

Neural Connect 4 – A Connectionist Approach to the Game

 Marvin Oliver Schneider
moschneider@ig.com.br

João Luís Garcia Rosa
joaol@ii.puc-campinas.br

 Mestrado em Sistemas de Computação, Pontifícia Universidade Católica de Campinas,
Rodovia D. Pedro I, km. 136, Caixa Postal 317, CEP 13012-970, Campinas – SP, Brazil.

Abstract

This article presents the system “Neural Connect 4”, a
program that plays the game Connect Four. This system
employs the multilayer perceptron architecture which is
learning through the supervised backpropagation
algorithm. The required knowledge for training comes
from saved games.

After a short introduction to the game itself, the
symbolic algorithms used for training and evaluation are
described. Comparisons are made within a connectionist
approach: effective and ineffective learning techniques
are shown and the results are discussed.

“Neural Connect 4” proves that artificial neural
networks are completely adequate for learning Connect
Four, given that certain principles are observed.

1. Introduction

Connect Four is a popular board game, easy to learn,
but difficult to master, since tactical knowledge is
required to play well.

The system “Neural Connect 4” is based on the neural
network capacity of learning this knowledge adequately.

The main purpose of the project is to prove the abilities
of Neural Networks to perform well in non-trivial
situations.

Other systems using Neural Networks with board
games may be found as references ([1], [2] and [7]).

2. Description of the game

2.1. Basics

Connect Four is a game which is played with a vertical
board of 7 x 6 positions (a matrix). Each player has 21
one-color pieces available and, with these pieces, should
be able to form vertical, horizontal, or diagonal 4-piece

lines. The one who creates the first 4-piece line, wins the
game. An interesting feature of Connect Four is the fact
that the pieces actually may not be positioned freely on
the board, but fall from above into the lowest free position
of the column selected, e.g. if there are no pieces already
in the chosen column, the piece falls down to the lowest
vertical position; in case that there are pieces, it is
positioned above the last one. In this way “piles” of
pieces are formed. It is important to notice that, because
of this fact, there are at most only 7 possibilities to put a
piece (see example in Figure 1).

Figure 1. An example of a situation during a

game. Possible positions for the next move are
marked with an X.

2.2. Tactical knowledge

The game is not as simple as it looks at first sight,

because a lot of tactical knowledge is required to become
a winner. Imminent lines of 4 are easily detected (and the
algorithm that can do this without missing a single one, is
quite simple). The real “kick” of the game is to actually
force the opponent to permit (or even to contribute to) a
line of four. This is done in two ways:

2.2.1. Two open lines. Since each player is able to put
only one piece at a time, two lines of three, which are
open, i.e. which have free spaces to form lines of four,
allow the opponent to close just one of them, and thus

Proceedings of the VII Brazilian Symposium on Neural Networks (SBRN’02)
0-7695-1709-9/02 $17.00 © 2002 IEEE

enable the first player to form his line of four pieces on
the other side that is still open (see example in Figure 2).

Figure 2. An example of two open lines. White
has to play either 2 or 6 in order to close the

respective line of Black. However, since White is
not able to close both possibilities in one move,

Black wins the game.

2.2.2. Forced open lines. In order to prevent losing the
game it is necessary to close any open line of three that
the opponent may form. If, however, this closure
produces another open line of three, there will be a figure
of a “forced open line” and the game is won (see example
in Figure 3).

Figure 3. Example of a forced open line. White

has to play 6 in order to close Black’s line
4,5,6,7. However, this opens the line 3,4,5,6 and

Black wins the game playing 6.

3. Description of the system

The system consists of several symbolic procedures as
well as five neural network structures. The symbolic
algorithms were created in order to supply the necessary
knowledge to train and test the neural networks.

Neural Connect 4 provides four different symbolic
solutions, which make use of different philosophies and
techniques to play the game. None of these algorithms
can be considered perfect, however, different levels of
efficiency and computability may be clearly observed [1].

3.1. Iterative solutions

 Naive 4: Naive 4 is the system’s weakest algorithm
(see Figure 4). It plays randomly unless it finds an open
line of three. If the algorithm created this line, it closes it
to a line of four in order to win the game. If the system
finds an open line of three of the opponent, it closes the
line in order to avoid losing the game. Tactical elements
are actually not considered. The algorithm is still
instructed to not create accidentally an open line for the
opponent.

On an empirical basis of ten beginners, who have
played against Naive 4, it can be said that this algorithm
represents a challenge for players that are not able to
analyze the situation on the board yet – these human
players are only seeking to create easily detected open
lines of three (especially vertical ones). Advanced
players, however, do not find major difficulties in
winning against Naive 4.

0

10

20

30

40

50

60

70

80

90

G
a

m
e

s

N4 x S4 N4 x CD N4 x CD+

Performance Algorithm Naive 4

N4 winner

2nd algorithm
winner

Draw

Figure 4. An analysis of performance for Naive

4. 100 games were played in each comparison
between Naive 4 and one of the other symbolic

algorithms.

Constructor/Destroyer: Constructor/Destroyer is a more

sophisticated algorithm. Its assumption is that the game
consists of constructing lines and destroying the ones of
the opponent. Starting with creation or destruction of
eventual lines of four, the algorithm searches for lines of
three and lines of two, which, however, should have
enough room to create a line of four later – otherwise, the
consideration of these possibilities does not make sense,
since it would not be linked to an eventual winning
situation. The results of the evaluation are stored in an
array of points and the best move is chosen. Certainly, the
highest (and “unreachable”) score is attributed to the
construction of an own line of four, and the lowest score
to a line of two.

Proceedings of the VII Brazilian Symposium on Neural Networks (SBRN’02)
0-7695-1709-9/02 $17.00 © 2002 IEEE

The algorithm plays reasonably well, according to the
documented diagram of relative performance (Figure 5).
The only problem is the fact that it does not consider all
of the tactical knowledge given above.

0

10

20

30

40

50

60

70

80

90

G
a

m
e

s

CD x N4 CD x S4 CD x CD +

Performance Algorithm Constructor/Destroyer

CD winner

2nd algorithm
winner

Draw

Figure 5. An analysis of performance for the

Constructor/Destroyer algorithm.

Constructor/Destroyer+: As the name suggests, the

Constructor/Destroyer+ is an advanced version of the
Constructor/Destroyer. It contains all elements of the
Constructor/Destroyer, but also takes into account
situations with two open lines and forced open lines.

Tests have shown that the number of executed
procedures makes it difficult to not end up in conflicts
between one element and the other. The distribution of
the points is the real challenge of this algorithm.

This way, its somewhat disappointing performance
when playing against the Constructor/Destroyer can be
explained (Figure 6) – however, the real difference may
be seen in a match with a human player. In this case
Constructor/Destroyer+ may perform much better than
the other algorithms, since it perceives possible tactical
tricks, part of any advanced player’s knowledge.

0

10

20

30

40

50

60

70

80

90

G
a

m
e

s

CD+ x N4 CD+ x S4 CD+ x CD

Performance Algorithm Constructor/Destroyer
Plus

CD+ winner

2nd algorithm
winner

Draw

Figure 6. An analysis of performance for
Constructor/Destroyer+. Notice that it is clearly

better than all the other symbolic solutions.

3.2. Recursive solutions

 Search 4: Search 4 was created inspired in a classical
approach [1] [4] [7]. This algorithm recursively searches
for lines of four pieces (either own or of the opponent).
After encountering a line of four, all branches of recursion
starting at this point are cut off. Points are distributed
according to the number of lines and final scores are
written to a 7-position array of points.

The algorithm has surprisingly proven not to be very
efficient (Figure 7), considering its quality of game
playing, as well as the necessary processing time, which
can be up to 50 times greater than that of the iterative
solutions. This way, Search 4 is definitely not worthwhile
in the context of this game.

0

10

20

30

40

50

60

70

G
a

m
e

s

S4 x N4 S4 x CD S4 x CD+

Performance Algorithm Search 4

S4 winner

2nd algorithm
winner

Draw

Figure 7. An analysis of performance for

Search 4. It can be noticed that this algorithm is
clearly weaker than Constructor/Destroyer and

Constructor/Destroyer+.

4. Neural networks

Since the focus of this project is the application of
artificial neural networks, the symbolic algorithms given
above were mainly developed in order to supply training
data for the network and to validate its learning success,
not only by measuring its errors in the training situations,
but also in real game situations playing against algorithms
that have proven to be efficient.

As a general network structure, a multilayer perceptron
architecture was chosen with one hidden layer. The
learning is reached using the backpropagation algorithm
[5], and the sigmoid as its activation function [3].

Proceedings of the VII Brazilian Symposium on Neural Networks (SBRN’02)
0-7695-1709-9/02 $17.00 © 2002 IEEE

4.1.Topologies

Altogether five different network architectures were

created. Their differences lie only in the number of
neurons in the hidden layer, which provokes a different
number of synapses in layers 1 and 2 (more details in
Figure 8). The purpose was to find out, how especially the
number of hidden neurons would influence the learning
results.

Neurons Hidden Layer: 5 different configurations.

(84, 168, 336, 504 or 672 Neurons; being the between
the networks.)

main difference

Synapses 2: Varying according to Hidden Layer.

(All outputs are connected to all hidden neurons! One synapse per
connection, i.e. 588, 1176, 2352, 3528 or 4704 synapses in this layer.)

: Varying according to Hidden Layer.Synapses 1

(Distribution of input signals to the Hidden Layer; Depending on the
Hidden Layer, 1 Input is supplied from 1 to 4 hidden neurons.)

X

X

X

X

Inputs: 168 (All Networks)

Figure 8. Parameters of the 5 networks.

It is important to notice that the number of inputs is

always the same: each field on the board corresponds to 4
inputs (42 x 4 = 168). Inputs are binary: 1 means that a
certain feature applies and 0 that it does not apply. Entries
by number mean:

1 = empty
2 = current color
3 = opponent’s color
4 = (void – shall be used in future versions)
Since the rate of synapses of layer 1 and hidden neurons

in network 1 is 2:1, the network makes use of a
contraction method. In network 2, they are the same
number and in network 3, the relation is the contrary,
which means that the network is actually detailing the
entries, thus becoming more powerful, but also much
slower.

Synapses in layer 2 connect all hidden neurons to
output neurons, which means that it is actually a layer for
analysis.

The 7 outputs correspond to the 7 possible moves at
each turn. The neurons supply an output value between 1
and 0; the move with the highest value attributed will be
chosen.

4.2. Learning

The learning algorithm used is classic backpropagation

with a learning rate of 0.35.
The learning system is based on saved games [6]. The

algorithm assumes that – in order to win – the network
must follow the steps of the game’s winner, meaning that
it shall play the same way in the same situation.

It may be deduced that the quality of the saved games is
crucial, as they are the knowledge from which the neural
network learns.

Several tests were made concerning the quality of the
learning process – some including learning for many days
– and the respective results are given in the following
item.

5. Results

5.1. Learning behavior

5.1.1. Quality of learning. Quality of learning, i.e., the
ratio of successes for a certain number of cases, depends
on:

- Number of cases trained. Although it seems that a
huge amount of data contains a lot of knowledge, and the
result of learning thousands of positions for a long time
would result in a very powerful network, practical tests
have shown the opposite in “Neural Connect 4”.

As shown in Figure 9, the network is simply unable to
assimilate huge game archives.

- Available time. The available time for learning
converts directly into the number of times that a game is
presented to the net, making a great difference to its
learning. The graph has a somewhat hyperbolic tendency
(Figure 10), i.e. in the beginning - taken that the game
archive is adequately chosen - the network generally
jumps from high error-levels to much lower rates (about
1-2% at most).

Proceedings of the VII Brazilian Symposium on Neural Networks (SBRN’02)
0-7695-1709-9/02 $17.00 © 2002 IEEE

Comparison Network with 84 Hidden Neurons
and with 672 Hidden Neurons (100 Games)

50

55

60

65

70

75

80
2

0
0

1
4

0
0

2
6

0
0

3
8

0
0

5
0

0
0

6
2

0
0

7
4

0
0

8
6

0
0

9
8

0
0

1
1

0
0

0
1

2
2

0
0

1
3

4
0

0
1

4
6

0
0

1
5

8
0

0
1

7
0

0
0

1
8

2
0

0
1

9
4

0
0

2
0

6
0

0
2

1
8

0
0

2
3

0
0

0
2

4
2

0
0

2
5

4
0

0
2

6
6

0
0

2
7

8
0

0
2

9
0

0
0

Analyzed Games

E
rr

o
rs

 i
n

 % 84

672

Figure 9. Analysis of learning with a 100

random games archive. The network with 672
hidden neurons is very slow in adjusting itself,

whereas the network with 84 neurons is
completely unable of learning this form of data.

Comparison Network with 84 Hidden Neurons
and with 672 Hidden Neurons (10 Games)

0

10

20

30

40

50

60

70

80

20
0
32

00
62

00
92

00
12

20
0
15

20
0
18

20
0
21

20
0
24

20
0
27

20
0
30

20
0
33

20
0
36

20
0
39

20
0
42

20
0
45

20
0
48

20
0
51

20
0
54

20
0
57

20
0

Analyzed Games

E
rr

o
rs

 i
n

 %

84
672

Figure 10. Longtime quality analysis for the

smallest and the largest network (84 and 672
hidden neurons).

- Network topology. The network topology is very

important to the success of learning. Once chosen a
structure (as in the case of “Neural Connect 4” a
multilayer perceptron) the main parameter is the number
of hidden neurons. Tests with the 5 networks of “Neural
Connect 4” have proven that small neural networks tend
to adjust very slowly (if at all) and too huge neural
networks may start to oscillate more easily (Figure 11).
Thus an intermediate structure might be the best choice.

5.1.2.Time for learning. An important issue, which must
not be neglected, is the time the respective networks need
to learn. A comparison between the five networks of
“Neural Connect 4” (Figure 12) shows an almost linear
increase of time needed, which makes the larger networks
become unrealistic for usage in simple situations.

Comparison of all five Topologies
(archive: 10 games)

0

10

20

30

40

50

60

70

80

20
0

60
0

10
00

14
00

18
00

22
00

26
00

30
00

34
00

38
00

42
00

46
00

50
00

54
00

58
00

Analyzed Games

E
rr

o
rs

 i
n

 %

84
168
336
504
672

Figure 11. A learning analysis for all the five

networks. The network with 336 neurons is the
best.

0

10

20

30

40

50

60

70

T
im

e

84 168 336 504 672

Relative Time of Processing

Figure 12. A comparison of time needed for

learning considering all 5 networks of “Neural
Connect 4”.

5.2. System of small changes

In the beginning it was considered that there would be

two ways to treat learning in “Neural Connect 4”: by the
array of points, which is being generated at every move,
or by the outcome itself, i.e. the decisions that the
networks would take independently of small differences
of points.

Tests were made and it was decided that the later
procedure was giving better results on a long or medium
term (see Figure 13). The system itself is a system of
small changes, i.e., adjustment by backpropagation is only
executed if the decision of the network is incorrect and
only the points of the wrong and the correct decision are
modified (e.g. correct decision 5, network plays 7, so
position 7 in the array receives 0 and position 5 receives
1, whereas the other points for positions 1,2,3,4 and 6
remain unchanged and finally the set is learned).

Proceedings of the VII Brazilian Symposium on Neural Networks (SBRN’02)
0-7695-1709-9/02 $17.00 © 2002 IEEE

Comparison Normal Backpropagation and
System of Small Changes

1

10

100

2
0

0
9

2
0

0
1

8
2

0
0

2
7

2
0

0
3

6
2

0
0

4
5

2
0

0
5

4
2

0
0

6
3

2
0

0
7

2
2

0
0

8
1

2
0

0
9

0
2

0
0

9
9

2
0

0
1

0
8

2
0

0
1

1
7

2
0

0
1

2
6

2
0

0
1

3
5

2
0

0
1

4
4

2
0

0
1

5
3

2
0

0
1

6
2

2
0

0
1

7
1

2
0

0
1

8
0

2
0

0
1

8
9

2
0

0
1

9
8

2
0

0

Analyzed Games

E
rr

o
rs

 i
n

 % small
changes

normal

Figure 13. Justification for the system of small

changes. Only in the beginning, modification of
all points will be more effective.

5.3. Usage of neural networks

The network has shown to be efficient to learn tactical

knowledge from saved games. Even learning only 10
good games, the network turns out to be superior when
compared to all the other symbolic algorithms (see Figure
14).

0

10

20

30

40

50

60

70

80

G
am

es

Net x
N4

Net x
S4

Net x
CD

Net x
CD+

Example of Performance Neural Network

Net winner

2nd algorithm
winner
Draw

Figure 14. Typical performance of the network.

The network used was the one with 332 neurons
on the basis of a well chosen 10-game-archive,
which learned until reaching 97% of success.

Meanwhile it has to be pointed out that “Neural

Connect 4” uses the network for tactical analysis, a task it
may perform better than all symbolic algorithms, whereas
the routines for closing open lines of three were chosen
from the symbolic procedure. This represents a relatively
small part of processing, which is not due to any tactical
knowledge at all and is easily implemented.

5.4. Problems and improvements

It became clear that small well-chosen game-archives
are better than big random archives. Thus an automatic
production by letting the symbolic algorithms play one
against the other, which was planned at first, has shown to
not be a good solution – this may be especially due to the
production of eventual contradictions.

The following features are planned for the future:
- Negative learning, i.e. the network shall learn from

mistakes and not repeat them
- No learning of irrelevant knowledge
- Usage of recurrent networks.

6. Conclusion

The present article pointed out how to apply neural

network architectures in a game situation.
There is no doubt that this field of application of neural

networks is in plain development showing the real power
of neural networks to solve problems, for which
intelligence is needed.

7. References

[1] Buro, M., “Techniken für die Bewertung von Spielsituationen
anhand von Beispielen“, Doctorate Thesis at FB17 Universität-
GH-Paderborn, Paderborn, 1994

[2] Freiesleben, B., “A Neural Network that Learns to Play Five-
in-a-Row”, in Proceedings of the 2nd New Zealand Two-Stream
International Conference of Artificial Neural Networks and
Expert Systems (ANNES ’95), Siegen, 1995, pp. 87-90

[3] Helbig, H. et alii, “Neuronale Netze“, FernUniversität,
Hagen, 2000

[4] Mahrenholz, D., “Strategie des Computers im Vier-Gewinnt-
Spiel“, http://ivs.uni-magdeburg.de/~mahrenho/index.html,
Magdeburg, 1995

[5] Rumelhart, D. E., Hinton, G. E. and Williams, R. J.,
“Learning Internal Representations by Error Propagation”, in
D. E. Rumelhart and J. L. McClelland (Eds.), Parallel
Distributed Processing – Explorations in the Microstructure of
Cognition, Volume 1 - Foundations. A Bradford Book, MIT
Press, 1986, pp. 318-362.

[6] Stricker, T., “Problemlöseverfahren, Algorithmen,
Datenstrukturen“, http://www.cs.inf.ethz.ch/edu/37-
836/vorl/vorl.html, Informatik II (37-836) ETH Zürich, Zürich,
1998

[7] Thrun, S., “Learning To Play the Game of Chess”, in
G. Tesauro, D. Touretzky, and T. Leen, (Eds.), Advances in
Neural Information Processing Systems (NIPS) 7, Cambridge,
MA, MIT Press, 1995.

Proceedings of the VII Brazilian Symposium on Neural Networks (SBRN’02)
0-7695-1709-9/02 $17.00 © 2002 IEEE

