a 
structure (as in the case of “Neural Connect 4” a 
multilayer perceptron) the main parameter is the number 
of hidden neurons. Tests with the 5 networks of “Neural 
Connect 4” have proven that small neural networks tend 
to adjust very slowly (if at all) and too huge neural 
networks may start to oscillate more easily (Figure 11). 
Thus an intermediate structure might be the best choice. 
 
5.1.2.Time for learning. An important issue, which must 
not be neglected, is the time the respective networks need 
to learn. A comparison between the five networks of 
“Neural Connect 4” (Figure 12) shows an almost linear 
increase of time needed, which makes the larger networks 
become unrealistic for usage in simple situations. 
 

Comparison of all five Topologies 
(archive: 10 games)
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Figure 11. A learning analysis for all the five 

networks. The network with 336 neurons is the 
best. 
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Figure 12. A comparison of time needed for 

learning considering all 5 networks of “Neural 
Connect 4”. 

 
5.2. System of small changes 

 
In the beginning it was considered that there would be 

two ways to treat learning in “Neural Connect 4”: by the 
array of points, which is being generated at every move, 
or by the outcome itself, i.e. the decisions that the 
networks would take independently of small differences 
of points. 

Tests were made and it was decided that the later 
procedure was giving better results on a long or medium 
term (see Figure 13). The system itself is a system of 
small changes, i.e., adjustment by backpropagation is only 
executed if the decision of the network is incorrect and 
only the points of the wrong and the correct decision are 
modified (e.g. correct decision 5, network plays 7, so 
position 7 in the array receives 0 and position 5 receives 
1, whereas the other points for positions 1,2,3,4 and 6 
remain unchanged and finally the set is learned). 
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Comparison Normal Backpropagation and 
System of Small Changes
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Figure 13. Justification for the system of small 

changes. Only in the beginning, modification of 
all points will be more effective. 

 
5.3. Usage of neural networks 

 
The network has shown to be efficient to learn tactical 

knowledge from saved games. Even learning only 10 
good games, the network turns out to be superior when 
compared to all the other symbolic algorithms (see Figure 
14). 
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Figure 14. Typical performance of the network. 

The network used was the one with 332 neurons 
on the basis of a well chosen 10-game-archive, 
which learned until reaching 97% of success. 
 
Meanwhile it has to be pointed out that “Neural 

Connect 4” uses the network for tactical analysis, a task it 
may perform better than all symbolic algorithms, whereas 
the routines for closing open lines of three were chosen 
from the symbolic procedure. This represents a relatively 
small part of processing, which is not due to any tactical 
knowledge at all and is easily implemented. 

 
5.4. Problems and improvements 

 

It became clear that small well-chosen game-archives 
are better than big random archives. Thus an automatic 
production by letting the symbolic algorithms play one 
against the other, which was planned at first, has shown to 
not be a good solution – this may be especially due to the 
production of eventual contradictions. 

The following features are planned for the future: 
- Negative learning, i.e. the network shall learn from 

mistakes and not repeat them 
- No learning of irrelevant knowledge 
- Usage of recurrent networks. 

 
6. Conclusion 

 
The present article pointed out how to apply neural 

network architectures in a game situation. 
There is no doubt that this field of application of neural 

networks is in plain development showing the real power 
of neural networks to solve problems, for which 
intelligence is needed. 
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