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Abstract

Recent research on artificial neural network models re-
gards as relevant a new characteristic called biological
plausibility or realism. Nevertheless, there is no agreement
about this new feature, so some researchers develop their
own visions. Two of these are highlighted here: the first is
related directly to the cerebral cortex biological structure,
and the second focuses the neural features and the signaling
between neurons. The proposed model departs from the pre-
vious existing system models, adopting the standpoint that a
biologically plausible artificial neural network aims to cre-
ate a more faithful model concerning the biological struc-
ture, properties, and functionalities of the cerebral cortex,
not disregarding its computational efficiency.

1 Introduction

Classical connectionist models are based on the pioneer-
ing McCulloch-Pitts neuron proposal [9] although their op-
erations are far from the way human brain works. Artificial
Neural Networks (ANN) nowadays are designed to mimic,
with limited realism, some brain functionalities including
pattern recognition, new information acquisition, and mo-
tor performance [7, 3].

More recently, some researchers of this area have ap-
proached the proposition of new models based on cerebral
structure, that is, on cerebral cortex biological properties.
This new direction on research makes noticeable a new
characteristic to be incorporated to ANNs: the biological
plausibility.

However there is no agreement about the definition of
this new concept. For this reason, biological plausibility
is still being analyzed under several aspects. One of these
main visions concerns the cerebral cortex structure.

Taken the ideas presented previously into consideration,
this paper proposes a new artificial neuron model based on
biological properties of the physiological neuron.

2 Intraneuron Signaling

2.1 The biological neuron and the intra-
neuron signaling

The intraneuron signaling is based on the principle of
dynamic polarization, proposed by Ramón y Cajal, which
establishes that “electric signals inside a nervous cell flow
only in a direction: from neuron reception (often the den-
drites and cell body) to the axon trigger zone” [5].

Based on physiological evidences of principle of dy-
namic polarization the signaling inside the neuron is per-
formed by four basic elements: Receptive, responsible for
input signals; Trigger, responsible for neuron activation
threshold; Signaling, responsible for conducting and keep-
ing the signal; and Secretor, responsible for signal releasing
to another related neuron.

These elements are related to the dendritic region, cell
body, axon, and presynaptic terminals of the biological neu-
ron, respectively [5].

The cell body is the neuron portion where cell genes are
and is the place where protein syntheses occur. Consid-
ered the neural cell metabolic center, the cell body is the
main control place of ordinary neural electric signals. From
the cell body - or soma - originate two signal conducting
branches, the axon and the dendrites.

The main function of a dendrite is the reception of sig-
nals originated from other cells. The axon, in general,
comes from a cell body area called axon hillock [5], located
on the opposite side of the tree trunk formed by dendrites,
and ended in a micro-ramification form called axonal tree
or axonal branch. These branches have in their terminals
synaptic buttons, responsible for connectivity between neu-
rons.

The axon is considered the main neuron conductivity
unit [5], responsible for the transmission of electric signals
(action potentials or spikes) from the axonal cone - area sit-
uated at the end of cell body - to the presynaptic terminals,
keeping the same amplitude and duration, varying only in
intensity or frequency.
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The transmission rules of neuron output signaling are
limited, but very efficient. This efficiency is verified
through fast propagation and signal properties maintenance
between initial and final points of involved axons [5, 6].

There are other elements, co-responsible for propagation
speed and amplitude maintenance of action potentials, for
example, the glial cell and the Ranvier nodules. The glial
cell involves the neural cell bodies and their axons in a pro-
cess called myelination, which provides as an insulating fi-
nal product, the myelin sheaths, white fatty extensions of
neuroglial cells (or Schwann cells), involving the axon in
several layers. These sheaths are interrupted at regular in-
tervals by the nodes of Ranvier, which are electrically non-
insulated and are responsible for the action potential regen-
eration [5, 6].

There is also the ionic mechanism, which can act as a
signaling structure in an excitable cell, independently of
synapse localization. This mechanism refers to the cur-
rent flow generated by the ionic movement through protein
membranes - channels - generating the signals (membrane
potentials) in neural cells. These alterations in resting po-
tentials of the cell membrane provoked by the ionic current
flowing through open channels produce input signals that
develop the intraneuron signaling process.

The intraneuron signaling process begins after neuron
binding, either directly or by means of modulation (see item
about interneuron signaling), altering the membrane poten-
tial and transforming chemical potential energy in an elec-
tric signal called synaptic potential. The synaptic potential
is graded and its amplitude is directly related to volume and
releasing time of chemical neurotransmitters in interneuron
signaling process. Once generated, the input signal - synap-
tic potential - often flows through dendrites and cell body
where it is accumulated until reaching a certain threshold,
responsible for pulse or action potential generation. This in-
put signal can be excitatory or inhibitory, so the latter tries
to prevent action potential from releasing.

The over stimulus of the target cell makes the inputs
compete. In the “struggle,” the weaker synapses are elimi-
nated and the stronger synapses keep the inputs to the post-
synaptic cell [5]. These competitive inputs are combined
into the postsynaptic neuron through a process called neu-
ronal integration, which sum up all the signals received by
a neuron and takes the decision of firing or not an action
potential, which reflects the brain fundamental ability of
decision-making in the neuron [5, 11]. In neuronal inte-
gration process, the brain ability in opting for one of the
competitive alternatives (fire or not fire), selecting one and
suppressing the other, is known as the integrative action of
the nervous system [5].

Action potentials are electric signals used for manipu-
lating brain information - reception, analysis, and transmis-
sion. They are very fast and transient, of the kind all-or-

none [3, 5], originating in a specific trigger zone - the be-
ginning of the axon. The fact that the action potential, the
neuron conducting signal, is an “all-or-none” signal or bi-
nary is motivated by the fact that a stimulus smaller than
threshold does not produce signals and a stimulus greater
than threshold produces the same signal independently of
amplitude variation and stimulus duration. Consequently,
there are only two pulse characteristics for the informa-
tion transmission process to be taken into consideration: the
amount of action potentials and the time intervals between
them [5, 12, 4].

The action potential is generated only if the input signal,
or the weighted sum of the input signals by their synaptic
weights, is greater than a certain activation threshold, that
is, once the threshold is reached, the additional increase in
amplitude of the input signal implies in an increase of the
action potential frequency and not in an increase of the po-
tential amplitude [5]. Since action potentials are of the kind
“all-or-none” and conducted without alterations through the
whole axon, the information contained in the signal is rep-
resented only by the frequency and pulse amount, without
taking into account their amplitude. So, the larger the stim-
ulus duration, the longer the action potential sequence lasts,
and consequently, the larger the amount of pulses [5].

Once the synaptic terminals are reached, action poten-
tials stimulate chemical neurotransmitter releasing by the
cell, considered as analogical output signals. In this graded
transmitter releasing, there is, repeatedly, the transforma-
tion of digital signal, represented by action potential, in
analogical signal. Also in this process, the exact amount
of neurotransmitters to be released by the cell is defined by
the total number of action potentials in a given time inter-
val [5]. After an action potential releasing, a very short re-
fractoriness time period happens, that is, a period of lesser
excitability. This time period - called refractory period - can
be divided in: (1) absolute, when happens immediately after
the action potential; and (2) relative, which is subsequent to
the absolute refractory period.

In the absolute refractory period, it is impossible to ex-
cite a cell; the same does not happen in the relative period,
when a pulse can be released [5, 11].

2.2 The artificial neuron and the intraneu-
ron signaling

The neuron is considered the fundamental operational
unit of a neural network - natural or artificial -, due to its ca-
pacity of processing and transmitting information [5, 12, 4].

In artificial neural network primordial research, McCul-
loch and Pitts [9] define a neuron model that served as basis
for building several artificial neurons (for instance, Rosen-
blatt’s perceptron [3]).

McCulloch-Pitts model [9] is based on an “all-or-none”



property of a pulse releasing for a specific neuron. The ba-
sic idea to represent the “all-or-none” property proposed by
the two researchers consists in dividing the refractory period
in time units so that, at most, one pulse could be generated
by the neuron in each interval. Besides, the model output
is binary, that is, it is 0 (zero) or 1 (one) according to the
value of the induced local field or neuron activation poten-
tial. McCulloch and Pitts [9] modeled, indeed, an artificial
neuron as a time-independent binary element.

Maass [7] proposes a classification based on model gen-
erations to situate his proposition in a biological realism
evolutionary scale. Maass [7] suggests three generations:

1. The first generation artificial model is based on
McCulloch-Pitts neuron, and its main feature is the
ability to produce only digital outputs - zero or one;

2. The second generation model is based on the applica-
tion of the activation function as a computational unit,
which produces a continuous set of output values for a
weighted (or polynomial) sum of inputs; and

3. The third generation model uses the duration time of
an action potential to encode information, that is, uses
time as a computational and interneuron communica-
tion resource.

Maass’s integrate and fire neuron (spiking neuron) model
is argued to be a third generation model [7]. That is,
Maass [7, 8] employs the spike transmission time, the re-
fractory period, and the membrane electric potential in the
pulse trigger zone as model’s main elements.

The model proposed by Rosa [13] considers the clas-
sic neuron model basic elements like connection weights,
activation threshold, and activation function. In addition,
Rosa [13] introduces three more elements that act directly
in intraneuron and interneuron signaling. These elements
are the transmitters T, the receptors R, and the controllers
C, representing the amount of substrate, the binding affin-
ity between transmitters and receptors, and the genes - name
and expression. However, Rosa [13] does not consider some
intraneuron signaling features, as for instance, the associ-
ation of the pulse frequency with the amount of substrate
released by transmitter T.

3 Interneuron signaling

3.1 The biological neuron and the in-
terneuron signaling

The interneuron signaling occurs by means of electrical
or chemical synapse, which have completely different mor-
phologies. At electrical synapses, the transmission occurs
through special ionic channels called gap junction channels,

which are located in the pre and postsynaptic cell mem-
branes and serve as a cytoplasmatic connection between the
two cells. At chemical synapses, there is a small cellular
separation between the cells called synaptic cleft, instead of
cytoplasmatic continuity.

At electrical synapses, part of electric current injected in
presynaptic cell escapes through the resting channels and
the remaining current is driven to the inside of the postsy-
naptic cell through the gap junction channels, which con-
nect cytoplasms of involved cells.

At chemical synapses, in the presynaptic terminal spe-
cialized zones, there are vesicles containing neurotransmit-
ter molecules. When the action potential reaches these
synaptic vesicles, the neurotransmitters are released to the
synaptic cleft, and the interneuron signaling chemical pro-
cess, or chemical synapse, takes place.

These vesicles, when stimulated, flow towards the plas-
matic membrane, with which are melted, releasing neuro-
transmitters to the synaptic cleft. The amount of neuro-
transmitters released is directly related to the depolarization
amplitude inside presynaptic terminals and to the frequency
of the action potentials that cross the axon [5, 6].

The releasing of chemical neurotransmitters towards the
synaptic cleft operates as an output signal. After releasing,
the neurotransmitters spread along the synaptic cleft in or-
der to reach the receptors of the postsynaptic cell membrane
of another neuron. The neurotransmitter binding at the post-
synaptic cell generates a synaptic potential which produces
excitatory or inhibitory synapse, depending on the recep-
tor type. In other words, receptors are the elements which
define the type of synapse and the occurrence of modula-
tion [5, 13]. The fact that the receptors define the type of
synapse agrees with Ramón y Cajal’s principle of connec-
tional specificity [5].

In some cases, neurotransmitters are enzymatically di-
vided, synthesizing new transmitters, therefore increasing
the amount of substrate in the synaptic transmission pro-
cess [13].

The chemical neurotransmitters are classified based on
their control over the ionic channels of the postsynaptic
cell, acting directly or indirectly through direct or indirect
chemical synaptic actions, respectively. In direct way, the
receptors responsible for ionic channels control belonging
to its structure, recognize the neurotransmitter and through
its binding, open these channels. In indirect way, the re-
ceptor does not take part effectively of the ionic channel
structure, but there is an activation through a fixing protein
- called G protein - which is consequence of the binding
between transmitter and receptor. This protein activates a
set of second messengers which modulates transmission at
ionic channel.

The direct interference of a receptor over ionic chan-
nels triggers chemical synaptic actions, very fast in general,



which often takes part in behavior, in direct way. In indirect
interference, the synaptic actions which serve also to mod-
ulate behavior are slower, but alter neuron excitability and
synaptic connection strengths of neural circuits.

The modulation process in chemical synaptic actions oc-
curs also through peptides that can act as neurotransmit-
ters, but in a broader way - in relation to actuation area -
and longer-lasting - in relation to action time. These pep-
tides are characterized by acting in restricted areas, show-
ing low conductance, without sustaining high frequency im-
pulses, showing persistency and small excitatory effects,
and not producing enough depolarization to excite a cell by
itself [13]. In the case of depolarization, although insuffi-
cient, the peptide transmission can provoke a fast excitatory
effect by means of a second input, also excitatory.

Mutation happens through modification of gene expres-
sion, and it is another factor associated with synaptic modu-
lation process. Mutation is often due to the second messen-
ger intense action in changes of binding affinities between
transmitters and receptors.

3.2 The artificial neuron and the interneu-
ron signaling

Maass [7] defines his model taking into account the bio-
logical neuron output and the frequency of individual action
potentials as the mechanism for information representation.

Rosa [13], otherwise, takes into consideration Ramón y
Cajal’s connective specificity principle, shown previously.
That is, Rosa [13] proposes the inclusion of three new vari-
ables - Transmitter (T), Receptor (R), and Controller (C) -
in McCulloch-Pitts classical model [9], responsible for the
affinity control between neurons and the way signal trans-
mission occurs at chemical synapse. The new elements, ac-
cording to Rosa [13], are absent in conventional models.

4 The biologically plausible artificial neuron
proposal

There is no agreement about the characteristics that the
proposal of a biologically more realistic artificial neuron
model can be based on, but there are some fundamental
principles, which provide a basis for such a proposal.

Focusing on neural signaling, there are two large groups
of characteristics that must be taken into consideration: the
intraneuron signaling and the interneuron signaling. This
proposal considers both and is based mainly on Maass’ [7]
neuron formalism and on Rosa’s [13] model functionali-
ties, because they present most of the basic principles for
biological plausibility characteristics. Merging Maass [7]
and Rosa [13] models and eliminating the redundancies, the
proposed model can be defined as:

Nvr = { P , W , Θ, τ , η, ξ, C }

where each basic element can be described as:

• P represents the membrane potential in neuron trigger
zone - the place in neuron soma where the pulses are
initiated,

• W represents the connection weight set,

• Θ represents the activation threshold,

• τ represents the pulse transmission time between in-
volved neuron somas,

• η represents the time the neuron is kept inert between
pulses,

• ξ represents the response function that defines the type
of synapse (excitatory or inhibitory), and

• C represents the controller set.

In this proposal, the controller is considered an external
element for the artificial neuron composition, because it acts
at the interface of chemical synaptic transmission process.
The controller is an element set that represents the binding
affinity degree, the amount of substrate, and the modifica-
tion of gene expression in modulation. Here, the elements
P , W , Θ, τ , η, and ξ act on information transmission and
on binding affinity control due to direct synaptic action. The
element set C acts on binding affinity control as a result of
the modulation effect, on the amount of substrate control
due the action of acetylcholine or other transmitters that act
in a similar way, and on the modification of gene expression
as a consequence of the second messenger action.

Here, the artificial neural network is a finite set of
spiking-response control neurons Nvr, defined as:

• A set of synapses S ⊆ Nvr ×Nvr,

• A synaptic weight w ≥ 0 for each pre(nu) and post(nv)
synaptic neuron binding,

• A response-function ξnu,nv : R+ → R for each
synapse between the pre(nu) and post(nv) synaptic
neuron<nu, nv> ∈ S, whereR+ = {x ∈ R : x ≥ 0},

• A threshold function Θnv : R+ → R+ for each presy-
naptic neuron nv ∈ Nvr [7],

• A set of controllers C ⊆ Nvr ×Nvr,

• A label or number for the origin and target genes
(name),

• A modulatory synaptic function mnu,nv ∈ {γ, ϕ, ψ},
where γ, ϕ, and ψ represent a gene expression, a bind-
ing affinity degree, and a substrate variation, respec-
tively, and



• A control function χnu,nv : R+ → R+, ∀mnu,nv

[13].

So, if a firing time set s of presynaptic neuron nu is de-
fined by Fnu ⊆ R+, then the trigger zone potential of post-
synaptic neuron nv in time t is defined by [7]:

Pnv(t) =∑
nu:<nu,nv>∈S

∑
s∈Fnu:s<t wnu,nv · ξnu,nv(t− s)

so the neuron nv fires in time t when Pnv(t) reaches
Θ(t− t′), where t’ is the time of the more recent nv firing.

In addition to the modulatory synaptic function mnu,nv ,
there is the control function χnu,nv as responsible for the
representation of the type of synaptic function modulation.
This way, it is possible to define the formalism of controller
C, by means of control function χnu,nv : R+ → R+,
∀mnu,nv , in the following way:

χnu,nv = γnv · ϕnv · ψnu · ρnu,nv

where

• γnv represents the new controller of gene expression
(at target cell),

• ϕnv represents the new binding affinity degree of re-
ceptor (at target cell),

• ψnu represents the increasing of the amount of sub-
strate (at origin cell), and

• ρnu,nv represents the type of postsynaptic potential
(excitatory or inhibitory) in relation to the type of
transmitter and receptor, by means of direct action.

The negative signal of the inhibitory synapse is defined
by the response function ξnu,nv(t − s) of the postsynaptic
neuron, through control element ρnu,nv , since the biological
synapse does not change signals during learning process.
For this reason, the synaptic weights have only positive or
zero values.

The response function or postsynaptic potential is given
by [2]:

ξnu,nv(t) =
1

1−(τs/τm) (exp(−
t−δ
τm

)− exp(− t−δ
τs

)) · θ(t) · χnu,nv

where

• τs represents the synapse time constant,

• τm represents the membrane time constant,

• t represents the current time,

• δ represents the delay time constant in axonal trans-
mission,

• θ(t) represents the heaviside function [2], which is the
transformation of the differential equation ξnu,nv with
initial conditions in an algebraic equation, in order to
obtain a solution of these conditions in an indirect way,
without calculating the general solution of ξnu,nv by
means of integrals and derivatives, and

• χnu,nv represents the control function of postsynaptic
potential.

The function for the refractory period (calculation of
negative contribuition) is given by [2]:

η(t) = −Θ · exp( t
τ ) · θ(t) · χnu,nv

where

• Θ represents pulse (spike) firing threshold,

• t represents the current time,

• τ represents the time constant used to calculate the
neural refractoriness,

• θ(t) represents the heaviside function [2] too, but now
applied to the function η(t), and

• χnu,nv represents the control function.

The control function χnu,nv is given only by gene ex-
pression of the target cell, because there is no pulse and no
refractory period without gene expression affinities between
the two involved signaling neurons.

Finally, these formalisms aim to guarantee the new pro-
posed model adherence to the biological neural signaling
basic principles. This way, it adds new biological plausibil-
ity characteristics to Maass’ [7] and Rosa’s [13] models.

5 Simulation

The behavioral comparative analysis of the proposed
model is based on three variations of learning mod-
els and algorithms: Multilayer Perceptron with Back-
propagation (MLP+BackProp); Multilayer Perceptron with
GeneRec (MLP+GeneRec); and Spiking Response Model
with GeneRec (SRM+GeneRec).

For the proposed model, the learning algorithm
GeneRec, proposed by O’Reilly [10, 11], was employed.
The reason for this choice relies on its presumable biolog-
ical plausibility. Instead Back-propagation, considered bi-
ologically implausible [1], GeneRec is argued to be more
biologically plausible: learning happens through synaptic
weight modifications using only the local information avail-
able in synapses.



In simulation, the features of employed networks for
comparison and of the proposed model are: the in-
put, hidden, and output layers for the three models -
MLP+BackProp, MLP+GeneRec, and SRM+GeneRec - are
built by eighty, ten, and ten neurons respectively, and the
weights had their values assigned randomly. Specifically,
the values of the structural elements of the SRM base model
are assigned randomly in defined range for τm between 40
and 2,000 ms, τs between 20 and 1,000 ms, θ between 0.1
and 0.8 mV, τ between 2,000 and 8,000, δ between 20 and
200 ms. The same happens with the structural elements of
the proposed model, where randomly values were assigned
to γnv between 0 and 1, φnv between 0.6 and 1.0, ψnu

between 1 and the amount of neurons of the post-synaptic
layer, and ρnu,nv receives value 3 or 5.

In learning process, 100 patterns were presented, divided
in 10 variations for each value. These patterns were pre-
sented to the network in an alternate way to avoid recog-
nizing problems, through 101 iterations and learning rate of
0.2.

In recognizing process, 10 patterns with varied complex-
ity were presented, and 90% of the patterns was recognized
effectively. The unrecognized pattern is the same for every
network, and this result was expected because this pattern
resembles a pattern between digits 3 and 9 (see figure 1).

Figure 1. Detail of the unrecognized pattern
presented to the involved networks.

About the unrecognized pattern, a 10-fold cross valida-
tion technique was applied, employing the training patterns
that represent the digit nine. The test considered a total of
ten correct patterns, a total of a hundred selected patterns,
and six correctly selected patterns for the MLP+GeneRec
and MLP+BackProp models and eight correctly selected
patterns for the SRM+GeneRec model. From the results
shown on table 1 it is possible to notice that learning was
more effective in the SRM + GeneRec model.

Table 1. Performance of the models (in %).
Model Recall Precision F-Measure

MLP+GeneRec 43.75 41.18 42.42
SRM+GeneRec 50.00 47.37 48.65
MLP+BackProp 40.00 37.50 38.71

6 Conclusion

The proposed model considers all the functionalities dis-
cussed earlier, and, specially, tries to merge Maass’ [7] and
Rosa’s [13] neuron model elements, adopting a new for-
mat for the element controller. This model aims to consider
a better modulation process, regarding the amount of sub-
strate, the binding affinity degree, and the modification of
gene expression. This way, the proposed model can add va-
riety to the models considered biologically plausible.
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