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Abstract

In 1990, Hefez and Voloch proved that the number of Fq-rational points on a nonsingular plane

q-Frobenius nonclassical curve of degree d is N = d(q−d+2). We address these curves in the singular

setting. In particular, we prove that d(q−d+2) is a lower bound on the number of Fq-rational points

on such curves of degree d.
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1 Introduction

Let p be a prime number and Fq be the field with q = ps elements, for some integer s ≥ 1. An

irreducible plane curve C, defined over Fq, is called q-Frobenius nonclassical if the q-Frobenius map takes

each simple point P ∈ C to the tangent line to C at P . In this case, there is an exponent h with p ≤ ph ≤ d

so that the intersection multiplicity i(C.TP (C);P ) of C and the tangent line TP (C) at a simple point P ∈ C

is at least ph, and actually i(C.TP (C);P ) = ph holds for a general point P ∈ C.

For convenience,

ν =

p
h if C is q-Frobenius nonclassical

1 if C is q-Frobenius classical

(1.1)

is called the q-Frobenius order of C.

Frobenius nonclassical curves were introduced in the work of Stöhr and Voloch [7], and one reason for

highlighting this special class of curves comes from the following result (see [7, Theorem 2.3]).

Theorem 1.1 (Stöhr-Voloch). Let C be an irreducible plane curve of degree d and genus g defined over
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Fq. If C(Fq) denotes the set of Fq-rational points on C, then

#C(Fq) ≤
ν(2g − 2) + (q + 2)d

2
. (1.2)

Note that by Fq-rational points on C, we mean the Fq-rational points on the nonsingular model of

C. Based on Theorem 1.1, Frobenius nonclassicality can be considered as an obstruction to use the nicer

upper bound given by inequality (1.2) with ν = 1. That is a clear reason why one should try to understand

such curves better. At the same time, investigating Frobenius nonclassical curves is a way of searching

for curves with many points. For instance, the Hermitian curve

xq+1 + yq+1 = 1,

over Fq2 , and the Deligne-Lusztig-Suzuki curve over Fq:

yq − y = xq0(xq − x),

where q0 = 2s, s ≥ 1, and q = 2q20 , which are well known examples of curves with many points, are

Frobenius non-classical.

With regard to the number of rational points, a somewhat surprising fact was proved by Hefez and

Voloch in the case of nonsingular curves (see [3]).

Theorem 1.2 (Hefez-Voloch). Let X be a nonsingular q-Frobenius nonclassical plane curve of degree d

defined over Fq. If X (Fq) denotes the set of Fq-rational points on X , then

#X (Fq) = d(q − d+ 2). (1.3)

Let us recall that if X is a nonsingular q-Frobenius nonclassical plane curve of degree d, and ν > 2 is

its q-Frobenius order defined in (1.1), then (see [5, Theorem 8.77])

√
q + 1 ≤ d ≤ q − 1

ν − 1
. (1.4)

Now note that if ν > 3 and d is within the range given by (1.4), then

d(q − d+ 2) >
d(q + d− 1)

2
, (1.5)

where the number on the right hand side of (1.5) is the bound given by Theorem 1.1 for the case ν = 1. In

other words, (1.3) tells us that nonsingular Frobenius nonclassical curves of degree d usually have many

rational points in comparison with the Frobenius classical ones of the same degree. In this paper, we show

that this statement could be applied more broadly if we were to drop the exclusivity on nonsingularity.
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More precisely, we prove the following:

Theorem 1.3. Let C be a q-Frobenius nonclassical curve of degree d and genus g. If MS
q is the number

of simple points of C in PG(2, q), then

MS
q ≥ d(q − d+ 2) + 2(g∗ − g) +

∑
P∈Sing(Fq)

mP (mP − 2), (1.6)

where mP are the multiplicities of the singular points P ∈ Sing(Fq) ⊆ PG(2, q) of C, and

g∗ :=
(d− 1)(d− 2)

2
−

∑
P∈Sing(Fq)

1

2
mP (mP − 1)

is its Fq-virtual genus. Moreover, equality holds in (1.6) if and only if all branches of C are linear.

Note that the bound (1.6) does not depend on the Frobenius order ν. A very interesting consequence

of Thorem 1.3 is the following:

Corollary 1.4. Let C be a q-Frobenius nonclassical curve of degree d. If Mq is the number of points of

C in PG(2, q), then

Mq ≥ d(q − d+ 2), (1.7)

and equality holds if and only if C is nonsingular.

2 Preliminaries

Let us begin by briefly recalling the notions of classicality and q-Frobenius classicality for plane curves.

For a more general discussion, including the notion and properties of branches, we refer to [5] and [4].

Let C ⊂ P2 be an irreducible algebraic curve of degree d and genus g. The numbers 0 = ε0 < ε1 =

1 < ε2 represent all possible intersection multiplicities of C with lines of P2 at a generic point of C. Such

a sequence is called the order sequence of C, and it can be characterized as the smallest sequence (in

lexicographic order) such that det(Dεi
ζ xj) 6= 0, where Dk

ζ denotes the kth Hasse derivative with respect

to a separating variable ζ, and x0, x1, x2 are the coordinate functions on C ⊂ P2. The curve C is called

classical if ε2 = 2.

If C is defined over a finite field Fq, then there is a smallest integer ν ∈ {1, ε2} such that


xq0 xq1 xq2

x0 x1 x2

Dν
ζx0 Dν

ζx1 Dν
ζx2

 6= 0 (2.1)

The number ν is called the q-Frobenius order of C, and such a curve is called q-Frobenius classical if

ν = 1.
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Associated to the curve C, there exist two distinguished divisors R and S, which play an important

role in estimating the number of Fq-rational points of C. When the curve is Frobenius nonclassical, some

valuable information can be obtained by comparing the multiplicities vP (R) and vP (S) for the points

P ∈ C. In general, computing these multiplicities is tantamount to studying some functions in Fq(x, y)

given by Wronskian determinants such as det(Dεi
ζ xj) and (2.1). This idea was first exploited by Hefez

and Voloch, in their investigation of the nonsingular case [3]. As noted by Hirschfeld and Korchmáros in

[4], this idea can be useful in the singular case as well.

Let Fq(C) := Fq(x, y) be the function field of an irreducible curve C : f(x, y) = 0. Recall that for any

given place P of Fq(C) and a local parameter t at P, one can associate a (primitive) branch γ in special

affine coordinates:

x(t) = a+ a1t
j1 + · · · , y(t) = b+ b1t

s + · · · ,

where s ≥ j1. The point (a, b) ∈ Fq × Fq is called the center of the branch γ.

The branch γ is called linear if j1 = 1. If p - j1 (resp. p | j1) then the branch is called tame (resp.

wild). Obviously, linear branches are tame.

When the curve C : f(x, y) = 0 is defined over Fq, then C(Fq) will denote the set of places of degree

one in the function field Fq(C). Considering the projective closure F (x, y, z) = 0 of C, we define the

following numbers, which are clearly related to #C(Fq):

Definition 2.1. (i) MS
q = number of smooth points of F (x, y, z) = 0 in PG(2, q).

(ii) Mq = number of points of F (x, y, z) = 0 in PG(2, q).

(iii) Bq = number of branches of C centered at a point in PG(2, q).

Note that

MS
q ≤Mq ≤ Bq and MS

q ≤ #C(Fq) ≤ Bq. (2.2)

Hereafter, C will denote an irreducible plane curve of degree d and genus g defined over Fq. A relevant

step to prove our main result is based on the following:

Theorem 2.2 (Hirschfeld-Korchmáros). Assume that C has only tame branches. If C is a nonclassical

and q-Frobenius nonclassical curve, then

Bq ≥ (q − 1)d− (2g − 2),

and equality holds if and only if every singular branch of C is centered at a point of PG(2, q).

The next lemma extends Hirschfeld-Korchmáros’ result, and our proof is built on theirs. In particular,

all the definitions and notations, explained in detail in [4], will be borrowed.
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Lemma 2.3. If C is q-Frobenius nonclassical, then there exist at least (q− 1)d− (2g− 2) tame branches

centered at a point of PG(2, q). In particular,

Bq ≥ (q − 1)d− (2g − 2). (2.3)

Moreover, if every branch centered at a point of PG(2, q) is tame, then (2.3) is an equality if and only if

all the remaining branches are linear.

Proof. We closely follow the notation used in [4].

Set

det(D
(εi)
ζ xj) =

∣∣∣∣∣∣ D
(1)
ζ x D

(1)
ζ y

D
(pm)
ζ x D

(pm)
ζ y

∣∣∣∣∣∣ and det(D
(νi)
ζ xj) =

∣∣∣∣∣∣ x
q − x yq − y

D
(pm)
ζ x D

(pm)
ζ y

∣∣∣∣∣∣
The q-Frobenius nonclassicality of C gives

∣∣∣∣∣∣x
q − x yq − y

D
(1)
ζ x D

(1)
ζ y

∣∣∣∣∣∣ = 0, (2.4)

and then establishes the relation

det(D
(νi)
ζ xj) ·D(1)

ζ x = det(D
(εi)
ζ xj) · (xq − x).

Therefore, for any place P of Fq(C),

vP(S)− vP(R) = ordP(xq − x)− ordP(D
(1)
ζ x). (2.5)

Let γ be the (primitive) branch associated to the place P, represented by

x(t) = a+ a1t
j1 + · · · , y(t) = b+ b1t

s + · · · ,

with j1 ≤ s. If γ is tame, i.e., p - j1, then it follows (see [4, proof of Theorem 1.4]) that

vP(S)− vP(R) =

1, if (a, b) ∈ Fq × Fq;

−(j1 − 1), otherwise.

(2.6)

Now let us address the wild case, i.e., the case p | j1. Note that if D
(1)
ζ x = 0 then, from (2.4), we have

D
(1)
ζ y = 0, which contradicts the primitivity of γ. Hence, ordP(D

(1)
ζ x) = k > j1 − 1 and (2.5) yield

vP(S)− vP(R) =

−(k − j1), if a ∈ Fq;

−k, otherwise.

(2.7)
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Therefore, (2.6) and (2.7) can be reduced to

vP(S)− vP(R) =

1, if γ is tame with center in PG(2, q);

≤ 0, otherwise.

Hence, since deg(S − R) = d(q − 1)− (2g − 2), we arrive at the desired lower bound for the number

of tame branches centered at a point of PG(2, q).

Now let us assume that every branch centered at a point of PG(2, q) is tame. If Bq = d(q−1)−(2g−2),

then (2.6) implies that the remaining tame branches are linear. In addition, (2.7) implies that any wild

branch can be considered as

x(t) = a+ a1t
j1 + · · · , y(t) = b+ b1t

s + · · · ,

with 2 ≤ j1 ≤ s, ordP(D
(1)
ζ x) = j1 and a ∈ Fq. However, if this is the case, then from

ordP

(
(xq − x)(D

(1)
ζ y)

)
= ordP

(
(yq − y)(D

(1)
ζ x)

)
,

we obtain

ordP(yq − y) = ordP(D
(1)
ζ y) ≥ s− 1 ≥ 1,

i.e., b ∈ Fq. Thus, by hypothesis, such branch must be tame, and then the assertion follows. The converse

follows immediately from the fact that linear branches are automatically tame.

3 The result

The aim of this section is to prove Theorem 1.3 and some of its relevant corollaries.

Proof of Theorem 1.3. Note that from Lemma 2.3 and the definition of Bq, we have

(q − 1)d− (2g − 2) ≤ Bq ≤
∑

P∈PG(2,q)

mP . (3.1)

Let MS
q be the number of smooth Fq-points on C, and set g∗ = (d−1)(d−2)

2 −
∑

P∈Sing(Fq)

1
2mP (mP − 1).
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Then

MS
q =

∑
P∈PG(2,q)

mP −
∑

P∈Sing(Fq)

mP

=
∑

P∈PG(2,q)

mP −
∑

P∈Sing(Fq)

mP (mP − 1) +
∑

P∈Sing(Fq)

mP (mP − 2)

=
∑

P∈PG(2,q)

mP + (2g∗ − 2)− (d2 − 3d) +
∑

P∈Sing(Fq)

mP (mP − 2)

=
∑

P∈PG(2,q)

mP −
(

(q − 1)d− (2g − 2)
)

+ d(q − d+ 2) + 2(g∗ − g) +
∑

P∈Sing(Fq)

mP (mP − 2).

Since (3.1) gives
∑

P∈PG(2,q)

mP −
(

(q − 1)d− (2g − 2)
)
≥ 0, it follows that

MS
q ≥ d(q − d+ 2) + 2(g∗ − g) +

∑
P∈Sing(Fq)

mP (mP − 2). (3.2)

Now note that equality on the latter case is equivalent to equality on both sides of (3.1). Let us assume

we have equality in (3.2). The condition Bq =
∑

P∈PG(2,q)

mP means that all branches centered at a point

of PG(2, q) are linear and then tame. Using the additional equality Bq = (q− 1)d− (2g− 2), Lemma 2.3

implies that all branches of C are linear. Conversely, the linearity of all branches of C immediately gives

Bq =
∑

P∈PG(2,q)

mP and, from Lemma 2.3, Bq = (q − 1)d− (2g − 2).

Proof of Corollary 1.4. From (2.2) and (1.6), we clearly have Mq ≥ d(q − 2 + d). Let us assume

that equality holds. Then (2.2) and (1.6) imply MS
q = Mq and g = g∗, respectively. The first equality

means that all points Fq-points of C are smooth, and thus g∗ = (d− 1)(d− 2)/2. The latter equality, in

addition, gives g = (d − 1)(d − 2)/2. Therefore, C is a smooth curve. Conversely, if C is smooth then

Mq = Bq, and Lemma 2.3 gives Bq = (q − 1)d− (2g − 2). Since g = (d− 1)(d− 2)/2, the result follows.

The following additional consequences are also worth mentioning.

Corollary 3.1. Let C be a q-Frobenius nonclassical curve of degree d whose singularities are ordinary.

If the singular points have their tangent lines defined over Fq, then

#C(Fq) = d(q − d+ 2) +
∑
P∈C

mP (mP − 1).

Proof. Note that all singularities are ordinary and defined over Fq. Thus g∗ = g, and equality in (1.6)

holds. That is,
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MS
q = d(q − d+ 2) +

∑
P∈Sing(Fq)

mP (mP − 2).

On the other hand, since the tangent lines of the singular points are defined over Fq, each such point

P gives rise to exactly mP Fq-rational points of C. Therefore

#C(Fq) = MS
q +

∑
P∈Sing(Fq)

mP = d(q − d+ 2) +
∑

P∈Sing(Fq)

mP (mP − 1),

which gives the result.

Corollary 3.2. Let C be a q-Frobenius nonclassical curve of degree d > 1. Then

d ≥ √q + 1,

and equality holds if and only if C is (Fq-isomorphic to) the Hermitian curve.

Proof. By Theorem 1.3 and Hasse-Weil bound, we have

d(q − d+ 2) ≤MS
q ≤ 1 + q + (d− 1)(d− 2)

√
q.

Since d(q−d+ 2) ≤ 1 + q+ (d− 1)(d− 2)
√
q if and only if (d− 1)(

√
q+ 1)(

√
q+ 1−d) ≤ 0, the inequality

d ≥ √q+ 1 follows. The additional assertion follows from a well known characterization of the Hermitian

curve (see e.g. [5, Theorem 10.47]).

Corollary 3.3. Let C be a plane curve defined over Fq of degree d, with 1 < d ≤ √q, and genus g. Then

#C(Fq) ≤
(2g − 2) + (q + 2)d

2
.

Proof. This follows directly from Corollary 3.2 and Theorem 1.1.

4 Examples

One can find several examples of Frobenius nonclassical curves that ilustrate the previous results (see

[1] and [2]). Let us consider the particular curve

C : x4y2 + x2y4 + x4yz + xy4z + x4z2 + x2y2z2 + y4z2 + x2z4 + xyz4 + y2z4 = 0 (4.1)

over F4. This curve has some remarkable properties (see [1] and [6]). One particular feature of C is

its 4-Frobenius nonclassicality. The set of singular points of C is the whole of PG(2, 2), and all such

singularities are nodes whose tangent lines are defined over F4. Therefore, Corollary 3.1 gives

8



#C(F4) = 6(4− 6 + 2) + 7 · 2 · (2− 1) = 14.

The next example ilustrates how the choice of singular q-Frobenius nonclassical curves of degree d,

over nonsigular ones of the same degree, can make a significant difference with respect to the number of

rational points. Consider the curves

C1 : x13 = y13 + z13

and

C2 : x13 = y13 + y9z4 + y3z10 + yz12 + 2z13,

over F27. They are both 27-Frobenius nonclassical, and only C1 is smooth. One can check that #C1(F27) =

208, whereas #C2(F27) = 280, in addition to C2 being of smaller genus.
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