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CHAPTER 1

Symmetric bilinear forms

In this chapter, K will denote any field of characteristic # 2. We are mainly
interested in the cases K = R or C, and sometimes specialize to those two cases.

1. Basic definitions

Suppose V is a finite-dimensional vector space over K. For any bilinear form
B:V xV — K, define a linear map

B’ :V = V* v B(v,).

The bilinear form B is called symmetric if it satisfies B(vi,vs) = B(va,v;) for
all v,v € V. Since dimV < oo this is equivalent to (B”)* = B’. Since we
assume char(K) # 2, the symmetric bilinear form B is uniquely determined by the
associated quadratic form, @p(v) = B(v,v) by the polarization identity,

B(v,w) = 5(@p(v+w) — Qp(v) — Qp(w)).
The kernel (also called radical) of B is the subspace
ker(B) = {v € V| B(v,v1) =0 for all v; € V},

i.e. the kernel of the linear map B’. The bilinear form B is called non-degenerate
if ker(B) = 0, i.e. if and only if B® is an isomorphism. For any subspace F C V,
the orthogonal or perpendicular subspace is defined as

F+ ={ve V| B(v,v;) =0 for all v; € F}.

Note that ker(B) = V. More generally, for any subspace F C V the restriction of
B to F has kernel ker(B|pxr) = F N F*.

ProposITION 1.1. If B is non-degenerate, then
(1) dim F 4+ dim F* = dimV
for all F C V. Furthermore,
(FH)t=F, (ANFR)'=F +F, (A+FR)'=FNF;
forall F,F1,F, CV.

PROOF. Observe that the image of F- under the isomorphism Bb: V' — V* is
the annihilator of F in V*,

B Ft 5 ann(F).

The dimension formula now follows from dim F' + dimann(F) = dimV, and the
other statements are easy consequences by dimension count. (Il
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2. ISOTROPIC AND COISOTROPIC SUBSPACES

A vector space V together with a non-degenerate symmetric bilinear form B
will often be referred to as a quadratic vector space.

2. Isotropic and coisotropic subspaces

DEFINITION 2.1. Let V be a vector space with a possibly degenerate symmetric
bilinear form B. A subspace F' C V is called

- non-degenerate or quadratic if FNF+ =0,
- isotropic if F C F+,
- co-isotropic if F+ C F,
- Lagrangian if F = F*.
Observe that F C V is isotropic if and only if B|pxr = 0, and F is non-
degenerate if and only if B|pxF is non-degenerate.
LEMMA 2.2. Suppose B is non-degenerate. Then
(1) F is quadratic if and only if F+ is quadratic, if and only if V = F @& F*.
(2) F is isotropic if and only if F+ is co-isotropic.
(3) For any isotropic subspace F, dim F < dim V/2, with equality if and only
if F' is Lagrangian.
ProOOF. Clear from (F*)* = F and the dimension formula dim V = dim F +
dim F*. [l

Vectors v with B(v,v) = 0 are called isotropic vectors. By the polarization
identity, all vectors of a subspace F' are isotropic if and only if B vanishes on F, if
and only if F' is isotropic. Note on the other hand that the set of isotropic vectors
is usually not a subspace.

An isotropic subspace is called mazimal isotropic if it is not properly contained
in a another isotropic subspace.

LEMMA 2.3. An isotropic subspace F' is mazimal isotropic if and only if
F ={v € F*| B(v,v) = 0}.
PROOF. Suppose F is isotropic, and v € V. Then F + span(v) is isotropic if

and only if v € F! and B(v,v) = 0. Thus, F is maximal isotropic if and only if it
equals the set of all v € F+ with B(v,v) = 0. O

PROPOSITION 2.4. Suppose (V, B) is a quadratic vector space.
(a) If F is a mazimal isotropic subspace, and F' an isotropic subspace, then
FNF =FtnF'.
(b) If F, F' are mazimal isotropic, then
FNF'=0sV=F'oF.
(c) If F,F' are isotropic, then
V=FloF &«V=Fo¢(F)"

Furthermore, these conditions imply dim F' = dim F”.

IThis terminology is misleading if one is dealing with super-symmetric bilinear forms on
super-vector spaces. Indeed, such forms are usually not determined by the associated quadratic
form. For instance, a symplectic vector space may be viewed as a purely odd vector space with
symmetric bilinear form, but the associated quadratic form is zero.

6



CHAPTER 1. SYMMETRIC BILINEAR FORMS

(d) For any isotropic F C V there exists an isotropic subspace F' such that
FLtoF =V.
PROOF. Since elements v € F' are isotropic, (a) is immediate from Lemma 2.3.
If F, F' are maximal isotropic, it follows from (a) that
FNF =0 F'NF =0FNF)Y =0 F-+F =V.

From the second and fourth version of this equality we find that in fact the sum
F1 @ F' =V is direct. This proves (b). To prove (c), observe that V = F+ @ F’
gives dim F' = dim F’ by dimension count. If F, F’ are isotropic, then

V=FloF &0=Fn(F)=Vv=Fo(F)"

(the last sum is all of V, for dimensional reasons). Switching the roles of F, F’ one
obtains the reverse implication. To prove (d), let F' be an isotropic subspace. We
begin by choosing any complement W to F*. (Thus, dim F = dim W.) There
exists a unique linear map S: W — F with the property,

B(S(wl)aw2) = B(wl,w2), wy,w; € W.

The map S is obtained by composing the linear map (B|w)?: W — W* with the
inverse to the map

F - W*, v B(v,-).
(This last map is 1-1 since for any non-zero w € W = V/F~, there exists v € F
with B(v,w) # 0. Hence, it is an isomorphism by dimension count.) Using S let

F' ={w— 1S(w)| we W}
Then F' is still a complement to F*, and since
B(w — 35(w), w1 — $S(w1)) = B(w,w1) — §(B(w, S(w1)) + B(S(w),w1)) =0
it follows that F’ is isotropic. O

PROPOSITION 2.5. For any two mazimal isotropic subspaces F, F' of a quadratic
vector space, the kernel of B|p4+p equals F N F', and the images of F, F' in the
quadratic vector space (F+F')/(FNEF') are Lagrangian. In particular, if FNF' =0
then F @ F' is quadratic.

PROOF. Using Property (a) from the last Proposition, we find (F+ F')NF+ =
F+(FFNFY)=F+(F'NF)=F. Hence,

(F+F)N(F+F) =(F+F)nF-n(F)"
=Fn(F)*
=FNF'.

This calculation shows that ker(B|p4+p/) = F N F'. Hence B descends to a non-
degenerate bilinear form on the quotient,

W =(F+F)/(FNnF).
Let w: F + F' — W denote the projection. Then
Y wn(F))=(F+F)NF+*=F

(see above), and hence



2. ISOTROPIC AND COISOTROPIC SUBSPACES

An immediate consequence of this Proposition is that any two maximal isotropic
subspaces have the same dimension: dim 7 (F) = dim#(F”) since w(F),w(F’) are
Lagrangian, and consequently dim F' = dim F’. Thus, if F is maximal isotropic,
then any isotropic complement to F- is again maximal isotropic, for dimensional
reasons.

DEFINITION 2.6. The indez of a non-degenerate symmetric bilinear form B is
the dimension of a maximal isotropic subspace. The bilinear form is called split if
dim V = 2index(B).

Thus, B is split if and only if there are Lagrangian subspaces. For a general
quadratic vector space (V,B), pick two transverse maximal isotropic subspaces
F,F'. Then V; = F ® F’ is quadratic, with a split bilinear form, and V =V; & V,
is an orthogonal direct sum where the bilinear form on V; = V;* has index 0. Split
bilinear forms are easily classified:

PROPOSITION 2.7. Let (V, B) be a quadratic vector space with a split bilinear

form. Then there exists a basis e1,...,€ek, f1,..., fx of V in which the bilinear form
is given as follows:
(2) B(eiaej)zo’ B(eiafj):(sija B(f“f]):o

PRrOOF. Choose a pair of complementary Lagrangian subspaces, F, F’. Since
B defines a non-degenerate pairing between F' and F’, it defines an isomorphism,
F’ = F*. Choose a basis ej,...,ex, and let fi,..., fr be the dual basis of F’
under this identification. Then B(e;, f;) = d;; by definition of dual basis, and
B(es,ej) = B(fi, f;) = 0 since F, F' are Lagrangian. O

A general symmetric bilinear form B on V can always be ’diagonalized’, in the
following sense. A basis E1, ..., E, of V is called an orthogonal basis if B(E;, E;) =
0 for i # j.

PROPOSITION 2.8. For any symmetric bilinear form B on 'V there is an orthog-
onal basis. Furthermore, any linearly independent set of pairwise orthogonal vectors
E,...,E; with B(E;, E;) #0 for 1 < i <k can be extended to an orthogonal basis.

The proof is a straightforward induction.

Our basis ey, ..., ek, f1,--., fr for a quadratic vector space (V, B) with split
bilinear form is not orthogonal. However, it may be replaced by an orthogonal
basis B

Ei=ei+3fi, Bi=ei—3fi
In the new basis, the bilinear form reads,

(3) B(E;, E;) = 6;, B(E;,E;) =0, B(E;, E;) = —4;;.

_ Consider the case K = R. Denote by R™™ the space R**t™ with basis F1, ..., E,,
E,,..., E,, and bilinear form B given by the formulas (3). This has index index(B) =
min(n, m), the span of E; + F; for i = 1,..., min(n,m) is a maximal isotropic sub-
space.

PROPOSITION 2.9. Let (V, B) be a quadratic vector space over R. Then there

are unique integers n,m with n+m = dimV, such that there exists an isomorphism
of V.— R™™ preserving bilinear forms.

2Note that this differs mildly from the notion of index in Morse theory, which is defined to
be m, i.e. the number of minus signs.



CHAPTER 1. SYMMETRIC BILINEAR FORMS

This is proved by choosing a suitable orthogonal basis; details are left as an
exercise. For K = C, the classification is even easier:

PROPOSITION 2.10. Let (V, B) be a quadratic vector space over R. Then there
exists an isomorphism V. — C" preserving bilinear forms. (Here C" carries the
standard bilinear form). The index of B equals n/2 if n is even, and (n—1)/2 ifn
is odd.

PRrOOF. Let Ei,...,E/ be an orthogonal basis of V. Choose \; € C with
A2 = B(E!,E!) and set E; = A\ 'E!. The span of

Ey+V—-1E;, E3+V—1E4,--- ,Eyp_1++v—1Eqy

is a maximal isotropic subspace; here k = n/2 if n is even, and k = (n — 1)/2if n
is odd. d

3. The orthogonal group O(V)

Let V be a vector space with a symmetric bilinear form B. The orthogonal
group O(V) is the group

O(V)={A4 e GL(V)| B(Av,Aw) = B(v,w) for all v,w € V'}.

The subgroup of orthogonal transformations of determinant 1 is denoted SO(V),
and is called the special orthogonal group. For the case V = K", with bilinear form
B(E;, Ej) = 6;j, we write O(n,K) and SO(n,K).

IfV = K™™ (defined similar to R™™) we will write O(n, m; K) and SO(n, m; K).
Note

O(n,K) x O(m,K) C O(n, m;K).

If (V, B) is a quadratic vector space with split bilinear form, denote by Lag(V') the
set of Lagrangian subspaces. Recall that any such V is isomorphic to K™ where
dimV = 2n. For K = R we have the following result.

THEOREM 3.1. Let V = R™" with the standard basis satisfying (3). Then
Ly = span{E; + Ei,...,En+ En}

is a Lagrangian subspace of V, and any other Lagrangian subspace L € Lag(V) is
obtained from Ly by a unique orthogonal transformation in the subgroup O(n,R) x
{1} C O(n,n;R). That is,
Lag(V) 2 O(n,R).
PRrROOF. Let V, be the span of the E;’s and V_ the span of the E;’s. For any
A € O(n,R) = O(V4.), the calculation
B(A(E;) + Ei, A(E;) + E;) = B(A(E:), A(E;)) — 6;; = 0,

shows that the image of Ly under A is Lagrangian. Conversely, let L € Lag(V)
be an arbitrary Lagrangian subspace. Then LNV, = {0} = LN V_, since L is
Lagrangian. Hence, L is the graph of an invertible linear map V_ — V. It hence
admits a basis A(FE;) + E,...,A(E,) + E, for a unique linear transformation
A € GL(V,). The fact that L is Lagrangian gives

0 = B(A(E;) + Ei, A(Ej) + Ej) = B(A(E)), A(E;)) — bij,
hence A € O(n, R). O



3. THE ORTHOGONAL GROUP O(V)

REMARK 3.2. There is a similar result in symplectic geometry, for a real vec-
tor space V with a non-degenerate skew-symmetric linear form. Any such V is
identified with C® = R?” with the standard symplectic form, Ly = R® C C" is a
Lagrangian subspace, and the action of U(n) C Sp(V,w) on Ly identifies

Lag(V) = U(n)/ O(n)

The analogue of U(n) C Sp(V,w) in our case is the subgroup O(n) x O(n) C
O(n,n)), and the result simplifies since O(n) x O(n)/ O(n) = O(n).

Theorem 3.1 does not, as it stands, generalize to other fields. Indeed, the group
O(n) x O(n) takes Ly to a Lagrangian subspace transverse to V;,V_. However,
there may be other Lagrangian subspaces: E.g. if K = C and n = 2, the span
of By ++/—1E, and E; + v/—1FE, is a Lagrangian subspace not transverse to V.
Nonetheless, there is a good description of the space Lag in the complex case.

Let V = C?>™, viewed as the complexification of R®™. Recall that an orthogonal
complex structure on R*™ is an automorphism J € O(2m) with J? = —I. Then J
has eigenvalues ++/—1, and the corresponding eigenspaces are complex conjugate:

F =ker(J — v—1I), F=ker(J+v—1I),
and C* = F@ F. In fact, F and F are Lagrangian: If v € F then
B(v,v) = B(Jv, Jv) = B(vV—1v,v/—1v) = —B(v,v).

Conversely, given a Lagrangian subspace F' we may recover J, as follows: Given
w € R?™, we may uniquely write w = v+7 where v € F. Thus w = 2Re(v). Define
a linear map J by Jw := —2Im(v). Then v = w —+/—1Jw. Since F is Lagrangian,
we have

0 = B(v,v) = B(w—vV—1Jw,w—v—1Jw) = B(w,w)—B(Jw, Jw)—2v/—1B(w, Jw),

which shows that J € O(V) and that B(w,Jw) = 0 for all w. Multiplying the
definition of J by v/—1, we get

vV=1lv=+v—-1w+ Jw

which shows that J(Jw) = —w. Hence J is an orthogonal complex structure.
It follows that Lag(C?™ can be identified with the space J(2m) of orthogonal
complex structures on R?™. The transitive action of O(2m) translates into the
standard action on J(2m), with stabilizer at Jp (the standard complex structure,
corresponding to R?™ =2 C™) equal to the unitary group U(m). We conclude

THEOREM 3.3. The space of Lagrangian subspaces of V.= C*™ is naturally
isomorphic to the homogeneous space of complex structures on R®™:

Lag(V) = O(2m)/ U(m).
In particular, it is a compact space with two connected components.
Let us return to quadratic vector spaces over arbitrary fields.

PROPOSITION 3.4. Suppose (V, B) is a quadratic vector space with split bilinear
form, and let F,F' be transverse Lagrangian subspaces. The subgroup of O(V)
preserving the splitting V. = F @ F' is isomorphic to GL(F).

10



CHAPTER 1. SYMMETRIC BILINEAR FORMS

PROOF. Recall that B identifies F' = F*. Given B € GL(F), let B’ =
(B71)* € GL(F’). Then the transformation A = B & B’ of F & F' is orthogo-
nal. Conversely, it is easy to see that any orthogonal transformation preserving the
decomposition F' @ F' must have this form. |

COROLLARY 3.5. Let (V, B) be a quadratic vector space, and F C V isotropic.
Then any general linear transformation h € GL(F') extends to an orthogonal trans-
formation g € O(V), with the property that the induced transformations of F/F
and V/F1 = F* are the trivial transformation and (h=1)*, respectively.

Note that since g preserves F, it is automatic that g preserves FL.

PROOF. Pick an isotropic complement F’ to F'*, and apply the Proposition to
the quadratic vector space V3 = F & F'. Extend to an orthogonal transformation
of V, equal to I on V, = V. O

PROPOSITION 3.6. Suppose (V, B) is a quadratic vector space. The orthogonal
group O(V') acts transitively on the space of mazimal isotropic subspaces, and more
generally on the space of isotropic subspaces of a given dimension.

PROOF. Suppose first that F, F' are transverse Lagrangian subspaces. Let

€1,---5€n, f1,---, fn be the associated basis of V. Then the linear map given by
ei = fi, firr —ei

is orthogonal, and takes F' to F'. In the general case, let V1 be a complement to

FNF'inside F + F'. Then V; is quadratic, and V1 N F and V; N F' are transverse

Lagrangian subspaces. By the above, there is an orthogonal transformation of V3

taking V1 N F to Vy N F’. Its extension to an orthogonal transformation of V', equal

to I on Vit, has the desired properties.

More generally, suppose F, F' are two isotropic subspaces of equal dimension,
and Fi, F| are maximal isotropic subspaces containing F, F’ respectively. Since
there exists an orthogonal transformation taking Fj to Fj, we may assume F] = Fj.
Now pick any B € GL(F}) taking F' to F'. By the previous proposition, B extends
to an orthogonal transformation of V. a

For any subspace S C V, let O(V)gs denote the subgroup fixing each vector
of S. The following result will be needed in our proof of the Cartan-Dieudonné
theorem in the following section.

PROPOSITION 3.7. Suppose (V, B) is a quadratic vector space, and F C V is
an tsotropic subspace.

(1) There is a canonical group isomorphism
O(V) s = N*(F)

where we think of the Abelian group N*(F) as the space of linear maps
D: F* — F such that D* = —D. For A € O(V)p., the range of the
corresponding D equals the range of A — I. In particular, the rank n(A)
of the map A — I is even.

(2) If F is maximal isotropic, and A € O(V), then the following are equiva-
lent:

(A—1)?> =0 < im(A — 1) is isotropic
& A is conjugate to an element of O(V)pu.

11



3. THE ORTHOGONAL GROUP O(V)

(3) Two elements Ay, Ay € O(V) with (A; —I)? = 0 are conjugate if and only
if n(A1) = n(Az).

PROOF. A simple fact use throughout this proof is that for any A € O(V),
im(A — I) = ker(A! — I)*" = ker((—A")(A — I))* = ker(A — I)*.
If F is isotropic,
AcOV)p: & ker(A—I)DF+ < im(A—1I)CF.
It follows that D := A — I induces a linear map,
D:V/F+ 5 F.

The bilinear form B identifies V//F+ 22 F*, so that D can also be viewed as a linear
map D: F* — F. By definition

<a1, D(CQ)) = B(.’El, D$2)
if j € F* = V/FJ- are the images of x; € V. From
B($1,.’L’2) = B(A.’L'l,A.’L‘Q) = B((I + D)$1, (I+ ﬁ)]}g)
= B(.I!l, .’L‘Q) + B(:L‘l, ﬁ$2) + B(Eil?l,:l,'g)
we obtain B(wl,f?azg) + B(D$1,$2) = 0, which shows D! = —~1~7 and hence D* =
—D. Conversely, if D is skew-adjoint, lift D to a linear map D: V — F (equal to
0 on F1) and set A = I + D. Then the above calculation (read in reverse) shows
that A is orthogonal. Note finally that if A; =T+ D; € O(V)g. for i = 1,2, then
DDy =0, and therefore
AyAy = (I + Dy)(I 4+ D3) =T+ Dy + Ds.

Hence, the map O(V)p1. — A%(F), A~ D is a group isomorphism. This proves
(1). Consider next (2), where now F is maximal isotropic:

(A—1)* =0« im(A—TI) C ker(A —I) = im(A — I)*
< 3JgeO(V): g-im(A-I)CF
&3geO(V): im(gAg ' —I)CF
& 3geO(V): gAgt € O(V)pe.
Here we have used that by Proposition 3.6, any isotropic subspace is conjugate to
a subspace of the given maximal isotropic subspace F.
To prove (3), fix a maximal isotropic subspace F'. We may assume, conjugating
by elements of O(V) if necessary, that im(4; — I) C F for i = 1,2. Now, if

D: F* — F is a fixed skew-adjoint linear map of rank [ (necessarily even), there
exists a basis® ey, ..., e of F, with dual basis fi,..., fi of F*, such that

D(f1) = e2, D(f2) = —e1,...,D(fi-1) = &, D(fi) = —ei-1,
3D can be interpreted as a rank ! skew-symmetric bilinear form w on F*. There exists a
basis f1,...,fx of F* such that
w(fi,f2) = —w(fe, 1) =1, ... wcfie1, fi) = —w(fi, 1) = 1,

and all other pairings between basis vectors equal to zero. In terms of the dual basis e; of F, this
means D(f1) = e2, D(f2) = —e1 etc.

12



CHAPTER 1. SYMMETRIC BILINEAR FORMS

and D(f;) = 0 for I < j < k. (This follows from the standard normal form
theorems for skew-symmetric bilinear forms.) If we apply this result to the skew-
adjoint maps D;: F* — F corresponding to A;, we see that D, Dy are conjugate by
some element h € GL(F). Since F is isotropic, Corollary 3.5 shows that h extends
to an orthogonal transformation g € O(V), with the property that the induced
transformation of F+/F and F* = V/F~ are 1 resp. (h~1)*. This g then satisfies
9D1g™! = D5, and hence gA;g~! = A,. O

Let F' C V be an isotropic subspace, and consider the direct sum W = F @ F™*,
with bilinear form given by the pairing. That is, F, F* are Lagrangian subspaces
of W=F@F* and forv e F and o € F*

Bw (a,v) = a(v).

Then there is a canonical isomorphism,
(4) O(V)pL. 2O(F & F*)p.

since both spaces are canonically isomorphic to the space A%(F) of skew-adjoint
linear maps.

4. The E.Cartan-Dieudonné Theorem

Throughout this Section, we assume that (V, B) is a quadratic vector space.
Suppose v € V is a non-isotropic vector, that is, B(v,v) # 0. Then v determines a
unique transformation R, € O(V) fixing the orthogonal complement span(v)* and
taking v to —v. That is,

ker(R, — I) = span(v)®, R,(v)=—v
The reflection R, is given by the explicit formula,
B(v,w)
B(v,v)
as one checks by considering the cases w = v and B(v, w) = 0. Some fairly obvious
properties of reflections are,
(1) det(R,) = -1,
(2) R) =1,
(3) if v1,v9 € V are non-isotropic, and B(vy,v2) =0, then Ry, Ry, = Ry, Ry, ,
(4) AR,A ™! = Ry, for all A€ O(V).
For any A € O(V), let [(A) denote the smallest number [ such that A = R,,, - - - Ry,

where v; € V are non-isotropic. (We set I(I) = 0.) It is by no means obvious that
this is always possible, but we have:

R,(w) =w—2

THEOREM 4.1 (E.Cartan-Dieudonné). Any orthogonal transformation A € O(V)
can be written as a product of [(A) < dimV reflections.

The proof of this Theorem will require some preparations. For any A € O(V)
let n(A) denote the codimension of the space of A-fixed vectors, or equivalently

n(A) = dim(im(A4 — I)).
LEMMA 4.2. For any A € O(V) and any non-isotropic v € V,
im(R,A — I) + span(v) = im(A — I) + span(v).
In particular, the numbers n(R,A) and n(A) differ by at most 1.
13



4. THE E.CARTAN-DIEUDONNE THEOREM

Proor. Taking orthogonal complements, the Lemma is equivalent to
ker(R,A — I) Nker(R, — I) =ker(A — I) Nker(R, — I).

But this is just the obvious fact that if w € V with R,w = w, then Aw = w if and
only if R,Aw = w. O

By induction, the Lemma implies im(R,, -+ R,, — I) C span(vy,...,v), and
hence gives a lower bound
n(4) <1(4)
for any A € O(V). Clearly, n(A) =0 < A = 1. We could hence prove the Cartan-
Dieudonné theorem by induction, if we could always find a non-isotropic v € V
such that n(R,A) = n(A) — 1. Unfortunately, as it turns out, such an element does
not exist if im(A — I) is isotropic. Hence we will first discuss that case separately.

PROPOSITION 4.3. Suppose im(A — I) is isotropic. Then l(A) < 2n(A4) <
dimV.

PROOF. Let F =im(A—1I), and let F' C V be an isotropic complement to F-.
Then V3 = F @ F’ is non-degenerate with a split bilinear form, i.e. V3 = F & F*.
Since F+ = ker(A — I), we have A € O(V)p.. Since A fixes V;* C F* pointwise,
we can think of A as an orthogonal transformation of V.

This reduces the problem to the case V. = F & F* with A € O(V)p. Let
D : F* — F be the skew-adjoint linear map corresponding to A, so that A = I+ D.
The assumption ker(A — I) = F means that D: F* — F has zero kernel, i.e. it
is invertible. In particular dim F’ must be even. By bringing D into normal form,
it finally suffices to consider the case dim F' = 2, with basis e1, e and dual basis
f1, f2, and D given by

Df1 = €2, Df2 = —e€1.
In this case n(A) = 2, and we have to show that A is a product of 4 reflections.
Observe that the square A% has a similar block form, but with D replaced by

D = 2D. The base change
& =2e1,8 =e, fi=1f1, f2=fo
takes D back to D. (Note that nothing happens in the e — f5 plane.) Let g € O(V)
be the orthogonal transformation given by é; — e;, f; — f;, so that
A% = gAgL.
One easily verifies that g = R,,, R,,, where
vi=e; — f1, v2a =e€1 — %fl-
Indeed, using
Ry, e1=f1, Ry,e1= %fl

(while R,,, Ry, fix eg, f2), one obtains

RU1 sz (él) = va Rv2 (261) = Rv1 (fl)

Ry, Ro,(f1) = Ro, Ruy (3 1) = Ru, (e1)

€1,

fr.

Hence
A=gAg A7 = Ry, Ry, Rp(vo)RA(wr)
is a product of 4 reflections, as required. [l
LEMMA 4.4. Let A € O(V).

14
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(1) Suppose w € V is an element such that v = (A — I)w is non-isotropic.
Then R,Aw = w.

(2) If im(A — I) is non-isotropic, there exists a non-isotropic vector w € V
such that (A — I'w is non-isotropic.

PROOF. (1) Suppose first that w € V is an arbitrary element, and v =
(A —T)w. Then

(5) B(v,v) = —2B(v,w)
by the calculation,
B(Aw — w, Aw — w) = 2B(w,w) — 2B(Aw, w)
= —2B(Aw — w,w).

If v is non-isotropic this implies,

R,Aw=R,(v+w) =Ry(w) —v=w—2

B(v,v) v

(2) Suppose that for every non-isotropic w € V, the vector v = (A — Iw is
isotropic. We have to show that im(A — I) is isotropic, in other words
that v = (A — I)w is isotropic for all w (not just the non-isotropic ones).
4 Given an isotropic element w € V, pick any non-isotropic element
w; € span(w)t, and let v = (A — I)w and v; = (A — I)w;. Then
w + w; and w — wj are also non-isotropic. By assumption, this implies
that vy, v+ v, v—v; are all isotropic. The resulting equations give that
v is isotropic.

O

We are finally in position to prove the general case.

PROOF OF THE E.CARTAN-DIEUDONNE THEOREM 4.1. Proposition 4.3 settles
the case that im(A — I) is isotropic. We may hence assume that im(A — I)
is non-isotropic. By the Lemma, there exists a non-isotropic element w € V
such that v = (A — I)w is non-isotropic. Furthermore, A; = R, A fixes w, and
hence restricts to an orthogonal transformation of V; = span(w)*. By induction,
I(A1) <dimV — 1. Hence [(4) = (Ry,A4:1) < dim V. O

There is a similar result for the group SO(V) of special orthogonal transfor-
mations. An element A € SO(V) is called a 2-plane rotation if there exists a
2-dimensional non-degenerate subspace S, such that A fixes S+. (Hence A is de-
termined by its restriction to S.)

THEOREM 4.5. Any A € SO(V) is a product of a finite number r(A) of 2-plane
rotations, with 2r(A) <dimV.

Proor. Using the E.Cartan-Dieudonné theorem, it suffices to show that any
product of two reflections A = R,, R,, with B(v;,v;) # 0 can be written as a
product of two (or less) 2-plane rotations. This is obvious if v1, vz are proportional
(in which case A is the identity) or if the space S C V spanned by vy, v is non-
degenerate (in which case A is a 2-plane rotation). Suppose that this is not the
case, so that vy, v are linearly independent, but the space S spanned by vy, v is

Y K=RorK = C, this follows immediately once it is known that non-isotropic elements
are dense in V.

15
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degenerate. It suffices to find y € V such that the span of v;, v and the span of ve, v
are both non-degenerate, since then R,, R,, = (Ry, Ry)(RyRy,) is a product of two
2-plane rotations. Let y = A\jv1 4+ A2v2 be a generator of the (1-dimensional) kernel
of B|sxs. Rescaling vy, ve, we may assume y = (v; — v3)/2. Set w = (v1 + v2)/2.
Then B(w, w) # 0, since otherwise the restriction B|sxs would be zero. We have

v =w+Y, Vg =W — Y.

The orthogonal space span(w)~ is non-degenerate, and contains the isotropic vector
y. Hence we can find z € V with

B(z,w) =0,B(z,2) =0,B(z,y) = 1.

Put v = y + Az. (with A # 0 to be determined). Then B(v,v) = 2\. Suppose
1191 + pov is orthogonal to both v; and v. Then

0=B(u(w+y) +p2(y + Az),w +y) = pB(w,w) + p2A,
0= B(pi(w+y) + p2(y + X2),y + Az) = p1 A + 2u2 A

Thus, as long as A # 2B(w,w) this system has no non-trivial solutions, and the
space spanned by v1,v is non-degenerate. A similar argument applies to the span
of vs,v. O

5. O(n,m;R) and O(n,C)

In this Section, we will describe in some more detail the topology of the or-
thogonal groups, for the case K =R or C.

We begin with K = R. Let (V, B) be a quadratic vector space. Being a closed
subgroups of GL(V), the orthogonal group O(V) is a Lie group. Recall that for a
Lie subgroup G of GL(V), the corresponding Lie algebra g is the subspace of all
¢ € End(V') with the property exp(t£) € G for all t € K (using the exponential map
of matrices).

PROPOSITION 5.1. The Lie algebra o(V') of the orthogonal group O(V) consists
of all A € End(V) such that B(Av,w) + B(v,Aw) = 0 for all vyw € V. In
particular, dimo(V) = N(N — 1)/2 where N =dimV.

PROOF. Suppose A € o(V). Then exp(tA) € O(V) for all t. Taking the ¢-
derivative of B(exp(tA)v, exp(tA)w) = B(v,w) we obtain B(Av,w)+ B(v, Aw) =0
for all v,w € V. Conversely, given A € gl(V,R) suppose B(Av,w) + B(v, Aw) =0
for all v,w € V. Then

B(exp(tA)v, exp(tA)w) = i ﬂB(Akv,Alw)

o~

_ Ii t—k‘B(v, AFw) 2(—1)1 (f)
- B_(v,w) B
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since 35 (=1)'(%) = (1 + (1)) equals 0 for k = 0, and 1 for k = 0. The
property B(Av,w) + B(v, Aw) = 0 says that the composition B* 0 A: V — V* is
skew-adjoint. Since the space of skew-adjoint linear maps V' — V* has dimension
N(N —1)/2, the proof is complete. O

Recall that any quadratic vector space (V, B) over R is isomorphic to one of
the examples R™™. The corresponding orthogonal group is denoted O(n,m), and
its Lie algebra o(n,m). The special orthogonal group will be denoted SO(n,m),
and its identity component SOg(n, m). The dimension of O(n,m) coincides with
the dimension of its Lie algebra, N(N —1)/2 where N =n+m. If m =0 we will
write O(n) = O(n,0) and SO(n) = SO(n, 0).

PROPOSITION 5.2. For each n > 1, the Lie group SO(n) is compact and con-

nected. For n > 3 the fundamental group is m1(SO(n)) = Zy. In low dimensions,
SO(1) = {1}, SO(2) = S*, SO(3) = RP(3), SO(4) = S* x S3/ ~

as manifolds, where in the last case ~ denotes the equivalence relation (z,y) ~

(_:E, _y)‘

PROOF. Since SO(n) is a closed, bounded subset of GL(n), it is compact. The
defining action of SO(n) on R™ restricts to a transitive action on the unit sphere
S™~1 with stabilizer at (0,...,0,1) equal to SO(n — 1). Hence, for n > 2 the Lie
group SO(n) is the total space of a principal fiber bundle over S"~!, with fiber
SO(n — 1). This shows by induction that SO(n) is connected. Also, since S™~!
is 2-connected for n > 3, the inclusion of the fiber SO(n — 1) — SO(n) defines
an isomorphism of fundamental groups for n > 3. That is, for all n > 3 the
inclusion SO(3) — SO(n) (as the upper left corner) induces an isomorphism of
fundamental groups, 71(SO(n)) = m1(SO(3)) for n > 3. From the isomorphism
SO(3) = RP(3) = S§3/ ~ proved below, it is immediate that 71 (SO(3)) = Z,.

The diffeomorphism SO(2) =2 S! is obvious. To describe SO(3) and SO(4),
consider the algebra of quaternions H =2 C? = R4,

H:{(_% g),@weC}

The algebra H carries an involutive anti-automorphism, given by conjugate trans-

pose:
a=(Z V)ea=(2 ")
-—w =z w z

Note that A*A = AA* = (|z|? + |w|?)I. Define a symmetric R-bilinear form on H
by
B(Al, Ag) = %tr(AIAz)

In terms of the parameters z, w, this is just the standard scalar product on C? = R*:

NERINEY R

The unit sphere S3 C H, characterized by |z|? + |w|? = 1 is the group SU(2) =
{A| A* = A1, det(A) = 1}. Define an action of SU(2) x SU(2) on H by

(A1, As) - A= A1 AA; .

This action preserves the bilinear form on H =2 R*, and hence defines a homomor-
phism SU(2) x SU(2) — SO(4). The kernel of this homomorphism is the finite

17



5. O(N, M;R) AND O(N,C)

subgroup {+(I,I)} = Z,. (Indeed, A;AA;' = A for all A implies in particular
A; = AA3A7?! for all invertible A. But this is only possible if A; = Ay = +1.)
Since dim SO(4) = 6 = 2dim SU(2), and since SO(4) is connected, this homomor-
phism must be onto. Thus SO(4) = (SU(2) x SU(2))/{£(I,1)}.

Similarly, identify R® with the space of tracefree (i.e. pure) quaternions,
{A € H| tr(A) = 0}. In terms of z,w, this is just the condition Re(z) = 0. The con-
jugation action of SU(2) on H preserves the tracefree quaternions, and also preserves
the inner product on R3. Hence we obtain a group homomorphism SU(2) — SO(3).
The kernel of this homomorphism is Zy & {£I} C SU(2). Since SO(3) is connected
and dim SO(3) = 3 = dim SU(2), it follows that SO(3) = SU(2)/{xI} = 3/ ~ =
RP(3). O

To study the more general groups SO(n,m) and O(n,m), we recall the polar
decomposition of matrices. Let

Sym(k) = {A] AT = A} c gl(k,R)
be the space of real symmetric k x k-matrices, and Sym™ (k) its subspace of positive
definite matrices. As is well-known, the exponential map exp: gl(¢,R) — GL(k, R)
for matrices restricts to a diffeomorphism,
exp: Sym(k) — Sym™(k),
with inverse log: Sym™ (k) — Sym(k). Furthermore, the map
O(k) x Sym(k) — GL(k,R), (0O, X) — Oe*
is a diffeomorphism. The inverse map
GL(k,R) — O(k) x Sym(k), ~ (A|A|™*,log]|A|),

where |A| = (AT A)Y/2, is called the polar decomposition for GL(k,R). We will need
the following simple observation:

LEMMA 5.3. Suppose X € Sym(k) is non-zero. Then the closed subgroup of
GL(k,R) generated by X is non-compact.

PROOF. It is enough to show that the subset {e"X, n € Z} is unbounded. A
set of matrices is bounded if and only if the eigenvalues are uniformly bounded.
But is A € R is a non-zero eigenvalue of X, the corresponding set of eigenvalues
e™ of e"X is clearly not bounded (since A # 0). O

This shows that O(k) is a maximal compact subgroup of GL(k,R). The po-
lar decomposition for GL(k,R) restricts to a polar decomposition for any closed
subgroup G that is invariant under the involution A — AT. Let

K=GnO(k,R), P=GnNSym"(k), p =gnN Sym(k).

The diffeomorphism exp: Sym(k) — Sym™ (k) restricts to a diffeomorphism exp: p —
P, with inverse the restriction of log. Hence the polar decomposition for GL(k, R)
restricts to a diffeomorphism

Kxp—>G
called the polar decomposition of G. (It is a special case of a Cartan decomposition.)
Using Lemma 5.3, we see that K is a maximal compact subgroup of G. Since p is
just a vector spaces, the algebraic topology of G coincides with that of its maximal
compact subgroup K.

18
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We will now apply these considerations to G = O(n, m). Write elements A €
GL(n 4+ m,R) in block form

(2 4)

Then the bilinear form on R™™ is related to the bilinear form (dot product) of
R**™ by B(v,w) = (Jv) - w where

=(6 5)
The condition A € O(n,m) is equivalent to ATJA = J, which translates into the
set of equations,
(7) afa=T+c"c, d"d=T+b"b, a"b=c"d.
Similarly, a matrix X € Mat(n 4+ m,R), written in block form

(1 9)

lies in the Lie algebra o(n,m) if and only if XTJ + JX = 0, which translates into
(9) ol = —a, BT =+, 6T = 6.

Since O(n, m) is invariant under the transposition map for GL(n + m, R), the polar
decomposition applies and yields,

PROPOSITION 5.4. Relative to the polar decomposition of GL(n + m,R), the
mazimal subgroups of

G = 0O(n,m), SO(n,m), SOy(n,m),
are, respectively,
K = 0O(n) x O(m), S(O(n) x O(m)), SO(n) x SO(m).

In all of these cases, the space p in the Cartan decomposition is given by matrices

of the form
0 =z
=05 0)]

where x is an arbitrary n x m-matriz, and the space P = exp(p) consists of matrices

P= {( e 1+ 5Ty )}

where b ranges over all n X m-matrices.
PROOF. The condition A € O(n + m) gives the equations,
afa+cle=1, b"b+d"d=1, a"b+c"d=0.
This is compatible with the (7) for O(n,m) if and only if b = ¢ = 0, and the
resulting conditions a’a = I, d¥d = 0, b = ¢ = 0 give O(n) x O(m). Similarly,

a matrix X € o(n,m), given by the conditions (9), is symmetric if and only if the
diagonal entries vanish. The discussion for p is similar. O

COROLLARY 5.5. Unlessn =0 or m = 0 the group O(n, m) has four connected
components and SO(n,m) has two connected components.
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In the above coordinates, it is not quite obvious how the matrix b appearing in
the description of P is related to the matrix z in the description of p.

PROPOSITION 5.6. One has

) (I +vbT)1/2 b (0 =z
o8 b7 (IT+Tp) 2 ) =\ 2" 0

where © and b are related as follows,
_ sinh(zzT) _ arsinh((bb7)1/2)

(10) b o g = (bbT)1/2

. T

Note that zzT (resp. bbT) need not be invertible. The quotient Sm};(miacf) should
be interpreted as f(zz”) where f(z) is the entire holomorphic function and
f(zzT is given in terms of the spectral theorem or equivalently in terms of the

power series expansion of f.

sinh 2
)

PROOF. Let X = ( xOT g > By induction on k,
Tk T\k
o _ [ (zz7) 0 2k+1 _ 0 (za” )z
X7 = ( 0 (xTx)* >’ X o ( z(zTz)k 0 ’

This gives

cosh(zz7T) sinh(zzT) ) )

exp(X) = X zz”
(%) (m% cosh(zTz)

. T
which is exactly the form of elements in P with b = Sm};gcizf)m The equation

cosh(zzT) = (1+bb7)/2 gives sinh(zz”) = (bb*)'/2. Plugging this into the formula
for b, we obtain the second equation in (10). O

For later reference, we mention one more simple fact about the orthogonal and
special orthogonal groups:

PROPOSITION 5.7. For all n,m, the center of the group O(n,m) is Zy =
{I,—1I}. The center of SO(n,m) is {I,—I} for n 4+ m > 3 even, and is trivial
for n+m > 3 odd. The center of the identity component SOqg(n,m) is I,—1I if
n,m > 2 are both even, and is trivial if n or m are odd.

PROOF. For all N > 1 let D(N) = (Z,)" denote the group of diagonal ma-
trices with entries +1 down the diagonal. Let SD(N) C D(N) be the subgroup
of matrices of determinant 1, i.e. with an even number of —1’s. By elementary
linear algebra, the matrices commuting with all members of D(N) are exactly the
diagonal matrices. The same is true for the centralizer of SD(NNV), provided N > 3.

Consider the center of O(n,m) where n +m = N. Since D(N) C O(n,m),
the center must consist of diagonal matrices. For all 1 < ¢ < j < n, and for
n+1 <i < j < n+m, there exists an orthogonal matrix A € O(n, m) such that
conjugation of a diagonal matrix by A interchanges the i’th and j’th diagonal entry.
(E.g., take A to be the matrix of the transformation exchanging the basis vectors e;
and e; and fixing all other basis vectors.) Hence, elements of the center must consist
of block diagonal matrices where the only possible blocks are +1I,,, +I,, (where
I,,, I,, denote the n x n, m x m identity matrices). But the matrices commuting
with diag(I,, —In,) are the block diagonal matrices. Hence, it follows that the
center of O(n,m) consists of +1.
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A similar discussion applies to SO(n,m), provided n +m > 3. Note that —I
is contained in the maximal compact subgroup S(O(n) x O(m)), and that it is
contained in SO(n) x SO(m) if and only if n, m are both even. From this one easily
obtains the description of the center of SOy (n, m). O

The discussion above carries over to K = C, with only minor modifications.

It is enough to consider the case V = C", with the standard symmetric bilinear
form. Again, our starting point is the polar decomposition, but now for complex
matrices. Let Herm(n) = {A| A* = A} be the space of Hermitian n x n matrices,
and Herm™ (n) the subset of positive definite matrices. The exponential map gives
a diffeomorphism

Herm(n) — Herm™ (n), X r e*.
This is used to show that the map

U(n) x Herm(n) — GL(n,C), (U,X) — Ue*
is a diffeomorphism; the inverse map takes A to (Ae=*, X) with X = 1log(A*A4).
The polar decomposition of GL(n,C) gives rise to polar decompositions of any
closed subgroups G C GL(n,C) that is invariant under the involution *. In par-
ticular, this applies to O(n,C) and SO(n,C). Indeed, if A € O(n,C), the matrix
A*A lies in O(n,C) N Herm(n), and hence its logarithm X = 3 log(A*A) lies in
o(n,C) NHerm(n). But clearly,
O(n,C) NU(n) = O(n,R),
SO(n,C) NU(n) = SO(n,R)

while

o(n,C) NHerm(n) = v—1o(m, R).
Hence, the maps (U, X) +— UeX restrict to polar decompositions

O(n,R) x v/—1o(n,R) — O(n,C),

SO(n,R) x v/—1o(n,R) — SO(n,C),

which shows that the algebraic topology of the complex orthogonal and special
orthogonal group coincides with that of its real counterparts. Arguing as in the
real case, the center of O(n,C) is given by {+I,—1I} while the center of SO(n,C)
is trivial for n odd and {+I,—I} for n even, provided n > 3. (Indeed, the same
argument works for O(n, m,K) for any field K of characteristic # 2.)
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CHAPTER 2

Clifford algebras

1. Preliminaries on exterior algebras

For any vector space V over a given field K, let T(V) = @, T*(V) be the
tensor algebra, with T%(V) =V ®---® V the k-fold tensor product. The quotient
of T (V') by the two-sided ideal Z(V') generated by all v ® w + w @ v is the exterior
algebra, denoted A(V'). The product in A(V) is usually denoted oy A a2, although
we will frequently omit the wedge sign and just write a; . Put differently, A(V) is
the associative algebra linearly generated by V', subject to the relations vw+wv = 0.
The exterior algebra has the following universal property: If A is an algebra, and
¢:V — A a linear map with ¢(v)p(w) + ¢(w)d(v) = 0 for all v,w € V, then ¢
extends uniquely to an algebra homomorphism A(V) — A. Since Z(V) is a graded
ideal, the exterior algebra inherits a grading

ANV) =EP A*(V).

keZ

Clearly, A°(V) = K and A'(V) = V so that we can think of V as a subspace of
A(V). We briefly list the main constructions and properties for exterior algebras:

Basis. If dim V = n < oo, with basis e;, the space A¥(V) has basis
€1 = €3y ** " €4

for all ordered subsets I = {i1,...,ig} of {1,...,n} (If k =0, we put ey = 1.) In
particular, we see that dim A¥(V)) = (}), and

dim A(V) = é (Z) =om.

Letting e! € V* denote the dual basis to the basis e; considered above, we define a
dual basis to er to be the basis el = eit --- et € A(V*).

Graded commutativity. The exterior algebra is commutative (in the graded
sense). That is, for a; € A1 (V) and az € A*2(V),

(a1, 2] := a1z + (—1)k1k2a2a1 =0.
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Functoriality. Any linear map L: V — W extends uniquely to an algebra ho-
momorphism A(L): A (V) — A(W). One has A(L; o Ly) = A(L1) o A(Lz). In
particular, one hence obtains a group homomorphism

Aut(V) = Autag(A(V)), L= A(L)
For instance, the involution v — —v induces the parity operator II € Auta(A(V)),
equal to (—1)* on A*(V).
If g € GL(V) C End(V) we will sometimes simply write g rather than A(g).
(On the other hand, it is risky to adopt this convention for arbitrary maps, since
for example A(0) is not the zero map.)

Direct sums. Suppose Vi, Vs are two vector spaces, and define A(V7) ® A(Vz) as
the tensor product of graded algebras. 2 The map

VieVa =2 AV1)@A(V2), i @v2 1 ®1+ 1@ v
extends uniquely (by the universal property) to a homomorphism of graded alge-
bras,
AWVI @ Va) = A(V1) @ A(Va).
It is not hard to check that this map is an isomorphism.

The anti-automorphism. An anti-automorphism of an algebra A is an invertible
linear map ¢: A — A with the property ¢(ab) = ¢(b)é(a) for all a,b € A. Put
differently, if A°P is A with the opposite algebra structure a - b := ba, an anti-
automorphism is an algebra isomorphism A — A°P.

The exterior algebra carries a unique anti-automorphism that is equal to the
identity on V' C A(V). It is called the transposition, (vi---vg)? = vg+--v;. One
easily checks that

¢t — (_1)k(k71)/2¢, ¢ c /\k(V)

Duals. Any o € V* defines a linear map ¢, = t(a): AF (V) — AF=1(V), called
contraction, with the properties ¢, (v) = (@, v) for v € V and the derivation property
ta(d1 A 62) = ta(d1) A g2+ (=1)191g1 A tade

The contraction operators satisfy tq,ta, + tasta; = 0 and hence by the universal
property extend to an algebra homomorphism,

t: A (V*) = End(A(V)).
Define a bilinear pairing
AV)RAV) = K, ¥ @ (¢, 8) = (tyt ()10,

1If A is any algebra, we denote by End(A) (resp. Aut(.A)) the vector space homomorphisms
(res. automorphisms) A — A, while Endaig(A) (resp. Autgaig(V)) denotes the set of algebra
homomorphisms (resp. group of algebra automorphisms).

2If A = @ A* and B = @ B* are graded algebras, then the graded tensor product is the
ordinary tensor product of vector spaces A® B, with grading |a® b| = |a| + |b|, and multiplication

(a1 ® b1)(az ® bz) = (=1)IP111921 (g 45 @ b1by).
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where the subscript [0] denotes the component in A°(V) =K. (The inclusion of the
transpose in the definition of the pairing is a matter of convention.) Concretely, for
o; € V¥and v; €V,

(a1 - ag, v -+ - vg) = det({a;, vj)).
The pairing defines a 1-1 linear map
ANVF) = AV,

which is an isomorphism if dim V' < oo.
Let ¢ € A(V), ¥ € A(V*), a € V*. Then

(¥, 1a(9)) = (tytta(9))10] = (Liany)t ()0 = (@ A, 8).

It follows that the map ¢, on A(V) is dual to the map €, = aA of exterior multiplica-
tion on A(V*). Similarly, for any v € V' the operator e(v) of exterior multiplication
is dual to the operator ¢, of contraction on A(V*).

Bilinear forms. Any bilinear form b: V @ W — K extends to a bilinear form
A(V) @ A(W) = K, by the formula,

b(vy -+ vk, wy - - - wi) = det(b(v;, wy)).

(The extension vanishes on A¥(V) @ Al (W) if k # 1.) Equivalently, let Ay: V —
W*, v — b(v,-) be the linear map determined by b, and consider its extension to
the exterior algebra. Then we can interpret the extension of b as a composition of
two maps,
AV)RIANW) = A(W*) @ A(W) - K

Observe that if b is a (non-degenerate) symmetric bilinear form on V, then the ex-
tension of b is again (non-degenerate) symmetric. For K = R, if b is positive definite
on V then the extension to A(V) is positive definite. (This motivates, in hindsight,
our choice of signs for the pairing between the exterior algebras of a vector space
and its dual space.)

Derivations. Suppose A is a Z-graded algebra. An endomorphism D € Endk(A)
of degree |D| = k (i.e. D(A®) C A**k) is called a derivation of degree k if

D(zy) = D(z)y + (=1)""IPlzD(y).

We denote® Derk(A) the space of derivations of degree k. Some basis properties of
derivations are

(1) Any D € Der®(A) vanishes on 1. This is immediate from the definition,

applied to z =y = 1.
(2) Derivations are determined by their values on algebra generators.
(3) If Dy, Dy are derivations of degree ki, ko their (graded) commutator
[Dl,Dz] = Dl o} D2 - (—1)k1k2D2 o D1

is a derivation of degree k; + ka. Tt follows that the space @), Der®(A) of
derivations is a Z-graded Lie algebra, with bracket the commutator.

30ne similarly defines derivations of a Zg-graded algebra. Note however that if A is graded,
the space Der(.A) of Za-graded derivations may be strictly larger then the space @, Der*(A) of
derivations of finite Z-degree.
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(4) If Ais commutative, then P, Der*(A) is a left-module under the action
of the Z-graded algebra @, End*(A).
Let us now consider the space Der(A(V)) of derivations of the exterior algebra
A(V). If a € V* then ¢(a) € Der *(A(V)). Let
e: AN(V) — End(A(V))
denote the algebra homomorphism given by exterior multiplication, e(¢)y = ¢ A .

LEMMA 1.1. The linear map

(11) ANV)@V* = Der(A(V)), = ¢a ®€* = Dy = €(da)i(e?),

is an isomorphism of graded vector spaces. It is an isomorphism of graded Lie
algebras, provided the Lie bracket on the left hand side is defined as a semi-direct
product, A(V) x V*, where V* is viewed as a commutative Lie algebra in degree —1,
and AN(V) is viewed as a graded V*-module via contraction.

PROOF. The map (11) is 1-1, since ¢, is recovered from the derivation Dy as
¢a = Dy(e,). Conversely, if D is any derivation and ¢ is defined by ¢, = D(e,),
then D = Dy since both derivations agree on generators e,. The description of the
Lie bracket is equivalent to

[Dgy, Dg,] = Dig, )
where

(61, ¢2)a = D (D16 t(€?) 2,0 — (=1)!*1 11921 65 4 1(e%)p1,a).
b

But this is easily verified, by applying the commutator to e, € V C A(V). O

EXAMPLE 1.2. Any endomorphism L € End(V) extends uniquely to a deriva-
tion Dy, € Der’(A(V)). In terms of a basis,

Dr =7 e(S(ea)) u(e?),

a

Note that the map L — Dy is a Lie algebra homomorphism.

Endomorphisms. The following Lemma will play a role when we discuss the
Spinor representation of Clifford algebras.

THEOREM 1.3. The linear map

(12) A(VeV*) = AV)®A(V*) = End(A Z@@«ﬂ] HZ (6

is an isomorphism of vector spaces (not of algebras). Under this isomorphism, A(V)
is characterized as the endomorphisms A such that [A,e(v)] = 0 for allv € V', while
A(V'*) is characterized as the endomorphisms such that [A, ()] = 0 for alla € V*.

PRrROOF. By dimension count, it suffices to show that the map (12) is one-to-
one. Let e, be a basis of V, with dual basis e, and suppose

T = E $561®6J
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with 2§ € K is in the kernel of (12). Note that ¢((e/)!)ex = 0 if J ¢ K, and is
tek_y if J C K. Suppose z} =0 for |J| < k. If |K| = k, we have

(Zz{,e(e;) ® L(eJ)t) ex = waej

which shows =X = 0. Hence, by induction we find that zJ = 0 for all I, J, thus
z=0.

Suppose now that the endomorphism A commutes with all exterior multiplica-
tions. Let ¢ = A(1) € A(V). For all ¢’ € A(V),

A(¢) = A(LA(¢)) = A1) A’ = p A ¢" = e(6)(¢)-

Similarly, if A commutes with contractions, the dual map A* € End(A(V*)) com-
mutes with exterior multiplication. Hence A* = ¢(¢!) for some 1, and hence

A= (@) = u(y). 0

REMARK 1.4. The isomorphism (13) should not to be confused with the stan-
dard isomorphism Fy ® Ef = Hom(E1, Es) for E1 = E; = A(V). The latter takes
z to the linear map

¢ — Z zher(u(e”)'e) o]
17

REMARK 1.5. Thinking of elements of A(V) as functions on an odd ’superspace’,
the derivations correspond to vector fields on this superspace while the more general
expressions Y. €(¢;)¢(¢}) correspond to differential operators.

There is an almost parallel discussion for the symmetric algebra S(V). Ele-
ments of S(V) can be viewed as polynomial functions on V*. Any element of V*
defines a derivation of S(V) (the directional derivative). The space of all derivations
is isomorphic to S(V)® V*, and is identified with the vector fields with polynomial
coefficients. Similarly, the space of finite order differential operators with polyno-
mial coefficients is isomorphic to S(V)®S(V*) as a vector space (not as an algebra).
Note however that since dim S(V') = oo, the full space End(S(V)) is much larger
since it also contains differential operators of ‘infinite order’.

By a similar argument, one proves:

LEMMA 1.6. Suppose dimV,dimW < oo, and let L: V — W be an arbi-
trary linear map. Denote by A(L) the extension of L to an algebra homomorphism
ANV) = AN(W). Then the linear map

(13) AW) @ A(V*)  Hom(A(V), AW)), 326 @ 10 D eldi) o AL o ()

is an isomorphism of vector spaces. Under this isomorphism, A(W) is characterized
as the space of homomorphisms A such that A o e(v) = (=1)4le(L(v)) o A for
all v € V, while N(V*) is characterized as the space of homomorphism such that
t(a)o A= (=1)MAoc(L*a) for all o« € W*.

Consider again the ‘usual’ isomorphism Hom(E1, E2) = E2QEf for E; = A(W)
and Ey = A(V). Here ¢ @ ¢ € A(V) @ A(W™*) gives rise to the linear map x —
&(1, x). Since the pairing is defined as

<'¢)7X> = (L(wt)X)[O]a
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and since the ‘augmentation map’ taking the degree 0 part is nothing but A(0), we
see that the ‘usual’ homomorphism corresponds to L = 0.

Coproduct. The exterior algebra carries not only a product ma: A(V)QA(V) —
A(V), but also a coproduct

A: A(V) = AV) @ AV).

While m, is induced by the addition map V&V — V, v; & vz — v + ve, the
coproduct is induced by the diagonal inclusion, V —V &V, v — v & v. The dual
map to addition map for V is the diagonal inclusion for V*, and vice versa. Hence,
if dimV < oo, the product (resp.coproduct) for A(V) is dual to the coproduct (resp.
product) for A(V*). This implies for instance that

Ly OMA =Mp Olay, ¥ ENVT)
as operators on A(V) ® A(V).

2. A(V) as a Poisson algebra
A graded Poisson algebra is a graded algebra A = @ .A*, together with a
bilinear map P: A x A — A (called Poisson bracket) such that

(1) The space A[2] is a graded Lie algebra, with bracket P. 4
(2) The Lie bracket and the algebra structure are compatible, in the sense
that the map a — P(a,-) defines a graded Lie algebra homomorphism
from A[2] — Der(A).
That is, for any o € A*, the map P(a,-) is a degree k — 2 derivation of the algebra
structure.

REMARK 2.1. Similarly, one defines consider graded Poisson algebras of degree
n, by replacing A[2] with A[n] in the above definition. See Cattaneo-Fiorenza-
Longini, ‘graded Poisson algebras’ (Preprint, 2005). For instance, any graded al-
gebra is a graded Poisson algebra of degree 0, by taking the Lie bracket to be the
commutator.

Note that any Poisson bracket on a graded algebra is uniquely determined by
its values on generators for the algebra. We will usually write {a1, a2} = P(a®as).
In this notation, the defining conditions are,

{041, {012,043}} + (_1)|041|(|062|+|C¥3|){a2’ {(13,011}}
+ (_1)|asl(|a1|+|a2|){a3, {al,QQ}} =0,

{ar, a0} = —(-1)l*0*2l{ay, o1},

{a1, a3} = {a1, as}as + (—1)lll*2lay {ay, a3}

Since .A[2] is a graded Lie algebra, it follows in particular that g = A[2]° = A? is
an ordinary Lie algebra. Poisson bracket by elements of g makes A into a g-module.

4For any graded vector space V, the graded vector space V[I] is equal to V with the shifted
grading V[I]¥ = Vk+L,
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EXAMPLE 2.2. Suppose (g, [-,]g) is any Lie algebra, and let A = S(g) be the
symmetric algebra, with grading

S(g)* = S*(g), S(g)**' =o0.

Then S(g) carries a graded Poisson bracket, given on generators by the Lie bracket
{&,&} = [&1,&]g- In this case, the Lie bracket on A? just recovers the given Lie
algebra. Conversely, if V' is any vector space, then the structure of a graded Poisson
algebra on S(V) is equivalent to a Lie algebra structure on V.

Any symmetric bilinear form B on a vector space induces on A = A(V) the
structure of a graded Poisson algebra. The Poisson bracket is given on generators
v,weV =AY V) by

{U, w} = B(U, w)

In this way, one obtains a one-to-one correspondence between Poisson brackets (of
degree -2) on A(V') and symmetric bilinear forms B.

LEMMA 2.3. Let B’: V — V* be the linear map defined by B. Then

{v,.} = LBb (v)
forallveV.

PROOF. Since both sides are in Der ™! (A(V)), it suffices to check on generators
w € V = AYV). But on w, both sides give B(v,w). O

As remarked above, A?(V) is a Lie subalgebra under Poisson bracket.

LEMMA 2.4. Suppose B is non-degenerate. Then the Lie algebra (A2(V), {-,-})
is canonically isomorphic to o(V, B).

PROOF. For any ¢ € A2(V), let Ay: V — V be the linear map Ay(v) = {¢,v}.
Then Ay € o(V) since
B(Ay(v),w) + B(v, Ag(w) = {{¢, v}, w} + {v,{¢,w}}
={¢,{v,w}}
= {¢, B(v,w)}
= B(v,w){¢,1} = 0.
The kernel of the map ¢ — Ay consists of all ¢ with {¢,v} =0 for allv e V. We

may write this condition as t(B”(v))$¢ = 0. Since B is non-degenerate, this just
means ¢ = 0. It follows that

A2(V) = o(V,B), ¢+ Ay

is an isomorphism, since both spaces have dimension (;‘) with n =dim V. [l

The inverse map may be described as follows: Let e,...,e, € V be a basis,
and let e',...,e™ € V be the B-dual basis. Suppose A € o(V;B). Then A = Ay
for

p=1 ZA(ea) e’.
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To check that this is the inverse map, we compute

{p,v} = %ZA(ea)B(ea,v) - %ZB(A(ea),v)e“

3A() + 3> Blea, A(v))e

= A(v).

REMARK 2.5. If B is non-degenerate, but dim V' = oo, the image of the map
¢ — Ay consists of the subalgebra o(V; B)gy, of infinitesimal orthogonal transfor-
mations of finite rank.

3. Clifford algebras: definition and first properties

Let V be a vector space over a field K of characteristic zero, equipped with a
symmetric bilinear form B: V x V — K (possibly degenerate).

DEFINITION 3.1. The Clifford algebra Cl(V; B) is the quotient

(14) CI(V;B) =T(V)/Z(V; B)
where Z(V; B) C T(V) is the two-sided ideal generated by expressions of the form
(15) v®w+w®v— B(v,w)l.

Note that

CL(V;0) = A(V).

It is not immediately obvious that Z(V; B) is a proper ideal, i.e. that Cl(V;B) is
non-trivial. To this end, consider the linear map

¢: V = End(A(V)), v e(v) + %L(Bb(v)).
and its extension to an algebra homomorphism ¢r: T'(V) — End(A(V')). Since

p(v)¢(w) + $(w)o(v) = B(v,w)1,
the map ¢7 vanishes on the ideal Z(V; B), and hence descends to the Clifford
algebra. In particular, using ¢r(1) = 1, we see that the inclusion K — T(V)
descends to an inclusion K — CI(V;B). That is, CI(V;B) is a unital algebra.
Similarly, using ¢7(v).1 = v we also see that the inclusion V' — T(V) descends
to an inclusion V < Cl(V;B). Thus Cl(V; B) is the unital associative algebra,
generated by the elements of V' subject to the relations
(16) vw+ wv = B(v,w)l, v,weV.
The symbol map. The algebra homomorphism

(,2501: CI(V, B) — End(/\(V)),

introduced above is in fact an injection. To see this we consider the important
symbol map,

o: Cl(V;B) = A(V), z+— ¢ai(z).1
where 1 € A\°(V) =K.
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PROPOSITION 3.2. The symbol map is an isomorphism of vector spaces. In low
degrees,

o(l)y=1
o(v) =wv
o(vivy) =v1 Ava + %B(vl,vg),

o(v1vav3) = v1 Avg Avg + %(B(vg, v3)vy — B(v1, v3)ve + B(v1,vs)vs).

PROOF. Let e; € V be an orthogonal basis. Since the operators ¢(e;) commute
(in the grade sense), we find

oley, ---€,)=eiy A= Nej,.

This directly shows that the symbol map is an isomorphism. The formulas in low
degrees are obtained by straightforward calculation. O

The inverse map is called the quantization map
g: A (V) = CI(V),
and is given in terms of the basis by g(e;; A--- Ae;) =€, ---e;,.. In low degrees,
q(1) =1,
q(v) = v,
g(v1 A v2) = viv2 — %B(U1,U2),
q(v1 Ava Avs) = vivgus — %(B(’Ug,’l);;)’vl — B(v1, v3)vg + B(v1,v2)v3).
The Z-filtration. The increasing filtration
Tio)(V) CTy(V) C ---
with T(x) (V) = @, <}, T?(V) descends to a filtration
Cly(V;B) C Cliyy(V;B) C -+

of the Clifford algebra, with Cl)(V'; B) the image of T(x)(V') under the quotient
map. Equivalently, Cl)(V'; B) consists of linear combinations of products v; - - - v
with [ < k (including scalars, viewed as products of length 0). The filtration is
compatible with product map, that is,

Clig,) (V5 B)Clik,) (V5 B) C Cliky k) (V5 B).-
Thus, CI(V; B) is a filtered algebra. As a special case B = 0, we can also view A(V)

as a filtered algebra.

PROPOSITION 3.3. The symbol map induces an isomorphism of associated graded
algebras

gr(o): gr(CLV)) = gr(A(V)) = A(V)-

PROOF. The symbol map is filtration preserving, and hence descends to an
isomorphism of associated graded vector spaces. In terms of generators, this map
is given by

(vl ...y mod Cl(V)(k_1)> U A-es A
which clearly is an algebra homomorphism. d
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It follows that if e; is any basis of V' (not necessarily orthogonal), then the
products ey = e;, -+ -e;, with 41 < -+ < 4 together with ey = 1 form a basis of
CYV).

Zy-grading. Let T(V) carry the Zy-grading

(V) = éT”“(V), V) = éTz’“*l(V)-
k=0 k=0

(Here k denotes k mod 2.) Observe that since the elements v@w-+w®v— B(v, w)1
are even, the ideal Z(V; B) is Z, graded, i.e. it is a direct sum of the subspaces
T¢(V;B) = Z(V; B) N T (V) for k = 0,1. Thus, CI(V) inherits a Z;-grading,

CI(V; B) = C1°(V; B) & C1}(V; B).

Note that the symbol map o: C1(V; B) — A(V) preserves the Zy-grading.

From now on, commutators [-,-] in C1(V; B) will denote Zy-graded commuta-
tors. (We will write [+, -]cy if there is risk of confusion.) In this notation, the defining
relations for the Clifford algebra become

[v,w] = B(v,w), v,w € V.

The even (resp. odd) elements of Cl(V;B) are linear combinations of products
vy -+ - v, with k even (resp. odd). The filtration and the Z-grading are compatible
in the sense that each Cl)(V; B) is a Zp-graded subspace, with

(A7) Ol (V3 B) = Cldy 1) (V3 B), Cliggy1) (V3 B) = Cligyy0)(V; B).

The Clifford algebra as a quantization of the exterior algebra. Using the
quantization map, the Clifford algebra C1(V; B) may be thought of as A(V) with a
new associative product.

We can make more precise (following Kostant-Sternberg) in which sense the
Clifford algebra is a quantization of the exterior algebra. Suppose A is an Zy-graded
algebra, equipped with a filtration A() that is compatible with the Z-grading.
Thus each A is a Zo-graded subspace, and

(18) Al (V5 B) = ALy 1) (V5 B), Algir1) (V3 B) = Algprn) (V3 B).

Then the Zs-grading on the associated graded algebra gr(.A) is just the mod 2
reduction of the Z-grading. Suppose now that gr(.A) is graded commutative. In
other words, the multiplication in 4 is commutative ‘up to lower order terms’. Then

(A, Ap)) C Agri-2)-
The commutator lies in A1) since gr(A) is commutative, but in fact lies in
A(k41—2) for parity reasons. Hence we can define a bracket on gr(A) as follows,
{l=], y]} == [z,yla mod Ak 3

for x € Ay and y € Ay, where [z], [y] denote the images in the associated graded
algebra. It is easy to see that {-,-} is a graded Poisson bracket (of degree -2).

If we apply these considerations to the Clifford algebra, we get a Poisson bracket
on gr(CLV)) = A(V). On generators, {v,w} = B(v,w), so this is just the Poisson
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bracket introduced earlier. The quantization map ¢: A (V) — Cl(V) intertwines
Poisson brackets with commutators, up to lower order terms. That is, for \; €
Ak(V),
q({A1, A2}) = [g(A1), q(A2)] € Cligy i,y (V).
But this is clearly analogous to the notion of quantization in ’quantum mechanics’.
Note that we can also carry out a semi-classical limit: If we rescale B ~» hB,
h € K, the Clifford product goes back to the wedge product.

4. Further properties of Clifford algebras

Universal property. Similar to the exterior algebra, the Clifford algebra is char-
acterized by a universal property:

PROPOSITION 4.1. If A is an associative algebra, and ¢: V — A a linear map
with ¢(v1)P(v2) + P(v2)d(v1) = B(vy,v2) -1, then ¢ extends uniquely to an algebra
homomorphism Cl(V; B) — A.

PROOF. By the universal property of the tensor algebra, ¢ extends to an al-
gebra homomorphism ¢7(y): T(V) — A. The property ¢(v1)¢(v2) + ¢(v2)d(v1) =
B(v1,v2) - 1 shows that ¢ vanishes on the ideal Z(V; B), and hence descends to
the Clifford algebra. Uniqueness is clear, since the Clifford algebra is generated by
elements of V. |

Functoriality. Suppose B, Bs are symmetric bilinear forms on Vi, Vo, and ¢: Vi —
V5 is a linear map such that

By(4(v), ¢(w)) = Bi(v,w), v,w € Vi.

By composing ¢ with the map Vo — Cl(V2; Bz), and using the universal property,
we see that ¢ extends to an algebra homomorphism

Cl(¢): CL(Vi; B1) — CL(Va; B).

For instance, if F' C V is an isotropic subspace of V, there is an algebra homomor-
phism A(F) = CI(F) — Cl(V; B). Clearly, Cl(¢; o ¢2) = Cl(¢1) o Cl(¢2).
Taking V; = Vo = V, and restricting attention to invertible linear maps, one
obtains a group homomorphism
O(V; B) — Aut(Cl(V; B)).

The extension of A to an algebra automorphism CI(A) of the Clifford algebra
will again be denoted A. As a simple example, the involution II(v) = —uv lies
in O(V;B), hence it defines an involutive algebra automorphism II of Cl(V; B).
The +1 eigenspaces are the even and odd part of the Clifford algebra, respectively.

Direct sums. Let (V. By) and (V2, B2) be two vector spaces with symmetric bilin-
ear forms, and consider the direct sum (Vi @ V2, By & Bs). Then
Cl(Vi @ Vo, B1 @ By) = Cl(V4, B1) ® Cl(Va, B)

(tensor product of Zy-graded algebras). This isomorphism follows from the univer-
sal property of the Clifford algebra, applied to the linear map

Vi @ Vo — Cl(V1;B1) ® CL(Vz; B2), v1 @ v2 = v1 @1+ 1® va.
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The fact that this map is indeed an isomorphism will become clear later. In par-
ticular, if Cl(n, m) denotes the Clifford algebra for R™™ we have

Cl(n,m) =Cl(1,0)®---® Cl(1,0) ® C1(0,1) ® - - - ® C1(0, 1),
with Z,-graded tensor products.

EXAMPLES 4.2. For n,m small it is easy to determine the algebras Cl(n,m)
by hand. The Clifford algebra Cl(0,1) is generated by e; with a single relation
2e1e; = —1. Thus, letting i = \%61, we see that

C1(0,1) =C
(viewed as an algebra over R). For CI(1,0), the relation is replaced by 2e1e; = 1.
We hence find
Cl(1,0) =R®R
1(\(Iiirect sum of algebras), by the isomorphism e; — \%(1 ®—-1)and 1~ (16 1).
ext,

C1(0,2) @ H,
by the isomorphism e; — %i, ez — %j, €3 — %k, 1 — 1. Here 1,5,k

are the unit quaternions ¢, j, k. For more results on the classification of the Clifford
algebras Cl(n, m) (featuring the remarkable periodicity theorem), see e.g. the paper
by Atiyah-Bott-Shapiro or the books by Lawson-Michelsohn or Garcia-Bondia et
al.

The anti-automorphism. The canonical anti-automorphism of the tensor alge-
bra, given by transposition, preserves the ideal Z(V; B). It hence descends to an
anti-automorphism of Cl(V; B), still called transposition, with

(vl"'vk)t :'Uk""Ul-

The symbol map and its inverse, the quantization map ¢q: A (V) — Cl(V;B)
intertwines the transposition maps for A(V) and Cl(V;B). This information is
sometimes useful for computations.

EXAMPLE 4.3. Recall that the transposition map is given by a sign (—1)*(:=1)/2
on A¥(V). Thus, on AF(V) it is equal to 1 if k = 0,1 mod 4 and equal to —1 if
k =2,3 mod 4. If ¢ € A3(V), the element

20(¢(¢)%) = o([a(¢), a(9))).
lies in Ag)(V) = AY(V) & A*(V) & A°(V), with leading term {¢, ¢}. Using the
transposition map, we can argue that the component in A2(V') must be zero. Indeed,
since g(¢)! = q(¢') = —q(¢) we have

[9(6), a(®)]" = [a(8)", a(8)"] = [a(8), a(9)]-
But (-)! = —1 on A%(V'). Hence
a([a(¢),a(9)]) — {¢, ¢} € A°(V) =K.

Of particular interest are elements ¢ with {@, ¢} = 0, since then {@, -} resp. [¢(®), ‘]
define differentials on A(V') resp. on C1(V; B) (i.e. they are operators squaring to
0.) Later we well see that the structure constants tensor of any semi-simple Lie
algebra (and more generally of any quadratic Lie algebra) has this property.

34



CHAPTER 2. CLIFFORD ALGEBRAS

Contraction operators. Let V be a vector space with symmetric bilinear form
B. Simplifying our earlier notation, we will now write

t(v) == L(Bl’(v)) € Der 1 (A(V))

for the operator of contraction by B®(v) € V. We had seen that ¢(v) can be written
in terms of the Poisson bracket as

uv) = {v,}.
Similarly, we define contraction operators t(v) € Der'(Cl(V;B)) on the Clifford
algebra,

t(v) = [v,]

The contraction operators extend to homomorphisms of Z.-graded algebras,
t: AN(V) = End(A(V)), ¢: AN(V)— End(ClV;B)).
PROPOSITION 4.4. The quantization map q: A (V) — Cl(V; B) intertwines the
contraction operators on the exterior and Clifford algebras. That is,
gou(d) =) og
for all ¢ € A(V).
PRrROOF. It is enough to check in an orthogonal basis e;. For indices j; < ... ji,

the contraction operators in the Clifford algebra are given by
k

v(ei)(ejy - €j) = Z(_l)r_HB(eia €j.) €yt ejr—le/j\rejr+1 T G
r=1

The contraction operators in the exterior algebra have a similar description, with
Clifford products replaced by wedge products. Since the quantization map takes
any wedge product ej; A - Aej, with i3 < --- < iy to e;, ---ej,, this proves
gou(e) =(es) o q. .
The action of o(V; B). Let V be a vector space with symmetric bilinear form B.
Recall that we had constructed a Lie algebra homomorphism

N(V) = o(V;B), ¢+ Ay
where the bracket on A%(V) is the Poisson bracket, and Ay4(v) = {¢,v} = —i(v)¢.

PROPOSITION 4.5. The quantization map restricts to a Lie algebra homomor-
phism B
q: N2 (V) = CI°(V;B).
For any ¢ € A*(V), the operator Ay € o(V;B) may be described as a Clifford
commutator,

ProoOF. We have

o([a(9),a(¥)]) — {¢, ¥} € A°(V) =K

The first part of the Proposition says that the scalar term is in fact zero. We argue
using the transposition map: We have q(¢)! = —q(¢), q(¥)* = —q(¢) and hence

[a(9), a@)]' = (a(®)a(®) — a(¥)a(#))"
=q(¥)q(¢) — a(d)q(¥)
= —[q(¢), a(¥)].
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Since (-)! =1 on A%(V), the scalar term must be zero. The second claim follows
from

Ag(e)(v) = [4(0),v] = —1(v)q(¢) = —q(e(v)$) = g(A4(v)) = Ag(v)-
O

We saw that if B is non-degenerate, the map A*(V) — O(V; B) is an isomor-
phism. Denote the inverse map by

(19) A:o(ViB) = A2 (V), As MA) = 3> Alea) A€

(here e, € V is an orthogonal basis, and e* is the B-dual basis). Ith thus follows
that ¢(A%(V)) — o(V; B) is an isomorphism as well, with inverse 7 = go \. In the
orthogonal basis e, we have,

PROPOSITION 4.6. The inverse map is given by
v: 0(V; B) = q¢(A%(V; B)) C CI(V; B), A+ %ZA(ea) et.
a

ProoOF. We have
9} Alea) Ne) = Y Alea)e® + 5 ) B(Alea), ).
Since A is skew—s;mmetric, ’ ’
> B(A(ea), €)= = Blea, A(e") = = > B(A(e"), a)

Together with

> " B(A(ea),e*) = Y _ B(A(e"), eq)

(since the expression does not depend on the choice of orthogonal basis), this shows
> . B(A(eq),e?) = 0. O

The chirality element Let dim V' = n. Then any generator I'n € A™(V') quantizes
to given an element I' = ¢(I's). This element (or suitable normalizations of this
element) is called the chirality element of the Clifford algebra.

Square I'? of the chirality element is always a scalar. Indeed, this is immediate
by choosing an orthogonal basis e;, and letting I' = e; - - - e,,. If K =R, the choice
of ' is unique up to sign, and hence the sign of I'? is canonical. In fact one finds,
for an orthogonal basis e;,

% = (=) =V ] Bess )

which shows that the sign is (—1)*t?("=1)/2 if B has signature (p, s). In particular,
we can always normalize I' to satisfy

T2 = (_1)s+n(n—1)/2.
In the complex case, we can even normalize I to satisfy I'? = 1. In both cases, the
normalization determines I' up to a sign.

Returning to the general case, we note that the element I' = ¢(T'5) satisfies, for
anyv eV

ol if n is odd
Tv = L
—vI'  if nis even
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Thus, if n is odd then T lies in the center of Cl1(V'), viewed as an ordinary algebra.
(The center of C1(V) as a super-algebra is trivial.) In the case n even, we obtain

M(z) = Tz,
for all z € CI(V), i.e. the chirality element implements the parity operator.

The trace. Suppose dim V' = n, so that Cl,)(V;B) = CI(V;B). Let det(V) =
A™(V) be the top exterior power of V. There is a canonical map,

trs: CL(V; B) — det(V)

taking an element of the Clifford algebra to its image in Cl(,,)(V; B)/Cl(,,—1)(V; B).
This map has the property
trs([z,y]) =0

for all z,y € CL(V; B), where the bracket is the Zy-graded commutator. Thus,
once we choose a generator of det(V) the map tr, is a super-trace on the super-
algebra C1(V; B). As remarked above, the exterior algebra, and in particular the
line det(V') carries a symmetric bilinear form induced from B. If K =R and B is
positive definite, it is natural to take the generator to be of length 1; the choice of
sign of the generator amounts to the choice of orientation on V.

There is also a canonical trace of C1(V; B) regarded as an ‘ordinary’ algebra (i.e.
forgetting about the Zy-grading). Let I's be a generator of A™(V), and T' be the
corresponding chirality element in the Clifford algebra. Define tr: C1(V;B) — K
by the formula,

trs(Tz) = tr(z) Ta.

PROPOSITION 4.7. tr is a trace on the Clifford algebra, viewed as an ungraded

algebra. That is,
tr(zy) = tr(yz)
for all z,y € Cl(V;B).

PROOF. Pick an orthogonal basis e;, and let T'x = e; A--- A ¢;. It suffices to
check for basis vectors x = er,y = ey. The trace property is obvious for I = J,
so let us suppose I # J. Note that zy = cex where K = (IUJ) — (I NJ) and

c € K, and consequently 'ty = c’egc where K¢ is the complement of K. Thus,
trs(T'erey) and similarly trs(Teyer) vanish if T # J. O

Observe that tr(1) = 1. Along with any trace comes a symmetric bilinear form,
(z,y) — tr(zy). In particular, for v,w € V,

tr(vw) = 3 tr(vw + wv) = 1 B(v,w) tr(1) = 3 B(v, w).

1
2

5. A formula for the Clifford product
It is sometimes useful to express the Clifford multiplication
mc1: Cl(VeV)=Cl(V)® Cl(V) = Cl(V)
in terms of the exterior algebra multiplication,
ma: A(VeV)=AV)AV)—= AV).
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Recall that by definition of the isomorphism A(V & V) = A(V) @ A(V), if ¢,¢ €
A(V*), the element ¢ ® ¥ € A(V*) @ A(V*) is identified with the element (¢ @ 0) A
(0@ ¢) € A(V* @ V*). Similarly fro the Clifford algebra.

PROPOSITION 5.1. Let e; € V be an orthogonal basis, et € V* the dual basis.
Then
maioq=gqomp oY)
where )
— R § b t
U= EI: =) e @ B"((er)")
(sum over all subsets I C {1,...,n}).

PROOF. Let V; be the 1-dimensional subspace spanned by e;. Then A(V) is
the graded tensor product over all A(V;), and similarly CI(V) is the graded tensor
product over all C1(V;). The formula for ¥ factorizes as

T = ﬂ (1- 1" @ B'(es)).

For instance, if n = 2,

1 . 1
v=1- 2 ;61 ® B®(e;) + Z(e1 A e?) @ B®(ex Aey).

is a product (1 — 1e! ® B’(e1))(1 — 1e? ® B’(e2))
It hence suffices to prove the formula for the case V = V;. We have,

qgompo L(l — %61 ® Bb(€1))(61 ®e1)=gqo m/\(61 Qe+ %3(61,61))

= q(3B(e1,€1))
— €e1€1.

If char(K) = 0, we may also write the element ¥ as an exponential:
¥ =exp(— %Zei ®Bb(ei)).
This follows directly by rewriting the exponential of a sum as a product of expo-
nentials,
Hexp ( - %e’ ® Bl’(e,-)) = H (1 - %e’ ® Bl’(ei)).
i i
REMARK 5.2. Consider the addition map
Add: VeV -V, vdw— v+ w.
This map is linear, and hence to an algebra homomorphism
A(Add): A(VaV)— AV).

In terms of the identification A(V @ V) = A(V)®A(V), this is exactly the map m.
The dual map Add*: V* — V* @ V* is the diagonal inclusion. The composition

ma=ocomgoq: AN(VeV)—= AWV)

has the property,
mar o L(Add*(a)) = () o T
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for all @ € V*. Hence, by Lemma 1.6, there exists a unique element ¥ € A(V*®V*)
such that Mg = ma 0 ¢(¥), and this is the element determined in the Proposition.

6. The Clifford group and the spin group

Let V be a vector space over a field K of characteristic # 2, equipped with a
non-degenerate symmetric bilinear form B. Recall that II: C1(V') — C1(V) denotes
the parity automorphism of the Clifford algebra. Let Cl(V)* be the group of
invertible elements in C1(V).

DEFINITION 6.1. The Clifford group I'(V') is the subgroup of C1(V)*, consisting
of all z € C1(V)* such that A, (v) := I(z)ve= € V for all v € V C CI(V).

Hence, by definition the Clifford group comes with a natural representation,
(V) = GL(V), & — A,. Let T%(V) = T(V) N CI°(V)* denote the even Clifford
group.

THEOREM 6.2. The canonical representation of the Clifford group takes values
in O(V), and defines an ezact sequence,

1K —TI(V)—0V)—1

It restricts to a similar exact sequence for the even Clifford group T°(V'), with image
SO(V). The elements of T'(V') are all products z = vy - - - vg, wherevy,...,vx €V are
non-isotropic. To(V') consists of similar products, with k even. The corresponding
element A, is a product of reflections:

Ay vy = Ry, -+ - Ry,
PROOF. The transformation A, is trivial if and only if II(z)v = vz for all
v €V, ie. if and only if [v,z] = 0 for all v € V. That is, it is the intersection of
the center K C Cl(V) with I'(V'). This shows that the kernel of the homomorphism
(V) — GL(V) is the group K* of invertible scalars.
Applying —II to the definition of A, we obtain A, (v) = zvll(z)~" = Ap(y)(v).
This shows Ar(;) = A, for z € T'(V). For z € I'(V) and v,w € V we have,
B(Ag(v), Ag(w)) = (Aw (v) Az (w) + Az (w)Aq (U))
= (As(v)An(e) () + As (W) An(z) (v))
= (I(z) (vw + wo)I(z ™))
= B(v,w)I(z)I(z™")
= B(v,w).
This proves that A, € O(V) for all z € T'(V).
Observe next that any non-isotropic v € V lies in the Clifford group, with

A, = R, the reflection defined by v. To check A,(w) = R,(w), it suffices to
consider the two cases w = v and B(v,w) = 0. In the first case,

Ay(v) = O(w)vv™ = O(v) = —v = R,(v).
In the second case,
Ay(w) = O(w)wv ! = —TM(v)v  w = v lw =w = R, (w).

More generally, this shows A,,..,, = Ry, -+ Ry,. By the E. Cartan-Dieudonné
theorem, any A € O(V) is of this form. This shows the map z — A, is onto O(V),
and that I'(V) is generated by the non-isotropic vectors in V. [l
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Since all z € T'(V') can be written in the form z = v; - - - vy with non-isotropic
vectors v;, it follows that the element z’z lies in K*. This defines the norm homo-
morphism

N:T(V) = K", z+ z'z.
It has the obvious property
N(A\z) = \*N(z)
for A € K*. If K = R, any x can be rescaled to satisfy N(z) = +1. One defines, °

DEFINITION 6.3. Suppose K = R. The Pin group Pin(V) is the pre-image
of {1,—1} under the norm homomorphism N: I'(V) — K*. Its intersection with
I'%(V) is called the Spin group, and is denoted Spin(V).

The exact sequence for the Clifford group restricts to an exact sequence,

1 — {A\| > =+1} — Pin(V) — O(V) — 1,
so that Pin(V) is a double cover of O(V'). Similarly,
1 — {)| A? = £1} — Spin(V) — SO(V) — 1,
defines a double cover of SO(V). Elements in Pin(V) are products z = vy ---vg
with B(v;,v;) = £2. The group Spin(V') consists of similar products, with &k even.

For V = R™™, with the scalar product of signature n,m, let Spin(V) =
Spin(n, m) and Pin(V) = Pin(n,m). Also, let Spiny(n,m) denote the preimage
of the identity component, SOg(n,m). As usual, we will write Pin(n) = Pin(n,0)
and Spin(n) = Spin(n, 0).

THEOREM 6.4. Let K =R, and V Z R>»™. Ifn > 2 or m > 2, the group
Spiny (V) is connected.

PROOF. The pre-image of the group unit e € SOg(V) in Spin(V') are the el-
ements +1,—1 € Cl(V). To show that Spiny(V) is connected, it suffices to show
that £1 are in the same connected component. Let

v(@) eV, 0<0<m
be a continuous family of non-isotropic vectors with the property
v(m) = —v(0).
Such a family exists, since V contains a 2-dimensional subspace isomorphic to R?°
or R%2. We may normalize the vectors v(f) to satisfy
B(v(0),v(0)) = £2.

Then v(6)v(0) € Spin(V) C CI°(V) equals +£1 for § = 0, and F1 for § = 7. This
shows that 1 and —1 are in the same component of Spin,(V'), as desired. O

Since m1(SO(n)) = Zy for n > 3, the connected double cover Spin(n) is the
universal cover in that case. In low dimensions, we had determined these universal
covers to be

Spin(3) = SU(2), Spin(4) = SU(2) x SU(2).
It can also be shown that Spin(5) = Sp(2) (the group of norm-preserving automor-
phisms of the quaternionic vector space H?) and Spin(6) = SU(4). For n > 7, the
groups Spin(n) are all simple and non-isomorphic to the other classical groups.

5The definition also makes sense for arbitrary fields. However, the natural representation
need not be onto. Cf. Grove p. 78.
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The groups Sping(n, m) are usually not simply connected. Indeed since since
SOg(n, m) has maximal compact subgroup SO(n) x SO(m), the fundamental group
is

7m1(SO¢(n,m)) = 71 (SO(n)) x 71 (SO(m))
Hence, only in the cases n > 3, m = 0,1 or n = 0,1, m > 3 we obtain
71(SO¢(n,m)) = Z3, and only in those cases Sping(n, m) is a universal cover.

Let us now turn to the case K = C, so that V' =2 C" with the standard bilinear
form. In that case, we can rescale any =z € I'(V) = I'(n, C) to satisfy N(z) = +1.
Hence define®

Pin(n,C) = {z € I'(n,C))| N(z) = +1}
and Spin(n, C) = Pin(n,C) NT°(n,C).

PRrROPOSITION 6.5. Pin(n,C) and Spin(n,C) are double covers of O(n,C) and
SO(n,C). Furthermore, Spin(n,C) is connected and simply connected, i.e. it is the
universal cover of SO(n,C).

PROOF. The first part is clear, since the condition N(z) = 1 determines the
scalar multiple of z up to a sign. The second part follows by the same argument as
in the real case, or alternatively by observing that 41 are in the same component
of Spin(n,R) C Spin(n,C). O

Assume K = R or K = C. Recall the isomorphism A: o(V) — A%(V), and let

y=gqoA:o(V)— Cl(V).
Then A(v) = [y(A),v] for v € V, and accordingly

exp(A)(v) = el W1y = ¢7(Aye=1(4),

Here
HTy = 37 1 (A), [y (A), [+ [y (A), o] -]
and ) n times
A =3 %7(,4)”.

n=0
By definition of the Clifford group, this shows that €’(4) € I'0(V). The element
v(A) satisfies v(A)* = —y(A). Hence,
(7))t = (A" = =7(A),
and therefore N(e?(4)) = 1. That is,
e’ ¢ Spin(V)

Since 6 — €?7(4) defines a curve in Spin(V'), connecting 1 with €7(4), it follows that
¢’ is in the identity component Spiny(V').

In other words, the group Spin(V) C CI(V)* constructed above has Lie al-
gebra v(o(V)) € CI°(V). Indeed, if K = R and the bilinear form B is positive
definite, we can directly define Spin(V) as the set of elements ”(°(Y)). This follows
because Spin(V), as a double cover of the compact group SO(V), is compact, and
for compact Lie groups the exponential map is onto.

6There seem to be no standard conventions for the definitions for the complex case.
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EXAMPLE 6.6. Let V = R? with the standard bilinear form, and consider the
element A € o(V) defined by A(A) = e; A ea. Then y(A) = ejez. The 1-parameter
group of elements

z(0) = exp(fezez) € Spin(V).

is given by the formula,

Mg
°’§

— 6162
n!

n=0
_ i 2m 1)m N N 02k+1 (_1)k
- m k
— em)l 2m T A 2k 1)) 22
0s(0/2) +sin(6/2)(2e1e2)

which shows in particular that z(6 4+ 27) = —z(0). To find its action on V, we
compute

z(0)erx(—0) = (cos(8/2) + sin(6/2)(2e1e2))e1(cos(6/2) — sin(6/2)(2e1e2))
= (cos(f/2)e; —sin(6/2)ez)(cos(8/2) —sin(6/2)(2e1e2))
= (cos?(6/2) — sin®(8/2))e1 — 25sin(6/2) cos(6/2)es

= cos(f)e; —sin(f)ey

€1€2

This verifies that z(6) = exp(feiez) acts as rotations by 6, but z(0 + 27) = —z(0).

7. The groups Pin.(V) and Spin (V)

Let V be a vector space over K = R, with a positive definite symmetric bilin-
ear form B. Denote by VC the complexification of V. The complex conjugation
mapping v — U extends to an anti-linear algebra automorphism x — T of the
complexified Clifford algebra CI(V) = CI(V®) = CI(V)C. Let 2* = 7'

DEFINITION 7.1. The group Pin.(V) is the subgroup of I'(V®) given as
Pin,(V) = {z e T(VE)| z*z = +1}.
Its intersection with the even part of the Clifford algebra is denoted Spin, (V).

The point of this definition is that for z € Pin.(V'), the automorphism A, of
VC preserves the real subspace V. That is, the representation I'(VC) — O(VC)
restricts to group homomorphisms

Ping(V) — O(V), Spin (V) — SO(V).

PROPOSITION 7.2. Each of these two group homomorphism is onto, and has
kernel U(1) C C*.

PROOF. Since Pin.(V) D Pin(V'), and similarly Spin, (V) D Spin(V), it is clear
that the two homomorphisms are onto. The kernel is obtained as the intersection
with the kernel of T'(V®) — O(VC). But the latter consists of C*, and

C* N Pin(V) = C* N Spin, (V) = U(1).
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We have thus constructed central extensions,
1—-U(1) - Pin. (V) - O(V) = 1,
1— U(1) — Spin, (V) = SO(V) — 1.

Of course, one could directly define these groups as the subgroup generated by
Pin(V) resp. Spin(V') together with U(1). More precisely, Spin. (V') is the quotient
of Spin(V') x U(1) by the relation
(:B, ei'tl’) ~ (—:E, _ei¢)
and similarly for Pin.(V'). The norm homomorphism for I'(V*) restricts to a group
homomorphism,
Pin.(V) — U(1), = — z'z.
Together with the map to O(V) this defines exact sequences,
1— Zy = Pin, (V) - O(V) x U(1) = 1,
1—Zy — Spin, (V) — SO(V) x U(1) —» 1
One of the motivations for the group Spin,(V) is the following.
Suppose B is positive definite. J is an orthogonal complex structure on V', that
is, J € O(V) and J2 = —I. Such a J exists if and only if n = dim V is even, and
turns V into a vector space over C, with scalar multiplication

(a ++V-1b)z = az + bJz.
Let Us(V) C SO(V) be the corresponding unitary group (i.e. the elements of
SO(V) preserving J).

THEOREM 7.3. The inclusion Uy (V) — SO(V) admits a unique lift to a group
homomorphism Uj;(V) < Spin,(V), in such a way that the composition with the
map to U(1) is the map Uy(V) — U(1), A — detsj(A) (complex determinant).

PROOF. We may choose an orthogonal basis ey, . .., eg, of V, with the property
J(e;) = enys for i = 1,...,n. This identifies V = C*, and U (V) with U(k).
We are trying to construct a lift of the map
U(k) — SO(2k) x U(1), A+ (A, detc(A4))

to the double cover. Since U(k) is connected, if such a lift exists then it is unique.
To prove existence, it suffices to check that any loop representing a generator of
m1(U(k)) = Z lifts to a loop in Spin, (V). Since the inclusion U(1) — U(k) induces
an isomorphism of fundamental groups, it is enough to check this for £ = 1, i.e.
n = 2. Hence, our task is to lift the map

U(1) = SO(2) x U(1), € — (R(9),e™)

to the double cover, Spin(V) x U(1)/Z,. We had found in example 6.6 that the
curve R(0) lifts to

z(0) = exp(ferea) = cos(6/2) + sin(6/2) 2e;e2
which has the property z(6 4+ 2m) = —z(6). The desired lift is explicitly given as,
e [(z(O),eie/Z)].
where the brackets indicate the equivalence relation (z,e%) 2 (—z, —e®¥). O
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REMARK 7.4. The two possible square roots of detc(A) for A € U(k) define a
double cover of U(k),
U(k) = {(4,z) € U(k) x C*| 22 = detc(A)}.
While the inclusion U(k) < SO(2k) does not live to the Spin group, the above
proof shows that there exists a lift for this double cover (i.e. the double cover is
identified with the pre-image of U(k)).
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CHAPTER 3

Clifford modules and Spinors

1. Clifford modules

Let V be a vector space with symmetric bilinear form B, and Cl(V) the cor-
responding Clifford algebra. A Z,-graded left module over Cl(V) for B is called a
Clifford module.! That is, a Clifford module is a Z,-graded vector space E together
with a homomorphism of Z,-graded algebras,

pe: CI(V) — End(E).

Equivalently, a Clifford module is given by a linear map pg: V — End’ (E) such
that pg(v)pr(w) + pe(w)pr(v) = B(v,w)l for all v,w € V. The first example of
a Clifford module is the Clifford algebra Cl(V) itself, with module structure given
by multiplication from the left. The identification o: C1(V) = A(V) makes the
exterior algebra into a Clifford module. Similarly, if X C Cl(V) is any Zz-graded
subspace, the left-ideal C1(V') - S becomes a Clifford module.

Submodules, quotient modules. A submodule of a Clifford module FE is a
Zs-graded subspace F4 which is stable under the module action. In this case, the
quotient E/E; becomes a Clifford module in an obvious way. A Clifford module E
is called irreducible if there are no submodules other than F and {0}.

Direct sum. The direct sum of two Clifford modules F;, Es is again a Clifford
module, with pg,¢r, = pE, ® pr,- A Clifford module is completely reducible if it
is a direct sum of irreducible Clifford modules.

Tensor products. Suppose Vi, V> are vector spaces with bilinear forms B;, By. If
E; is a Cl(V7)-module and Ej is a Cl(Vs2)-module, the tensor product E; ® Es is a
module over Cl(V;) ® Cl(V;) = CI(V; @ V»), with

PE@E; (T1 ® T2) = pE, (71) ® pE, (22)-
In particular, Cl(V)-modules E can be tensored with Z,-graded vector spaces,

viewed as modules over the Clifford algebra for the trivial vector space {0}.

Dual modules. If E is any Clifford module, the dual space E* becomes a
Clifford module, with module structure defined in terms of the canonical anti-
automorphisms of C1(V) by

t
pe-(2) = pu(a')*, = € CLV).
10One can also consider ungraded Clifford modules, i.e. (ordinary) vector spaces together with
an algebra homomorphism Cl(V) — End(FE) of (ordinary) algebras.
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That is, (pg- (2)9, 8) = (~1)I¥I1*I(y, p(2*)B) for ¢ € E* and § € E.

Right modules. Occasionally, it is useful to consider also right-modules over
the Clifford algebra C1(V). That is, Zo-graded vector spaces E with linear maps
p': CI(V) — End(E) such that p'(z1)p'(z2) = (=1)1*1*2l o’ (z921). An example is
E = CI(V), with action given by right multiplication. Any right Clifford module can
be turned into an ordinary Clifford module, using the canonical anti-homomorphism
of C1(V) to define p(z) = p’(z?).

Induction. Suppose A is any Z-graded subalgebra of Cl1(V'). Then any .A-module
E; gives rise to a Clifford module,

E=ind}")(E,) = CI(V) ® 4 Er.

Here the tensor product over A is the quotient of the usual tensor product C1(V) ®
E; by the subspace spanned by all zQa.y —za®y, and the C1(V)-action is inherited
from the action by left multiplication.

2. The Spinor module

A particularly important case of the induction procedure arises if the bilinear
form B is split, and F' C V is a Lagrangian subspace. Then A(F) is a subalgebra of
C1(V), and we obtain a Clifford module by induction from the trivial A(F')-module,

S =ind$"(C) = CUV) ®nr C.

This is called the Spinor module of the Clifford algebra C1(V). The Spinor module
can be described more explicitly, by choosing a Lagrangian complement F’ to F.

LEMMA 2.1. The map A(F')@A(F) — Cl(V), ¥ ®y — y'y is an isomorphism
of vector spaces.

PROOF. The map preserves filtrations, and the associated graded map is the
usual isomorphism

NE)ONF) = ANV), ¥y @y —y Ay.

But a morphism of finite-dimensional filtered vector spaces is an isomorphism if
and only if the associated graded map is an isomorphism. (|

It follows that CI(V) ®xr) C = A(F'). Using the bilinear form to identify
F’ = F*, we obtain

. Cl(V) ~ *
S = 1nd/\(g,)) > A(FY)

Here the elements of F* & F' C V act by exterior multiplication, and the elements
of F' act by contraction.

These identifications also show that the spinor module S is independent of
the choice of F, up to isomorphism. Indeed, S can be explicitly described in
an adapted basis e1,...,ek, f1,..., frx with B(e;, f/) = 6! and B(e;,e;) = 0 =
B(fi, f%): Letting F = span{ey, ..., ex} and F' = span{fl,..., f*}, we have

S = span{f’}
with Clifford generators acting by
) . 0 ifi gl
A I [ I I I
T =A e J=1le = ) )
Fof =R e = e () {if,_{,} ol

46



CHAPTER 3. CLIFFORD MODULES AND SPINORS

THEOREM 2.2. The spinor module is irreducible, and the module map
p: Cl(V) — End(S)
is an isomorphism of Zy-graded algebras. Similarly, 89 and S' are irreducible
modules over C1°(V).

PROOF. The first part is just rephrasing Theorem 1.3 for A(F*) = S; the
second part follows since End’(A(F*)) = End(A°F*) @ End(A'F*). O

The spinor module § = ind%,gv) (K) can also be viewed in other ways. Indeed,

by definition of the tensor product over AF', S is simply the quotient of C1(V)®K =
Cl(V) by the subspace spanned by elements of the form zf with f € ®;>1 AJ F.
But this subspace is just the left-ideal generated by F. Thus

§ = CI(V)/CLV) - F.

One can also directly view the Spinor module as a submodule of C1(V'), namely the
left-module generated by the determinant line det(F) C A(F) C CI(V):

S = CI(V) - det(F).

The isomorphism depends on the choice of a generator of det(F'): More precisely,
the map Cl(V)®det(F) — CI(V)-det(F) given by Clifford multiplication descends
to give a canonical isomorphism

S ®@ det(F) = CI(V) @ det(F) = CL(V) - det(F).

The identification C1(V') = A(F*) ® A(F) gives CL(V)/CL(V) - F = A(F*), and also
CUV) - det(F) = A(F*) @ det(F) = A(F™).

Let us discuss the dependence of the spinor module on the choice of F'. Let
us recall that the orthogonal group O(V) acts transitively on the set Lag(V) of
Lagrangian subspaces of V. We say that F, F; € Lag(V) have equal parity if they
are related by a transformation g € SO(V) and odd otherwise.

EXAMPLE 2.3. Let V = C? with the standard bilinear form, viewed as a vector
space over K = C. Then F = span(e; + v/—1lez) is a Lagrangian subspace, and
so is F' = span(e; — v/—1ez). The orthogonal transformation e; +— e1,ea — —ea
takes F' to F’'. However, it is impossible to take F' to F’ by a special orthogonal
transformation.

The relative parity of Lagrangian subspaces may also be viewed as follows.
Recall that for a given splitting V = F' @ F into transversal Lagrangian subspaces,
the subgroup of O(V) fixing each element of F' pointwise is identified with the space
of skew-adjoint linear maps d : F* — F. That is , it consists of matrices of block

form
I 0
d T

Together with the group GL(F), sitting inside O(V') as transformations of the form

(%37 )

this generates the group of orthogonal transformation taking F' to itself. Since
all these transformations have determinant one, we conclude that the stabilizer
subgroup of F' in Lag(V) is contained in SO(V'). Hence, the determinant function
det: O(V) — Zy descends to the set of Lagrangian subspaces, Lag(V) — Z. This
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gives the distinction between even and odd Lagrangians. This becomes even more
explicit in the case K =R,V = R™", where we had identified Lag(V) = O(n).

ProposITION 2.4. If F, F; are Lagrangian subspace of V' of equal parity, the
corresponding spinor modules S = CI(V)/CV).F and S, = CI(V)/CLV).Fy are
isomorphic as Zy-graded C1(V')-modules. If F,F1 have opposite parity, the spinor
modules are related by a parity reversing isomorphism.

PROOF. Choose g € O(V) with g.F = Fi, and let z € I'(V) be an element
of the Clifford group with m(z) = g, where w: I'(V) — O(V) is the quotient map.
Then II(z)Fz~! = F; (under Clifford multiplication). > Then

CYV)Fz~!' =Cl(V)z'F, = Cl(V)Fy.

Thus, right multiplication by z=! on Cl(V) descends to an isomorphism of Clifford
modules § — S;. Note that it preserves parity if and only if z is even, i.e. if and
only if m(x) € SO(V). O

REMARK 2.5. As mentioned above, we can also consider C1(V) as an ungraded
algebra, and S as an ordinary module. If K = C, we can turn any ungraded module
over the Clifford algebra into a graded module, by using the chirality element
[ =n1/2...¢, (relative to an orthonormal basis). The Z;-grading is given
simply as the +1 eigenspaces of I' on §. This is compatible with the original
grading, since TvI'~! = —v.

Any finite-dimensional module for a matrix algebra M, (K) = End(K") is of
the form & = E ® K" for some vector space E. (Exercise.) It is irreducible if
and only if dim E = 1. Since we have seen that C1(V') is the algebra of the spinor
module S defined by a Lagrangian subspace F, it follows that the most general
module is isomorphic to a module of the form £ = E ® S. For this reason, it is
common practice to call any irreducible Cl(V)-module a spinor module.

3. The Spin representation

The Spinor representation of the algebra Cl(V') restricts to a group representa-
tion of the Clifford group I'(V), called the spin representation of I'(V). The action
of T9(V) preserves the splitting S = S° @ ST, one calls SO and S! the half-spin
representations of TO(V).

THEOREM 3.1. The representation of (V) on S is irreducible. Similarly, each
of the half-spin representations S° and S! is an irreducible representation of row).
(If K = R we can replace I'(V) with Pin(V) and I'°(V) with Spin(V).)

PROOF. If a subspace is invariant under the action of I'(V), the it is also
invariant under the subalgebra generated by I'(V'). Since the spinor representation
of the Clifford algebra is irreducible, it suffices to show that this subalgebra is all
of CI(V'). The subalgebra consist of linear combinations of products

(20) T=v1- Uk

with v; € V non-isotropic. But any vector v € V can be written as a sum of

non-isotropic vectors: If v is isotropic, pick any non-isotropic vector y € span(v)J-;
2We may replace II(z) = +z with z, since any element of the Clifford group is either even or

odd.
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then v + y is non-isotropic, and v = (v + y) — y. Hence, the subalgebra consist of
linear combinations (20) with no restrictions on the v;, and therefore equals C1(V').
Similarly, the subalgebra generated by (V) equals C1°(V). O

REMARK 3.2. Suppose (V, B) is an even-dimensional vector space over K = R,
with positive definite bilinear form B. Let VC be its complexification. Then V*
admits (complex) Lagrangian subspaces. In fact, there is a 1-1 correspondence
between complex structures J on V and Lagrangian subspaces of VC, taking any
J to the +i-eigenspace of J on VC. The complex conjugate F is a Lagrangian
complement, equal to the —: eigenspace. The spinor module for CI(VC) defines a
representation of Pin(V) and half-spin representations of Spin(V') C Spin(V®). As
before, we see that these representations are irreducible.

4. Pure spinors

Let p: C1(V) — End(S) be a spinor module defined by F (or any other irre-
ducible Zy-graded module). If w € S is a spinor, we can consider the space

F(w) = {v e V| p(v)w = 0}.

LEMMA 4.1. For all non-zero spinors w € S, the space F(w) is an isotropic
subspace of V.

PROOF. If vy,v9 € F(w) we have

0 = (p(v1)p(v2) + p(v2)p(v1))w = B(v1,v2)w,
hence B(vy,v2) = 0. O

DEFINITION 4.2. A spinor w € § is called pure if the subspace F(w) is La-
grangian.

In the model § = Cl(V)/CL(V).F of the spinor module, the non-zero multiples
of wp = 1 mod Cl(V).F and (using the identification S = A(F*)) the non-zero
elements of det(F*), are examples of pure spinors.

THEOREM 4.3. Ifw is a pure Spinor and x € I'(V), then p(z)w is again a pure
spinor. The map

pure
{ spinors } — Lag(V), w— F(w)

is T'(V)-equivariant, with fibers K*: i.e. if F(w) = F(w'), then w,w’' coincide up
to a mon-zero scalar. All pure spinors w are either even or odd, and their parity
coincides with that of the corresponding Lagrangian subspace F(w).

PROOF. For any z € I'(V),
F(zw) =zF(w)z™" = 7(z).F(w).

It follows that for any pure spinor w, the element z.w is again a pure spinor.
Moreover, since O(V) acts transitively on Lagrangian subspaces, one can always
arrange that F'(z.w) = F, the given Lagrangian subspace F. For the second part,
it suffices to show that if F(w) = F, then w € § is a scalar multiple of wy. Choose
a complementary Lagrangian subspace F’ to identify V = F* @ F and S = AF*,
as above. Under this identification, wy = 1. Since w € AF* is annihilated by all
p(v) = ¢(v) with v € F(w) = F, it lies in AF* = K and is hence a multiple of wg.
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The last statement is clear, since any element of the Clifford group is either even
or odd, thus p(z)wy is even or odd depending on the parity of z. a

REMARK 4.4. It turns out that the action of I'(V') on the set of pure spinors
does not descend to an action of O(V). In fact, we will see below that the bundle
just constructed is a square root of the bundle over Lag(V) with fibers det(F;)*
over Fi.

Suppose § is an arbitrary (not yet graded) irreducible Cl(V)-module, and wq €
S is a pure spinor. Define Fy := F(wp). Then the map Cl(V) — S, z — p(x)wo
vanishes on the left-ideal C1(V)Fp, and hence descends to a homomorphism of
C1(V)-modules,

CL(V)/CYV)Fy — S.

This map is onto (otherwise its image would be a Cl(V)-invariant subspace), and
1-1 (otherwise its kernel would be a Cl(V)-invariant subspace). Hence, the choice
of a pure spinor gives an identification of S with the standard model of the spinor
module defined by the Lagrangian subspace Fy.

Pure spinors have some rather interesting applications, see for example Chapter
4.9 of Lawson-Michelsohn. For instance, if V is a real vector space with a positive
definite symmetric bilinear form, a pure spinor o for VC defines a Lagrangian
subspace F,, hence an orthogonal complex structure J,. It follows if an element
x € Spin(V') preserves o, then in particular it preserves J,. This defines an injective
homomorphism

Spin(V), — U(V; J).

But the spinor ¢ contains more information than just J, — it turns out that it also
defines a trivialization of the bundle det (V) (top exterior power of V viewed as a
complex vector space). In fact, the image of the above map is just SU(V; J). Thus

G, =2 SU(m)

for any pure spinor on V¢ = C?™,

5. The action of the Lie algebra o(F* @ F)

Let V be a vector space with split bilinear form, and F C V a Lagrangian
subspace. The spinor module S over the Clifford algebra Cl(V') restricts not only
to the Spin group but also to the Lie algebra o(V'), viewed as a Lie subalgebra of
Cl(V). To study the representation in more detail, we pick a transverse Lagrangian
subspace to identify

V=F*@F

with the bilinear form given by the pairing, B(u1 +v1, 2 +v2) = (u1,v2) + (2, v1).
Equivalently, writing elements of F* @ F' as column vectors,

0 Id
B(ﬂl@vlaﬂ2®v2):<(':]1_>’(IdF* OF)<I;; >>

Any endomorphism of F* @ F' may be written in block form

(71)
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where a: F* — F*, 3: F — F* ~v: F* — F, §: F — F. Such a matrix lies in
o(F* @ F) if and only if the linear map F @ F* — F* @ F given by

(ar ") (5 5)-(35)

is skew-adjoint. This gives the conditions, o* = —§, * = -8, v* = —y. We
conclude that the elements of o(F* @ F) are matrices in block form,

—A* E,

E; A
where both Ey: F* — F and FEs: F — F* are skew-adjoint, and A € gl(F) is
arbitrary. Identify the space of skew-adjoint linear maps F* — F with A%2F, by
the map taking E; to A(E;) with (,A(E1) = —FE; (). Similarly, let A\(E2) € A2F*

denote the element corresponding to the skew-adjoint linear map E;. We have
shown:

PROPOSITION 5.1. The Lie algebra o(F* @ F) is a direct sum
o(F*@ F) 2 N2(F*) @ gl(F) @ A*(F).

Here each summand is a Lie subalgebra, acting on F* & F as follows:
1. ¢ € A*(F*) acts by

LBV —1,¢d P O.
2. P € N*(F) acts by
pOv = 0D —1yu1).
3. A e gl(F) acts by
pdv— (—A*u) & Av.

Under the map v: o(F*@® F) — Cl(F* @ F), the summands A2F and A2F* just
go to the corresponding subspaces of A(F'), A(F*) C Cl(F*®F). In particular, their
action in the spinor representation is contraction and exterior multiplication, re-
spectively. Let us describe the action of A € gl(F) C o(F @ F*). The corresponding
element A(A) € A2(F* & F) is given by

AMA) = — Z FEN Aes).
This quantizes to Z
Y(4) = aNA4)) = =3 p_(FA(e:) - A(e:) f*)
=— Z FiA(e) +Z% tr(A).

Letting D 4« denote the derivation of A(F™*), given on F* by A*, it follows that the
action of A on the spinor module is
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5.1. The group O(F* @ F). Let us now turn to the orthogonal group. An
endomorphism of F* @ F, written in block form

(2%)

defines an orthogonal transformation of F* @ F if and only if

0 Idp \ [ a* ¢* 0 Idr a b
Idp- O bt g Idp» O c d
[ a*c+c*a a*d+c*b
“\ d*a+b*c b*d+d*b
This gives the conditions,
a*c+c*a=0, b'd+d*b=0, a*d+cb=1.
From this may identify the following three subgroups, which are of course just the

exponentials of the three Lie subalgebras of o(F* @ F) described above:

1. A%(F*), where ¢ € A*(F*) acts by u @ v — (p+ ty¢) ® v. This subgroup
is embedded as matrices in block form

(6 7)

where Ey: F — F* is a skew-adjoint linear map.
2. A%(F), where ¢ € A*(F) acts by p @ v+ pu@® (v+ ¢,9) This subgroup is
embedded as matrices in block form

(& 7)

where E: F* — F is a skew-adjoint linear map.
3. GL(F), where R € GL(F) acts by u@®v — (R~ 1)*u®Rv. This corresponds
to block diagonal matrices

(R71)* 0
0 R
PROPOSITION 5.2 (Factorization formulas).
(1) The map
N*(F) x GL(F) x N*(F*) = O(F* @ F), (91,92,93) = 919293

is 1-1, with image the set of all orthogonal transformations for which the
block a: F* — F* 1is invertible.
(2) The map

N} (F*) x GL(F) x A*(F) = O(F* @ F), (91,92,93) > 919293

is 1-1, with image the set of all orthogonal transformations for which the
block d: F — F' is invertible.

PROOF. For (1) we calculate

(m D)% 2) (0 7)=(ae ain@te)
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If a is invertible, we can solve for E1, E3, R in terms of the blocks a, b, c:
R=(a")*, Ey=ca™', Bz =a""b.
(Note that d = (a=1)*(I — c*b) if a is invertible.) The proof of (2) is similar. [

Note that each of the three factors is contained in SO(F* @ F). They gives
rise to three subgroups of the double cover Spin(F* @ F'). We are interested in the
action of these factors in the Spin representation on A(F*).

The inclusion of A2(F*) into SO(F* & F) lifts to an inclusion into Spin(F* &
F) C CI(F*@F) as elements of the form e¥ € A(F*) C CI(F*®F) with ¢ € AZ(F*).
Similarly, A2(F) — SO(F* @ F) lifts to the Spin group as exponentials. since they
are just vector spaces.

Let B, = 2B By, = 2 (F2) ¢ Spin(F* @ F) be these natural lifts of the

elements ( é ? ) and ( é EI2 ) Also, let GL(F) denote the pre-image of
1

GL(F) in Spin(F*®F). Let R € GL(F) C Spin(F*@F) denote lifts of R € GL(F).
THEOREM 5.3. Let K= C. Under the spin representation on A(F*),
(B )p = ()¢, p(Er)p =) N g

and
p(R)$ = Vdet R (R™1)*(¢).

Here the sign of the square root /det R depends on the choice of lift, and we use
the same notation for (R~1)* € End(F*) and its extension to an automorphism of
the exterior algebra.

PROOF. The action of the A?(F) and A%(F*) factors is clear, since the sub-
algebras A(F™*), A(F) act by exterior multiplication and contractions, respectively.

The formula for p(R) follows by exponentiating the corresponding formula for the
Lie algebra, using that

exp(3 tr(A)) = y/det exp(A).

(Note that GL(F) is connected since K = C, and that GL(F) is connected as
well.) O

REMARK 5.4. We get the following simple characterization for the group GL(F),
GL(F) = {(R,2) € GL(F) x C*| det(A) = 2%}.
To gain some confidence in this result, let us first work out an example.

EXAMPLE 5.5. Let V = C? with isotropic basis e, f such that B(e, f) = 1. We
take F' = span{e}, with complementary subspace F' = span{f} (identified with
F*). Thus, the spinor module § = AF* has basis {1, f}. Let R € GL(F) = C* be
given by u € C*. A lift of the corresponding matrix

u”t 0
0 u
to the Spin group is given by,
r=ul/? _ (u1/2 _ ufl/z)fe
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where u'/2 € C* is one of the two possible choices of square root. To verify this,
note that efef = ef, which gives z'z = 1 and 2! = 2! = u= /24 (u'/2 —u~1/2) fe.
Furthermore,

zext = ule(uV? 4+ (ul/? —u"V?) fe) = ue,
CL'fZC71 — (U1/2 _ (u1/2 _ ufl/Q)fe)fufl/Q — Uilf.
The action of z in the spin representation is given by

p(x)l =u'’?, p(a)f =u'2f
which is consistent with the formula given above.

For the case K = R, we can use the result for K = C, viewing GL(F) as a
subgroup of GL(FC). Over the subgroup GL™(F), of automorphisms of determi-
nant > 0, the resulting formula is the same as for the complex case. However for
det(R) < 0, the formula does not make sense since in that case det(R) has no
square root in R.

REMARK 5.6. Recall on the other hand that our definition of the Spin group
was slightly different in the real case: we used the weaker condition z'z = +1 rather
than z*z = 1. If we once again define GL(F) as the preimage of GL(F) in the spin
group, we obtain a similar formula as before, replacing det'/?(R) with |det|*/2(R).

We may also switch the roles of F' and F*, and consider the Spin representation
of Spin(F & F*) on A(F). Here the subgroups A2F* and A%F act by exterior mul-
tiplication and contraction of the exponentials of these elements, and the formula
for the action of R € GL(F') becomes, for K = C,

p(E1)p =B Ay, p(Bo)p = u(*FD) o,  p(R)p =

T .

det R
and similarly for K =R and R € GLT(F).

6. The quantization map revisited

Until now, we discussed the spinor representation only for vector spaces with
split bilinear form B. However, the spinor representation may be used to study the
Clifford algebras Cl(V') for arbitrary quadratic vector spaces (V, B). This is based
on the following simple observation.

Suppose V is a vector space with a symmetric bilinear form, B (possibly de-
generate). Then the map

j: Ve VeV, v vd B (v/2)
(where V @ V* carries the bilinear form coming from the pairing) preserves B:

Bvev-(j(v1),5(v2)) = 3(B"(v1),v2) + (B (v2),v1)
= B(Ul,vg).

Hence, it extends to a 1-1 homomorphism of Clifford algebras,
j:CUV) = C (Ve V).
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PROPOSITION 6.1. The composition
Cl(V) L5 CUV @ V*) = End(A(V))

is equal to the standard representation of CL(V) on A(V). In particular, the symbol
map can be written in terms of the spinor representation as,

o(z) = j(z)-1
PROOF. The elements j(v) = v & B”(v/2) act as €(v) + 3¢(B"(v)), as required.
(I

We will use this fact, together with our results on the spin representation of
Spin(F*@F) (here F = V*) to prove explicit formulas for the elements exp(y(A)) €
Spin(V) of the spin group, generalizing our formula for the special case V = R?,

exp(ferez) = cos(6/2) + sin(6/2)2e; e3.

We will assume that the bilinear form B on V is non-degenerate, and use B to
identify V* and V. Write W = V & V*, with bilinear form By coming from the
pairing. Let V'~ denote the vector space V with bilinear form —B. Then the map

VOV > W, v ®ve— (v +v2) B %(vl — vg)
is an isomorphism of quadratic vector spaces, with inverse k= (y; @ y2) = (%yl +
y2) ® (341 — y2). Indeed, if w = (vy + v2) ® 2 (v1 — v2) then
Bw (w,w) = 2B(v; + va, %(vl —v3))
= B(Ul,’l)l) — B(’Ug,’Ug).

Written in matrix form,

(i ap ) = (il )

PROPOSITION 6.2. For any C € SO(V) such that C + I is invertible,

(5 7)o =(0 ) (0 @y ) (ele 7)

where R = H%’ E= g—;f
PROOF. A direct calculation shows that both sides are equal to

C+Dj2 C-1I
(23) (w—nm W+nm)

O

From the known action of the factors in the spinor representation, we may
therefore deduce:

COROLLARY 6.3. Let C € Spin(V) be a lift of C € SO(V). Then the action of
C on ¢ € AV is given by the formula,

~ 1
Cp = —— B Ry (ME/?
V= ( )Y

55



6. THE QUANTIZATION MAP REVISITED

where R = H%’ E = (C’Y—j, and where the sign in vdet R depends on the choice
of lift. In particular, taking ¥ =1 we find
Cc-1
or1)
COROLLARY 6.4. The lift of each of the two functions
SO(V)—C, C—det(C+1I)

to Spin(V') has a well-defined holomorphic square root if lifted to Spin(V'). Here the
choice of square root of det(C' — I) depends on the choice of an orientation of V.

o(C) =279 V/2, /det(I + C) exp (2

PROOF. We use the symbol of C to define these square roots: the form degree
0 part of o(C) is 2~ 4mV/2, /det(C + I), while® the form degree dimV part is

2~ dimV/2, /det(C — I). O

Let us specialize to the case C = exp(A), so that
E =tanh(4/2), R=2(I —e )7L
There is a distinguished lift C' = exp(y(A)) € Spin(V). The formula for the above
choice D = 2tanh(A/2) now reads:

PROPOSITION 6.5. The function o(V) — C, A — det(cosh(A4/2)) admits a
global square root, equal to 1 at A =0 and holomorphic everywhere on o(V). With
this choice of square Toot, the differential form det1/2(Cosh(A/2))62’\(ta“h(A/2)) 18
holomorphic everywhere, and

o(e?™) = \/det cosh(A/2)e?*(tanh(4/2))

for a suitable choice of square root (defined by this equation).

EXAMPLE 6.6. Let us check this formula for V = R2, \(A) = fe; A es. Here
A = 0J where J is the standard complex structure on R2. It follows that exp(A4) =
cos(f) + sin(6)J, and therefore cosh(A/2) = cos(6/2), sinh(A/2) = sin(6/2)J and
tanh(A/2) = tan(6/2)J. This yields A(tanh(A/2)) = tan(6/2)e; A e2 and
det'/?(cosh(A/2)) = cos(8/2), e2*(anh(A/2) — 1 4 2tan(6/2)e; A es.
Hence, finally
det'/2(cosh(A/2))e?*(tanh(4/2) = ¢o5(0/2) 4 25in(6/2)e; A es.

Other types of factorizations of the matrix (23) defined by C lead to different
formulas for symbols. We will use the following factorization, in which block-
diagonal matrices are all the way to the right:

PROPOSITION 6.7. Suppose that C € O(V') has no eigenvalue equal to 1. For all
D € o(V) such that D is invertible and commutes with C, the following factorization
formula holds true:

o (€0 )or
(5 1) ) )0 @'y )

3We recall that for A € o(V'), the top degree part of exp(A(A)) € A(V) is v/det A T », where
T’z is a generator of det(V') with g(I'a,I'A) = 1. This is the well-known Pfaffian.
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Here

24 B =-21f_ = - _D
(24) '“920c-1 D * D2 2 I-C-1

PROOF. The matrix product on the left hand side of the desired equality is
given by (23), while the right hand side is, by direct computation,

) _( (I+DEy)R D(R")! )
r.hs. = (Ey + E1DE, + E)R (I—i—DEl)(R—l)t

-1
1041 1 1(0 c _D>7 p_ D

The two expressions coincide if and only if Ey, Fa, R are given by (24). For instance,
a comparison of the upper right corners gives
Dt D
(Cc-nt 1-Cc°v
Similarly, one finds F;, E5 by comparing the upper left and lower right corners.

Finally, a direct computation shows that with these choice of E1, Es, R, the lower
left corners match as well. (I

R=((D'(C-1) )=

From the known action of the factors in the spinor representation, we may
therefore deduce:

COROLLARY 6.8. Let QN' € Spin(V) be a lift of C € SO(V). For any choice of
D as above, the action of C on ¢ € AV is given by the formula,

~ 1
Cap = —— (rBV)) AD) (AR,
=g () (X)) Ry
where the sign in v/det R depends on the choice of lift. In particular, taking ¢ =1
we find
1
vdet R

Different choice of D give different formulas. One very natural choice is D =

Qg—__& since then E; = 0, but this will just recover our first formula for o(C).
Instead, specialize to C = exp A, and take D = A. Then

Ei = f(A), E»=g(4), R=j"(4)

where we have introduced the following functions of z € C,

o(C) =

L(e)‘(El)) D),

1) = Seoth(C) 1, gz) = TR,
O O

Note that g, 5%, j&, j are holomorphic, while f is meromorphic with poles at 2mv/—1k
with k € Z — {0}. Observe that f(A), g(A) are again in o(V'), while j(A4)! = j(A)
and jL(A)! = jB(A). Furthermore, jZ(A),j%(A),j(A) are invertible if and only if
A has no eigenvalues of the form 27v/—1k with k € Z— {0}. The resulting formula
for the symbol gives:

THEOREM 6.9. For all A € o(V) with the property that A has no eigenvalue
2nv/—1k with k # 0, the symbol of exp(v(A)) € CI(V) is given by the formula,

o(exp(v(4)) = «(S5(A)) exp(A(4))-
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6. THE QUANTIZATION MAP REVISITED

where S: o(V) = A(V) is the map

S(A) = v/det(j(A)) exp (A(f(4))).

Once again, while Proposition 6.7 requires that A is invertible (which never
happens if dim V' is odd), the resulting formula holds without this assumption. In
case A is invertible we can directly write

S(A) — det1/2 (sin1114(/A2/2)) 6)‘(% coth(%)—%) ]

The significance of the formula

ed(A(4)) _ q(L(S( A))e’\(A))

is that it compares the exponentials of elements of A?(V) under Clifford and exterior
algebra multiplication. The formula has a useful generalization, allowing linear
terms. Let P be a vector space of “parameters”. Let e; be a basis of V, and
consider expressions e; ® 7° € V ® P with 7° € P. We can then compare the
exponentials of elements

AA4) — Z et € ANV) ® A(P)

and
Y(A4) = et € CI(V) @ A(P)
i

Note that we can view that parameters 7% as the components 7(ef) of a linear map
V- P.

THEOREM 6.10. With S(A) as above,

e Eear — g(u(S(A)) N e,

It is somewhat remarkable that we do not have to introduce a 7-dependence

into S.

ProOOF. Identify A(V) ® A(P) = A(V @ P), and think of CI(V) ® A(P) =
Cl(V & P) as the Clifford algebra for the degenerate bilinear form B & 0. Pick
an arbitrary non-degenerate symmetric bilinear form Bp on P, and consider the
bilinear form B @ eBp on V @ P. Then A(A) — 3, e;7 = A(A.) with

A€=(f 8)+O(e).

where 7t: P — V denotes the transpose map relative to the bilinear forms B, Bp.
All powers of A; have a similar scaling behavior with respect to e: That is,

-~ Am 0
Ae = ( TAm—l 0 > +O(€)

s = (1) 0 ) +oo.

with Q = 7f(A)A~" independent of e. Now f(A.) is an endomorphism of V & P.
In order to take the limit in the resulting formula, we have to compose with (By @
eB p)l’, to produce a skew-adjoint linear map V @& P — V* @ P*, or equivalently an
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element A\(A.) € A2(V* @ P*. . But this introduces another factor of € in front of

Q, i.e. ~
A(f(Ae)) = A(£(4)) + O(e)
as an element of A?(V* @ P*). Similarly,
det(j(Ac)) = det(j(S(4))),
since only the block diagonal term contributes. The Theorem now follows by letting
€ — 0 in our general formula,

O

LEMMA 6.11. Let x,% € A(E), and suppose that the top degree part X|gim B €
det(E) is non-zero. Then there is a unique solution ¢ € A(E*) of the equation

¥ =u(d)x-
If x,v depend continuously (smoothly, holomorphically) on parameters, then so

does the solution ¢.

PRrROOF. Fix a generator I' € det(E*). Then the desired equation 9 = ¢(¢)x is
equivalent to

L)L = Au(x)T.
Since x[dim £] # 0, we have (¢(x)T)o) # 0, i.e. ¢(x)T" is invertible. Thus
¢ = (()I) A (D)™
This shows existence and uniqueness, and also implies the statements regarding
dependence on parameters. [l

THEOREM 6.12. The function A — S(A) extends to a global holomorphic func-
tion o(V) — A(V). In particular, its degree zero part

A s det'/?(j(A)) = det'/? (L2
is a well-defined holomorphic function o(V) — C.

PROOF. Let P = V* in Theorem 6.10, and 7* = f* a dual basis to e;. Then
exp(A(A) — e; f*) has a non-vanishing part of top degree 2dim V. By the Lemma,
there exists a holomorphic function §’(A) satisfying

L(S'(A))L(A) = ¢~ (exp(v(4) — Z eif'))-

By uniqueness, this function coincides with the function S(A) defined above.  [J
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CHAPTER 4
Lie groups

1. Preliminaries

We review some basic material on Lie groups, mainly to refresh our memory,
and to fix our notational conventions.

A (real) Lie group is a group G, equipped with a (real) manifold structure
such that the group operations of multiplication and inversion are smooth. For
example, GL(N,R), with manifold structure as an open subset of Maty (R), is a
obviously Lie group. According to theorem of E. Cartan, any (topologically) closed
subgroup H of a Lie group G is a Lie subgroup: l.e. the smoothness is automatic.
Hence, it is immediate that e.g. that SO(n), GL(N,C), U(n) etc. are again Lie
groups. A related result is that if G;, G are Lie groups, then any continuous group
homomorphism G; — G3 is smooth. Consequently, a given topological group
cannot carry more than one smooth structure making it into a Lie group.

An action of a Lie group on a manifold M is a group homomorphism A: G —
Diff (M) into the group of diffeomorphisms of M, with the property that the action
map G x M — M, (g,z) — A(g)(z) is smooth. It induces actions on the tangent
bundle and cotangent bundle, and hence there are notions of invariant vector fields
X(M)@, invariant differential forms (M) and so on.

There are three important actions of a Lie group on itself: The actions by
left-and right-multiplication,

AL (9)(a) = ga, A%(g)(a) = ag™*
and the adjoint action,
Ad(g)(a) = gag™".

Let XE(G) C X(G) denote the Lie algebra of left-invariant vector fields. Any
element of XL (@) is determined by its value at the group unit e € G. This gives a
vector space isomorphism T.G — XL(G), & — €¢L. One calls

g=T.G= %L(G)a

with Lie bracket induced from that on XZ(G), the Lie algebra of G. Lie’s third
theorem asserts that any finite-dimensional Lie algebra g over R arises in this way
from a Lie group G, and in fact there is a unique connected, simply connected Lie
group having g as its Lie algebra.

If G = GL(N,R), the tangent space g = T.G is canonically identified with
the space Maty(R) of N x N-matrices, and one may verify that the Lie bracket
is simply the commutator of matrices. (This is the main reason for working with
XL (G) rather than X (@), since the latter choice would have produced minus the
commutator.)
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The adjoint action of G on itself defines a homomorphism,
Ad: G — Aut(G) C Diff(G).
where Aut(G) are the Lie group automorphisms of G. The adjoint action fixes e,

and hence induces a linear action on T.G = g by Lie algebra automorphisms, which
again is referred to as the adjoint action,

Ad: G — Aut(g).
One also defines an infinitesimal adjoint action,
ad,: g =g, adu(§) = [u, s
ad defines a Lie algebra homomorphism
ad: g — Der(g),

where a linear map A € End(g) is a derivation of the Lie bracket if and only if
Alé1, €] = [A&,&2] + [€1, A&]. This referred to as the adjoint representation of
g. The adjoint representation ad of g is the infinitesimal version of the adjoint
representation Ad of G on g, in the following sense: Let g(t) € G be a smooth
curve with g(0) = e, and let u = %| 1—09(t) € g be the tangent vector represented
by that curve. Then

0
ah:o Adg(t) §= ad#(g).
For matrix Lie algebras, the adjoint actions Ad are just conjugation, while ad is
just a commutator.
2. The exponential map

Any ¢ € g = T.G determines a unique 1-parameter subgroup ¢¢: R — G such

that 3
Beltr +12) = 9e(11)e(t2), Be(0) = e, “pElico =€

One defines the exponential map
exp: g > G, £~ ¢§(1).
For matrices, the abstract exponential map coincides with the usual exponential of

matrices as a Taylor series. The 1-parameter subgroup may be written in terms of
the exponential map as ¢¢(t) = exp(t§).

LEMMA 2.1. One has the equality of operators on g,
exp(ad,) = Ad(exp(p)),

where on the left hand side exp is the exponential of an element of the algebra
End(g), while on the right hand side exp is the exponential map for Lie algebras.

Proor.
2 Ad(explt)c = Adexp(in)) ad
but also
% exp(tad,)¢ = exp(tad,)ad, C.
By uniqueness of solutions of ODE’s, this implies Ad(exp(tu)) = exp(tad,). Now
set t = 1. (]

62



CHAPTER 4. LIE GROUPS

It is easy to see that the differential of the exponential map at the origin is
dg exp = id. Hence, by the implicit function theorem the exponential map gives
a diffeomorphism from an open neighborhood of 0 in g to an open neighborhood
of e in G. We are interested in the differential of exp: g — G at any given point
u € g. It is a linear operator d, exp: g = T,g — T¢G. Since g is a vector space,
T,g = g canonically. On the other hand, we may use the left-action to obtain an
isomorphism, d.A%(g): T,G 2 g.

THEOREM 2.2. The differential of the exponential map exp: g > G at u € g is
the linear operator d, exp: g — g given by the formula,

dyexp = de A" (exp(p)) © 5 (ad,)

Here jL(z2) = % is the holomorphic function introduced in the last chapter.
Thus, in terms of left trivialization of the tangent bundle, the differential is given

by jL(ad,).

PROOF. The differential d, exp(¢) = exp(u + t¢) may be written,

a
ot |t=0

21, (expt) " explu+ 10))
Let exp,(v) := exp(sv) and (for any given , ()
¢(s,t) = exp, (1) ™" exp, (1 + tC).

Write 9(s) = %h:o € g. Thus 9(1) = d, exp(¢), while 4(0) = 0 (since ¥(¢,0) = e
for all ). Taking the t-derivative of the equation

d, exp(¢) = de A" (exp(u))

p+t¢= %(exps(u +tC)) exp,(p+t¢) ™ = %(exps(uw) ¢~ exp,(p) "

at t = 0, we obtain

(= %(exps(u)fﬁ) exp,(p) ' — %(exps(u)) ¥ exp, ()

0
= exp, (1) 20 exp, ()

0
- Ad(exp, (1) 22
0
= exp(s ad#)g.
That is, g—f = exp(—sad,)(. Integrating,
1 1 —exp(—ad .
¥(1) = (/ exp(—sad”)ds) c=tzeezads)  ing ),
0 adu

(Il
REMARKS 2.3. (1) Instead of the left-action, we may also identify T, G =

g using the right action. This choice yields,
d, exp = do A" (exp(p)) 0 57 (ad,,)

This follows from the formula for the left trivialization, because the adjoint
action of exp 1 on g is

Ad(exp p) = deA™(exp p) ' 0 dg A" (exp ),
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3. THE VECTOR FIELD % (¢ + ¢F)

and since
Ad(exp .u)jL (adu) = ead”jL (ad,u) = jR(ad”).

(2) In particular, the Jacobian of the exponential map relative to the left-
invariant volume form is the function, y ~ det(j”(ad,)). while for the
right-invariant volume form one obtains det(j®(ad,)). In general, the two
Jacobians are not the same: Their quotient is the function

det(ead”) = tr(ady),

The function G — R*, g+ det(Ad(g)) is a group homomorphism called
the unimodular character, while g — R, p — tr(ad,) is a Lie algebra
homomorphism called the (infinitesimal) unimodular character. A Lie
group is called unimodular if the unimodular character is trivial. For
instance, any compact Lie group, and any semi-simple Lie group, is uni-
modular. The simply connected Lie group corresponding to the non-trivial
2-dimensional Lie algebra is not unimodular.

If G is connected and g is quadratic (i.e. it admits an Ad-invariant
quadratic form), then G is unimodular. This follows because in that
case, ad, is skew-adjoint, so its trace vanishes. In the quadratic case, the
determinants of j”(ad,) and j®(ad,) coincide, and are equal to

sinhad, /2)
ad, /2 /°

By our results from the last section, this function admits a global analytic
square root.

The unimodular character arises from the fact that for a general Lie
group G, the left- and right-invariant volume forms I'" and I'E may be dif-
ferent. The quotient of the two volume forms at g € G is given det(Ad,).

J(u) = det j(ad,) = det (

3. The vector field 1(¢F +¢R)
Given a Lie group action
A: G — Diff (M),

its differential defines a Lie algebra homomorphism (which we denote by the same
letter)

A: g — X(M).

In terms of the actions of vector fields on functions,

A©)F = o limo exp(~16)" .

One calls A(€) the generating vector field for the G-action, also denote &5s. (Some
authors use opposite sign conventions, so that {7 is an anti-homomorphism.)
The generating vector fields Ad(§) € X(g) for the adjoint action of G on g are

Ad(€) | = adu(é)

(using the identifications T,,g = g). The generating vector fields for the three
natural actions of G on itself are

AL(&) = —¢€B, AR(E) =¢€F, Ad(¢) =¢F —¢R.
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(Note that the vector field Af(£) must be left-invariant, since the action AF(g)
commutes with the left-action.) We have [¢L,(®] = 0, since the left and right
actions commute.

Any £ € g may be viewed as a constant vector field on g. The half-sum
¢ = 1(¢¥ + €R) € X(G) is the closest counterpart of the constant vector field
¢ € X(g). For example, the vector fields £ ’almost’ commute in the sense that

g o1 1 _1
vanishes at e € G. Note also that
[Ad(€), ¢ = [, ¢TF,

parallel to a property of the constant vector field on g.

Let g’ C g denote the subset where the exponential map has maximal rank.
By the formula for d, exp, this is the subset where ad,: g — g has no eigenvalue
of the form 2mw+/—1k with k € Z — {0}. Given a vector field X € X(G), one has a
well-defined vector field exp*(X) € X(g’) such that exp*(X), = (d, exp) * (Xexp )
for all u € g*. In particular, for £ € g we can consider

exp* ", exp® £, exp* €".
Since T,,g = g, both of these vector fields define elements of C*°(g’) ® g, depending
linearly on £. The map taking £ to this vector field is therefore an element of

C*(g*) ® End(g).
Using left-trivialization of the tangent bundle, we have

(exp €9), = (1*(ad,)) 1(€) = Tt

Similarly,

(exp €)= (7 (ad)) 1 (€) = st

The difference with the constant vector field ¢ is,
(exp* €%), — € = ad,, f(ad,)(€) = Ad(f*(ad,)€),
(exp” £7), — & = ad,, f(ad,,)(€) = Ad(fF(ad,.)E).

where
1 1 1
L _ 1t R(,) _
f (z)_l_e,z Z’ f (Z) e — 1

Note that fl(ad,), f®(ad,) € End(g) are well-defined for all x € g’. The formula
shows that the difference between the vector fields exp* ¢&, exp* €% and the constant
vector field £ is a vector field in the direction of the orbits of the adjoint action.
Put differently, the radial part of these vector fields equals £. Finally,

(3 " (€ + €M), — € = f(ady)(ad, €) = Ad (F(ad,)E)]

where f = 1(fL + f®). That is,
1 1 1 1 1 z 1
1@ =5(g+ie) =) - 5
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REMARKS 3.1. The function j%(2)™* = —%; is the well-known generating
functions for the Bernoulli numbers B,,:

Ro-1_ 2 _N~Bn n
J(Z) _ez_l_gn

The Bernoulli numbers for odd n > 3 are all zero, while By =1, B; = —%, and
1 1 1 1 5
By=-,By=——,Bg=-—, Bs=——, Bjg= —,...
2 6 ) 4 30 ) 6 49 ) 8 30 ) 10 66 )
The expansion of the function f(z) reads,
1 o0
f(z) = 3 coth Z

4. Maurer-Cartan forms

The left-invariant Maurer-Cartan form 6% € Q!(G) ® g is defined in terms of
its contractions with left-invariant vector fields by

(et =¢
Similarly, one defines the right-invariant Maurer-Cartan form 6% € Q}(G)® ® g by
uEMot =¢.

For matrix Lie groups, one has the formulas
oL = g7dg, 0% =dg g7
(More precisely, dg is a matrix-valued 1-form on G, to be interpreted as the pull-

back of the coordinate differentials on Maty(R) = RY * under the inclusion map
G — Maty(R).)

PROPOSITION 4.1 (Properties of Maurer-Cartan forms). (1) The Maurer-
Cartan forms are related by

07 = Ady(6)),
(2) The differential of 6F,0% is given by the Maurer-Cartan equations
do* + 316%,0%]1 =0, do™ — 3[6%,6%] = 0.

(3) The pull-back of 6, 0% under group multiplication Mult: GxG — G, (g1,92) —

g192 is given by the formula,
Mult* 4% = Ad - pr} oF + pri o
Mult* 6% = Ad,, pri 6% + pr} 6~.
where pry,pry: G X G — G are the two projections.

For matrix Lie groups, all of these results are easily proved from % = g~'dg
and A% = dgg~! (although the general case it not much harder). For instance,
Mult* 87 is computed as follows:

(9192) 'd(g192) = 95 '97 'dgrgr " + 95 ' dga.
Consider now the pull-back of the Maurer-Cartan forms under the exponential
map, exp* 7 exp* 6F € Ql(g) ® g. At any given point u € g, these are elements of
Trg®g=g* — g. Thus, we can view exp* 6%, exp* 6% as maps g — End(g).
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THEOREM 4.2. The maps g — End(g) determined by exp* 0%, exp* 0% are given
by
pjt(ady), pif(adp),
respectively.

ProOF. Let 4 € g and £ € T,9 = g. Then, using left-trivialization of the
tangent bundle,

1(€) (exp* %), = 1(dy exp(€))besp
= d, exp(§)
= j*(ad,)(€).
For 6%, just use % = Ad, L. O

In a basis e; € g, the Maurer-Cartan forms can be written ¥ = 3", 69 @ e;.
Letting u be the coordinate functions on g and dy’ their differentials, the Theorem
says that

exp* 6Lt = ZjL(adu); du?
J

where j”(ad,)} are the components of the matrix describing j”(ad,). Dropping
indices, we may write this as exp* 6% = jT(ad,)(dy), where du € Q!(g) ® g is the
tautological 1-form.

The half-sum (6% +6%) is the most natural counterpart of du € Q'(g; g). The
theorem tells us that
sinh(ad,) — ad,

zexp* (07 +0%) —dp = ad,

(dp) = g(ad,) ad,(dp)

where )
sinhz — z

g(Z) - 22

is another of the functions introduced in the last chapter.

5. Quadratic Lie groups

Let G be a Lie group with Lie algebra g. A bilinear form B on g is called
invariant if it is invariant under the adjoint action:

B(Ady(£), Ady(C)) = B(£,¢)

for all £,¢. An important example of an invariant bilinear form is the Killing form

B(¢,¢) = trg(ade ade).
It is a well-known fact that the Killing form on g is non-degenerate if and only if
g is semi-simple, i.e. a direct sum of simple ideals. For g = gl(n,R), one can also
directly take the trace form B(¢,() = tr(&(Q).
But there are more general examples of symmetric bilinear forms: For instance,
if b is any given Lie algebra, let g = b x h* be the semi-direct product. That is,
g="bh®h* as a vector space, with bracket relations

(€1 @ p1, &2 @ po] = [€1, &) @ (—adf, po + adf, ).

Then the bilinear form given by the pairing between h and h* is invariant, but g is
not semi-simple since h* C g is an ideal.
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DEFINITION 5.1. A Lie algebra g with an invariant, non-degenerate symmetric
bilinear form B is called a quadratic Lie algebra. A Lie group is called quadratic if
its Lie algebra carries such a quadratic form.

Given an invariant symmetric bilinear form B, on g, one can construct an
important 3-form on the group,

0= %B(OL, 6%, 6")) € 93(G)

PROPOSITION 5.2. The 3-form n is closed: dn = 0. Hence it defines a de Rham
cohomology class [n] € H3(G, R).

PRrOOF. Using the Maurer-Cartan-equation d§” + %[GL , GL] = 0, we have

_ Vo n gLy tpL gLy _ L piaL 1oL (aL L
dn = 243([9 ,071,[07,67]) = 243(9 ,[07,[6%,67]]).
But [6F,[87,6%]] = 0 by the Jacobi identity for g. O

The pull-back of exp*n of the closed 3-form 7 to g is exact. In fact, the
Poincaré lemma gives an explicit primitive w € Q%(g) with dw = ®*5. Now,
Q2%(g) = C>(g) ® A*g* is identified, using B, with C*°(g) ® o(g). What is this
function?

PROPOSITION 5.3. The function g — 0(g) corresponding to the 2-form w is
p > g(ad,), where g(z) = z72(sinh(z) — 2).

PROOF. O
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CHAPTER 5

Enveloping algebras

1. The universal enveloping algebra

For any Lie algebra (g, [+, -]5), one defines the universal enveloping algebra Ug =
T(g)/Z as a quotient of the tensor algebra by the two-sided ideal Z generated by
elements of the form

E®(—(®E&—[§ -
Equivalently, the universal enveloping algebra is generated by elements £ € g subject
to relations £¢ — (€ = [€,(]g-

Note that ZN K = 0, which shows immediately that Ug is a non-trivial unital
algebra. The projection T'(g) — T°(g) — K is an algebra homomorphism vanishing
on Z, and therefore descends to an algebra homomorphism

Ug—K

which is right inverse to the inclusion K — Ug. This is the augmentation map
for the enveloping algebra. (Note that for the Clifford algebra, there is no natural
augmentation map which is also an algebra homomorphism.)

Suppose from now on that K = R. Most of the results proved below hold for
more general fields, but have simpler proofs in the real case, by working with a Lie
group G integrating g.

For any manifold M, let ©(M) denote the algebra of differential operators on
M. By definition, this is the algebra of operators on C°° (M), generated by C*°(M)
itself together with X(M). Given a G-action on M, one can consider the subalgebra
D(M)C of differential operators which commute with the G-action.

Let ©L(G) denote the differential operators on G which commute with left
translation. The Lie algebra homomorphism

g XH@), £ €F

extends to an algebra homomorphism T'(g) — D% (@), which vanishes on the ideal
Z. Hence we get an induced algebra homomorphism

U(g) = D%(G),

taking the image of £ € g = T (g) to &~. It follows in particular that the injection
g — T'(g) descends to an injection g < U(g). From the definition of U(g), it is clear
that g is a Lie subalgebra of U(g) (where the bracket on U(g) is the commutator).

THEOREM 1.1 (Universal property). If A is an associative algebra, and f: g —
A is a homomorphism of Lie algebras, then f extends uniquely to an algebra ho-
momorphism U(g) — A.

PROOF. The map f extends to an algebra homomorphism T'(g) — A. This
algebra homomorphism vanishes on the ideal Z, and hence descends to an algebra
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1. THE UNIVERSAL ENVELOPING ALGEBRA

homomorphism U(g) — .A. This extension is unique, since g generates U(g) as an
algebra. m

The map taking g — U(g) is a functor from the category of Lie algebras to the
category of associative algebras: Lie algebra homomorphisms go to algebra homo-
morphisms. (For instance, the augmentation map is induced by the map g — {0}
to the zero Lie algebra.) Any module over the Lie algebra g becomes a module over
the algebra U(g).

The canonical anti-automorphism. The map £ — —£ is an anti-automorphism
of the Lie algebra g, i.e. it preserves the bracket up to a sign. Define an anti-auto-
morphism of T'(g) by v1 ® - - ® v, — (—1)"v, ® - - - @ v1 This preserves the ideal Z,
and therefore descends to an anti-automorphism of Ug, denoted z — z7.

The left, right, and adjoint representations. The enveloping algebra
carries a natural representation of g by multiplication from the left: pl(¢)z = ¢,
and there is another representation by multiplication from the right, p?(¢)z = —¢z.
The two actions commute, and the diagonal action is the adjoint action, ad(§)z =
€x — z€ = [€,z]. An element z lies in the center of U(g) if and only if it commutes
with all generators £. That is, it consists exactly of the invariants for the adjoint
action:

Cent(Ug) = (Ug)®.

The Z-filtration. Consider the Z-filtration of the enveloping algebra, where
U®*)(g) is the image of @ i<k T7(g) under the quotient map. Equivalently, U(*)g
consists of linear combinations of products of < k elements in g.

LEMMA 1.2. For any permutation o of {1,...,k} and any v; € g,
V1V — Ud(l) cea Uo(k) (= U(k_l)(g)‘

PROOF. For transpositions of two adjacent elements, this is clear from the def-
inition of the enveloping algebra. The general case follows since such transpositions
generate the symmetric group. O

From this Lemma, it follows that the commutator or two elements of filtration
degree k, [ has filtration degree k+I—1. Hence, the associated graded algebra gr(Ug)
is commutative! , and the inclusion of g extends to an algebra homomorphism

Sg — gr(Ug).

Let e1,..., e, be a basis of g. Given any finite sequence I of indices %1, ...,k €
{0,...,n} (possibly with repetitions), let e; € U(x)g be the monomial,

€] 1= €4y """ €4y,

We set eg = 1. Then these elements span the enveloping algebra (since Ug is
generated by g). The Lemma shows that Ug is already spanned by elements e
where [ is weakly increasing, i.e. i3 < ip < ---. Since the corresponding elements

in Sg are clearly a basis, we therefore obtain a surjective linear map
(25) Sg—)Ug, er —r er.
IHere we mean commutativity in the plain sense, rather than the Z-graded sense. To make

everything for with our conventions for graded algebras, it is sometimes convenient to double the
gradings — see below.
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lifting the map Sg — gr(Uyg).
2. The Poincaré-Birkhoff-Witt theorem

The Poincaré-Birkhoff-Witt theorem is of fundamental importance in Lie the-
ory. We assume that K has characteristic zero.

THEOREM 2.1 (Poincaré-Birkhoff-Witt, version I). Let e; be a basis of g. Then
the elements
{er| I is weakly increasing}

form a basis of Ug.

Equivalently, the map (25) is an isomorphism. As explained above, it is easily
seen that this map is onto, so the main point of the theorem is that it is 1-1 (i.e.
that the ¢ are linearly independent). Since a morphism of filtered vector spaces
is an isomorphism if and only if the associated graded map is an isomorphism, one
has the following equivalent basis-independent version:

THEOREM 2.2 (Poincaré-Birkhoff-Witt, version II). The homomorphism Sg —
gr(Ug) is an algebra isomorphism.

An alternative lift of the map Sg — gr(Ug) is given by symmetrization,

1
sym: Sg = Ug, &1+ +6k = 17 D &y €
seSy

Alternatively, sym may be characterized as the unique linear map such that
sym(¢*) = ¢*

for all ¢ € g and all k, where on the left hand side the kth power &* = ¢...¢ is

a product in the symmetric algebra, while on the right hand side it is taken in

the enveloping algebra. (Note that the elements ¢* with & € g span S*(g), by

polarization.) The symmetrization map is the direct analogue of the quantization

map ¢: A (V) — Cl(V) for Clifford algebras, which was given by symmetrization
in the graded sense.

THEOREM 2.3 (Poincaré-Birkhoff-Witt, version III). The symmetrization map
sym: Sg — Ug, is an isomorphism of filtered vector spaces.

If K =R, so that g is the Lie algebra of a simply connected Lie group G, the
PBW-theorem also has a differential-geometric interpretation.

THEOREM 2.4 (Poincaré-Birkhoff-Witt, version IV). The canonical map U(g) —
DL(G) is an isomorphism of algebras.

We will sketch a proof of these theorems for K = R, assuming the existence of
a Lie group G integrating g (which exists by Lie’s third theorem).

Proor oF PBW FOR g = Lie(G). To begin, let us review some facts about
differential operators on manifolds. For any manifold M, the algebra ©(M) of
differential operators is a filtered algebra, where D(¥)(M) consists of differential
operators of degree < k. In local coordinates, any differential operator has the
form
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The function ;< ar (z)p! (called the full symbol of D) has rather complicated
transformations properties under coordinate change, but its leading term
o*(D)(z,p) = ) ar(z)p’
|T|=k
transforms very nicely: It defines a function on the cotangent bundle 7*M. This

can be seen as follows: Let yu € T M correspond to the point (z,p). For any
function f such that d,f = u, one may verify that

o*(D)(n) = Jlim (t~"e™"/ De'

)
x
which gives a coordinate-free description of the principal symbol. The principal
symbol gives a canonical linear map

ok D®) (M) — Pol®(T* M)

where Pol®(T*M) C C°(T*M) are the functions on T*M whose restriction to
every cotangent fiber is a polynomial of degree k. Equivalently, this is the space
C>®(M; S*(TM)) of smooth sections of the kth symmetric power of the tangent
bundle, S¥(T'M). We obtain an exact sequence,

k
0—2E V(M) - 2® (M) Zs C°(M;S*(TM)) — 0.

If Dy, D, are differential operators of degrees ki, ko, then D; o D5 is a differential
operator of degree ki + ko and

0_k1+k2 (Dl ° D2) —_ a.k:1 (Dl)a_kz (DQ)
That is, the symbol map descends to an isomorphism of graded algebras,

o gr*D(M) —» C(M,S*(TM)).
Given a G-action on a manifold M, this map is equivariant and restricts to an
isomorphism,

(gr* D(M))% — C®(M; S*(TM))C.
We also have an injection gr®(D(M)%) — (gr* D(M))%, but for non-compact Lie
groups and ill-behaved actions this need not be an isomorphism.

In the special case M = G, with G acting by left translation, we have

C> (@G, 8*(TG))* = S(T.G) = S(g).
Consider now the composition of maps
Skg —» U g - D0L(G) 2 Shg,

where the first map is given either by symmetrization, or in terms of the basis by
er — er. Note that the associated graded map Sg — gr(Ug) is independent of this
choice, and we obtain a sequence of homomorphisms of graded algebras,

(26) Sg — gr(Ug) — gr(D"(G)) — Sg

We know that the last map is 1-1 (since it comes from the inclusion gr(D%(G)) —
gr(D(G))E = Sg), and that the first map is onto (since the e; span Ug). On the
other hand, the composition of all these maps is the identity. (For any e; the symbol
of the left-invariant vector field ¢” is the left-invariant function on T*G, given on
TG = g* by & itself. Now use that all maps are algebra homomorphisms, up to
lower order terms.) This implies that each map must be an isomorphism. This
proves each of the four versions of the PBW theorem. Il
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The proof of the PBW theorem given above is unsatisfactory since it is based
on the highly nontrivial ’Lie’s third theorem’. For this reason, it is better to have
a purely algebraic proof of this result. This proof can be found in most textbooks
on Lie theory. In a recent work, Emanuela Petracci (Universal representations by
coderivations of Lie algebras. Bulletin des Sciences Mathématiques 127 (2003), no.
5, 439-465 gives a new and very beautiful proof of the PBW theorem, exploiting
the Hopf algebra structures on the symmetric and enveloping algebras. We will
explain some of the ideas from her proof in Section 4 below.

Let us use the symmetrization map sym: Sg — Ug to transfer the non-commutative
product on Ug to a product * on Sg. By definition of symmetrization, and of the
enveloping algebra, we have

V1Vy = %(vl * Vg + Vg x V1), [U1,V2] = U1 % U2 — v * V1.

Hence
1
V1 * V2 = V1V + 5[V1, V2]

The triple product is already much more complicated. One finds, after cumbersome
computation,

v3[v1, va] + v1[va, v3] + valv1, v3]
2
[’01, [’1)2, Ug]] — [031 [vla UZ]]
5 .
(As a consistency check, note that sym intertwines the anti-automorphism of Sg
and Ug. The anti-automorphism takes vy * vg *v3 to —v3 *vg *v;. It follows that the
odd degree terms on the right hand side must be preserved under a permutation of
v1, s, while the even degree term should change sign.)
Similar to the discussion for Clifford algebras, the isomorphism gr(U(g)) = S(g)
induces a Poisson structure on Sg. (To comply with the conventions from Section
2, it is necessary to double the grading and filtration: That is, let

(Sg)Zk — Skg, (Sg)Zk—H =0, (Ug)(2k) — U(k)g, (Ug)(zk-l—l) — (](2k)g

The Poisson algebra structure on Sg is determined by its value on generators vy, ve €
g, where it is given by {v1,v2} = [v1,v2]. That is, the resulting Poisson structure
is just the Kirillov Poisson structure.

V1 * Vg * U3 = V1VV3 +

+

3. The Hopf algebra structure on Ug

In this section, K is any field of characteristic 0. Recall that a co-algebra
is defined similar to an algebra, but with ’arrows reversed’. An algebra may be
viewed as a triple (A, m,7) consisting of a vector space A, together with linear
maps m: A® A — A (the multiplication) and i: K — A (the unit), such that

mo(m®1l)=mo (1®m) (Associativity)
mo(i®l)=mo(1®i) =1 (Unit property).

It is called commutative if moT = m, where T: AQA —- ARA, sz w2’ Q@
exchanges the two factors. Dualizing all these definitions one obtains,

DEFINITION 3.1. A co-algebra is a vector space C, together with linear maps
A:C—=C®C, e:C—K
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called co-multiplication and co-unit, such that
(A®1)ocA=(1®A)oA (Co-associativity)
(e®1)oA=(1®€) oA =1 (Co-unit property)
It is called co-commutative if T o A = A.

It is fairly obvious from the definition that the dual of any coalgebra is an
algebra. The converse is not true: The dual of an algebra A is not a co-algebra,
since the dual map m*: A* — (A ® A)* need not take values in A* ® A*, in
general. (Of course, this problem does not arise if dim.A < o00.) There is an
obvious notion of homomorphism of co-algebras; for example the co-unit provides
such a homomorphism.

A Hopf algebra is a vector space with compatible algebra and coalgebra struc-
tures, as follows:

DEFINITION 3.2. A Hopf algebra is a vector space A, together with maps
m: AQA — A (multiplication), i: K — A (unit), A: A — AQA (co-multiplication),
e: A — K (co-unit), s: A — A (antipode), such that
(1
(2
(
(

(A, m,1) is an algebra,

(A, A, €) is a co-algebra,

A and e are algebra homomorphisms,

s is a linear isomorphism and has the property,

mo(l®s)oA=mo(s®@l)cA=ioe.

)
)
3)
4)

From the definition, one can show that m,¢ are co-algebra homomorphisms,
that s is an algebra and co-algebra anti-homomorphism, and that
§o0t =1, €0S=E¢.

The dual of a finite-dimensional Hopf algebra A is again a Hopf-algebra. (In the
infinite-dimensional case, this is usually false.)

Hopf algebras may be viewed as algebraic counterparts of groups, as the main
example shows.

ExXAMPLE 3.3 (Finite groups). Let A = C(T',K) be the algebra of functions on
a finite group I', with m the pointwise multiplication and ¢ given by the constant
function. Define a co-multiplication
A: C(ILK) - C(T,K)® C(I',K) = C(I' xI',K),
a co-unit ¢, and an antipode s by

A(£)(g1,92) = fg192), e(f) = f(e), s(F)lg)=flg™").

Then (A, m,1, A, ¢, s) is a finite-dimensional Hopf algebra. Conversely, given a Hopf
algebra A, one obtains a group of algebra homomorphisms

FA = Homalg (.A, K)
with product
d102 = (91 ® ¢2) 0 A.

and group unit e = €. If A arises as the function algebra of a finite group I', then
the natural map

I'—>Ty, g— [evg: fe f(g)]
is an isomorphism. (Tannaka-Krein duality.)
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REMARK 3.4. This example generalizes to topological groups, provided tensor
products are completed in the appropriate way.

EXAMPLE 3.5. The dual Hopf algebra of C(T', K) is the group algebra K[I'], i.e.
the space of linear combinations ger @g 9, with Hopf algebra structure defined in
the basis g € I' ¢ K[I['| by

m(g®yg) =99, Alg) =g®g,s(9) =g

while ¢: K — K[I'] is the inclusion as multiples of e € T', while e¢: K[I'] — K takes
>_ger @g g to the coefficient a..

An element z of a Hopf algebra is called group-like if A(z) = z ® z. Since
A is an algebra homomorphism, the group-like elements form a semi-group under
product, and the invertible group-like elements form a group. If A = K[I'] is the
group algebra of a finite group I', the non-zero group like elements are exactly the
elements of I' C K[I']. Indeed, if z = }_ ay g then A(z) = >  ay g ® g, which
coincides with z®@z = 3__ ., agay g®g' if and only if al = ag for all g and agay =0
forg#g'.

EXAMPLE 3.6. Let (S(E), m,1) be the symmetric algebra over a vector space
E. Then S(E) becomes a Hopf algebra if we define

A: S(E) = S(E)® S(E) = S(E & E)

to be the map defined by the diagonal embedding E — E® E, e: S(E) — K to be
the augmentation map (induced by E — {0}), and s: S(E) — S(E) the canonical
anti-automorphism (equal to v = —v on E C S(E)). More explicitly, the coproduct
is given by

k
k . .
A(vF) = Z ( .)vk_] v
i=o M
The formulas have a very nice description in terms of the ’generating function’
e’ =37 ¥ i
= 2uj=0 71V
A(etv) — et'v ® et'u, E(etv) — 1, S(etv) — eftv
(to be interpreted as equalities of formal power series in t).

This example generalizes to enveloping algebra U(g). Again, we take
A:Ug—=U(g)@U(g) =U(g®9)

to be induced by the Lie algebra homomorphism g — g&g, { — £®f and e: U(g) —
K to be induced by the map g — {0}, and we let the antipode U(g) — U(g) be the
canonical anti-homomorphism of U(g).

THEOREM 3.7. Ug with these definitions of A€, is a co-commutative Hopf
algebra.

ProOF. Clearly, A and € are algebra homomorphisms. The co-associativity
of A follows because both (A ® 1) o A and (1 ® A) o A are the maps U(g) —
U(g)®@U(g) ®U(g) = U(g ® g @ g) induced by the triagonal inclusion. The co-
unital properties of € are equally clear. The other two properties are easily checked
on the generating function:

mo(1®@s)oA(e”®) =mo(1®s)(e4 ®e) =m(e® ®e ) =1 = 1(e(e")).
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Similarly, co-commutativity follows because A(e'¢) = e* ® e'¢ is invariant under

T. O

To summarize, we can think of U(g) as an algebraic analogue/substitute for
the Lie group G integrating g. (The co-commutativity of Ug corresponds to the
fact that C(G,K) is a commutative algebra.) This point of view is taken in the
definition of quantum groups, which are not really groups but are defined as suitable
Hopf algebras.

DEFINITION 3.8. A derivation of an algebra (A, m, ) is a linear map D: A — A
satisfying
Dom=mo(D®1+1® D).
A co-derivation of a co-algebra (C, A, ¢€) is a linear map C: C — C satisfying
AoC=(C®1+1®C)oA.

The space of co-derivations of a co-algebra is a Lie algebra under commutator,
just as the space of derivations of an algebra.

PROPOSITION 3.9. The symmetrization map sym: Sg — Ug is a co-algebra
homomorphism. For all £ € g, the left regular representation p*(€¢): U(g) —
U(g), z — &z is a co-derivation of Ug.

PROOF. The symmetrization map is functorial with respect to Lie algebra ho-
momorphisms g; — go. Functoriality for the diagonal inclusion g — g & g shows
that sym intertwines A, while functoriality relative to the projection g — {0}.
implies that sym intertwines e.

Next, since A is an algebra homomorphism,

A(¢z) = A(§)A(z) = (@ 1+ 1®EA().
which shows that p%(£) is a co-derivation. O
Tt is in fact possible to recover g from U(g). For this we need the following

DEFINITION 3.10. An element z of a Hopf algebra (A, m,i,A,¢,s) is called
primitive if A(z) =z®1+1®z. Let P(.A) denote the space of primitive elements.

LEMMA 3.11. For any Hopf algebra A, the space of primitives P(A) is a Lie
subalgebra under commutator. Left multiplication

PAxA—= A
is an action of this Lie algebra by co-derivations.
PROOF. Since A is an algebra homomorphism,

Azy —yz) = Az)A(y) — Ay)Alz)
=(z®1+107)(y®1+10y) - (y®1+10y)(z®@1+1® )
=(zy—yzr)®1+1® (zy — yx).

For the second claim, we compute, for £ € P(A) and = € A,
A(¢z) = A(§)A(z) = (@ 1+ 1®EA().
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For any vector space E, we have E C P(S(E)) by definition of the coproduct.
More generally, for any Lie algebra we have g C P(U(g)). Recall that K is any field
of characteristic 0.

LEMMA 3.12. For any finite-dimensional vector space E over K, P(S(E)) = E.

PROOF. Suppose z is a non-zero primitive element of degree k > 1. Let e, be
a basis of E, with dual basis 2. The component of A(z) in S*~}(E) ® E is given
by >, ts(e®)z ® e,, where tg(u) is the derivation of S(E) given on generators by
ts(p)(€) = (u,&). Thus tg(e®)z = 0 for all a, which proves z = 0. Alternatively:
Identify S(E) = Pol(E*) with polynomial functions. For f € Pol(E*), the definition
of A becomes (Af)(u,v) = f(p + v) (since the dual map to diagonal inclusion is
the addition map). Hence f is primitive is and only if f(u + v) = f(p) + f(v). If
f € Pol*(E*), taking u = v in this condition gives 2% f(u) = 2f(u) for all p, so
f=0ork=1. O

THEOREM 3.13. For any Lie algebra g over K, P(U(g)) = g.

PrOOF. The PBW theorem says that sym : S(g) — U(g) is an isomorphism
of co-algebras. Since the definition of primitive elements only involves the co-
multiplication, this implies P(U(g)) = sym(P(S(g))) = sym(g) = g. O

4. Petracci’s proof of the PBW theorem

4.1. Co-derivations of S(E). It is easy to see that the space of derivations
of a symmetric algebra S(FE) is isomorphic to the space Hom(E, S(E)): Any such
homomorphism extends uniquely to a derivation. Dually, one expects that the
space of co-derivations of S(E) is isomorphic to the space Hom(S(E), E).

THEOREM 4.1. There is a canonical isomorphism between the space of co-
derivations D of S(E) and the space of formal vector fields X € Hom(S(E), E),
given by

D=mo(1®X)oA.

ProoF. Evaluated on e'?, the above formula reads,
D(e’) = e X (e).

We first show that if D is a co-derivation, then X (e!’) := e~ D(e!?) lies in E C
S(E). Equivalently, we show that X (e'¥) is primitive:

A(X (™)) = A(e™™)A(D(e™))
=(e™®e ™) (D®1+1®D)A(e")
=(e"®e ™) (D)@ + e ®@D(e"))
=e ™"D(E”)®1+1®e " D(e")
=X(E")®1+1® X ().

Conversely, if X € Hom(S(E),E), a similar calculation shows that D(e'’) :=
e’ X (e*?) defines a co-derivation:

A(D(e")) = (" ® e™)A(X(e"))
— (etv Q etv)(X(etv) Q 1 + 1 ® X(etv))
— D(etv) ® etv + etv ®D(etv)
=(D®1+1® D)o A(e™).
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The Lie bracket on Hom(S(E), E) induced by this isomorphism reads,
[Xl,Xg](et”) = Xl(et”Xg(etv)) - Xg(e“’Xl(et”)).

From now on, we will simplify notation and omit the parameter ¢, and simply write
X (e”) for the “value” of X at e” =3 77 ﬁ?ﬂ.

4.2. A g-representation by co-derivations. The main idea in Petracci’s
approach to the PBW theorem is to define a g-representation on S(g), which under
symmetrization goes to the left-regular representation of g on Ug. This repre-
sentation should be by coderivations, since pZ(¢) is a coderivation and sym is a
co-algebra homomorphism. For ¢ € g, and any formal power series ¢ € K[[z]],
define Xg € Hom(Sg, g) by

X5(e%) = ¢(ade) ().
THEOREM 4.2 (Petracci). Let X¢ = Xg for ¢(z) = jB(2)™" = 2. Then the

ez

map g —+ X4, ( X¢ is a Lie algebra homomorphism:
[XCI,XC2] _ X[C1,C2]_
Indeed, ¢ is the unique formal power series with ¢(0) =1 having this property.

Hence, ¢ — X¢ € Hom(S(E), E) defines a g-representation on Sg by coderiva-
tions. Note that the formula for X¢ is similar to our formula for the right-invariant
vector field on a Lie group G, written in ’exponential coordinates. 2 However, the
present formulation is completely algebraic, and works for any field of characteristic
0.

The proof of Theorem 4.2 requires the computation of commutators of vector
fields of the form Xfi,(et£ ) = ¢(tade)¢. Let us introduce the following notation:

(1" 25 : [a,b]) = [adg" (a), adg? (b)]-

Extend by linearity to formal power series in 21, z2. The following Lemma shows
the usefulness of this notation:

LEMMA 4.3. For any ¢ € K[[2]], and any a,b € g,
d(ade)[a, b] = <¢(z1 Y 2): g, b])ﬁ.

PRrROOF. By the Jacobi identity, ad¢[a, b] = [ad¢ a,b] + [a, ad¢ b] and induction,

ad[a,b] = Z[adg a,adg™'b] = (21 + 22)" : [a,0]),.
O

LEMMA 4.4. For all $ € K[[2]], ( €9, Y € g one has the following identity,

P21+ 22) — P(22) v, C]) -
21 3

(27) X§(efY) = (

2Signs ?
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PROOF. It suffices to consider the case ¢(z) = 2™, which is an induction on n:
The cases n = 0,1 are clear, while

X () = Llacond™ (€ 4+

= [¥,d"(6)C) + ad(€) 5 |omo ad" (€ + 5 )¢

= (zg [y, <]>§ Jrad(g)(M Y, C])e
= (g4 G+ By )
_ ((zl + >+ Ay ),

O

LEMMA 4.5. The commutator of vector fields Xéi and ng is given by the
formula,

X5 sti](ef) = (¢1(z1 +22) — ¢1(z1)¢2(z2)+¢2(21 +22) — ¢2(22)¢1(z1) : [C%Cl])g-

¢1? 29 %

PROOF. From (27) with ( = (3,0 =¢1,Y = Xii’ we obtain

sti (esXqCSZ (eﬁ)) _ (¢1(z1 + 22) — ¢1(z2)¢2(z2) . [42,41])5,

21

and hence the formula for the commutator. O

PROOF OF PETRACCI’S THEOREM. Since

XE() = g(ade )Gl = (91 +22) (61,6,

we see that ( — Xi is a Lie algebra homomorphism if and only if ¢ satisfies the
functional equation,

P21 + 22) — ¢(Z2)¢(21) n P21 + 22) — P(21)

d(z1 + 22) + P Py

#(22) =0

This functional equation has a unique solution for any given initial condition ¢(0).
Letting zo — 0 this turns into a differential equation,

$(2) — 4(0)

¢(2) + ¢(2) + ¢'(2)¢(0) = 0.

If $(0) = 0 this gives ¢(z) = —M, ie. ¢(z) = —z If $(0) #0, introduce é(2) =

z
z

O 1. Tt is straightforward to check that the resulting equation for ¢ is just the

usual functional equation for the exponential function, @(z1 + 22) — ¢(z1)p(z2) = 0.
Hence ¢(z) = e°* for some constant ¢, and therefore ¢(z) = _Z=, with initial
condition ¢(0) = % In particular, there is a unique solution with ¢(0) = 1. O

This completes the construction of the representation p: g — Hom(Sg, Sg)
by coderivations, p(¢)(e®) = ef¢(ade)¢. Since —Z- is the generating function for

e*—1
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Bernoulli numbers, we have the explicit formula,

p01E) =3 (1) Buetadk 0.

k=0

where By, are the Bernoulli numbers. For example,

p(¢)(1) = ¢,
p(¢) (&) = &¢ — 3[€,¢),
p(C)(€%) = €3¢ — €[, ¢] + L&, 16, <]

Extend to an algebra homomorphism p: Ug — Hom(Sg, Sg). The symbol map
for the enveloping algebra is defined as

o:Ug— Sg, =+ p(x).1
THEOREM 4.6. The symbol map is an inverse to the symmetrization map.

PROOF. Since we already know that the symmetrization map is onto, it suffices
to show the symbol map is left inverse to the symmetrization map. That is, it is
enough to show that p(¢™)(1) = ¢™ for all n. Setting £ = ¢ in the formula for
p(¢)(€™), only the term k = 0 contributes, and gives p(¢)(¢") = ¢"*!. Hence, by
induction

p(¢M)(1) = p(O)"(1) ="
O

REMARK 4.7. The representation given and by the co-derivation ¢(u) = —u is
just the adjoint representation of g on Sg.

5. The center of the enveloping algebra

We have already observed that the center of the enveloping algebra Ug is just
the ad-invariant subspace, (Ug)?. Elements of the center are also called Casimir
elements. If g admits an invariant quadratic form, then %eae“ € Ug (with e, e*
B-dual bases of g) is an example of a Casimir element, called the quadratic Casimir.

Suppose p: g — End(F) is a g-representation, and extend to a representation

p: Ug — End(FE). Then for all z € Cent(Ug), the operator p(z) commutes with all
p(€),€ € g

[o(z), p(§)] = p([z,€]) = 0.

If p is irreducible (i.e. p has no non-trivial sub-representations), and if our ground
files is K = C, this implies (Schur’s lemma) that p(z) is a multiple of the identity.
That is, for any irreducible representation one obtains an algebra homomorphism

Cent(Ug) = K, z — p(z).

For semi-simple Lie algebras, it is known that this algebra homomorphism char-
acterizes p up to isomorphism. In fact, it suffices to know this map on a set of
generators for Cent(Ug). For example, if g = su(2) any irreducible representation
is determined by the value of the quadratic Casimir in this representation.
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In terms of the identification Ug = DL(G), the center corresponds to the space
DLXE(@Q) of bi-invariant differential operators. For instance, if G is a quadratic Lie
group, the Laplace operator

D=3 ZB(ei,ej)efe]l-’
ij

(where €' € g is the B-dual basis to ¢;) defined by B is an example of a bi-invariant
differential operator.

These examples motivate that one would like to understand the structure of
Cent(Ug) as an algebra. The symmetrization map sym: Sg — Ug restricts an iso-
morphism on invariants, (Sg)% — (Ug)? = Cent(Ug). Unfortunately this restricted
map is not an algebra homomorphism: For example, if p = % >, €ac® € S?g is the
quadratic polynomial, one usually has sym(p?) # sym(p)?.

Duflo’s theorem says that this can be fixed by pre-composing sym with a certain
operator on Sg. For any u € g*, let & = tg(u) € End(Sg) denote the derivation
such that ts(u)é = (u, &) for £ € g = S'g. If we identify Sg with polynomials on g*,
then i is the first order differential operator defined by . The map g* — End(Sg)
extends to an algebra homomorphism Sg* — End(Sg), p — D, whose image are
the constant coefficient differential operators on g*. But it extends even further to
an algebra homomorphism

Hom(Sg,K) — End(Sg), p— D

from the completion of the symmetric algebra,
Sg* = Hom(Sg,K) = H Skg*.
k=0

One may think of Sg* as infinite-order differential operators; their action on poly-
nomials is well-defined. )
Let J: g — R denote the function, J(§) = det(j(ade)), with j(z) = %,

and let J'/2 its square root (defined at least in a neighborhood of 0.) Taking the
Taylor expansion of J'/2 at the origin, we obtain an element of Sg*, which we
will again denote by J/2. Let Let J'/2 denote the corresponding infinite-order
differential operator, given informally by J!/ 2(%).

THEOREM 5.1 (Duflo). The composition
symoJl/2: Sg — Ug
restricts to an algebra isomorphism (Sg)? — Cent(Ug).

In the following sections, we present a proof of Duflo’s theorem for the case that
g is quadratic. This proof will relate the appearance of the factor J'/2 in Duflo’s
theorem with that in the theory of Clifford algebras.
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CHAPTER 6

Welil algebras

1. Differential algebras

A differential space is a Zy-graded vector space E = E° @Ei, together with an
odd operator d: E — E such that dod =0, i.e. im(d) C ker(d). One calls

the cohomology of the differential space (E,d). It inherits a Z.-grading from E. If
(E,d) is a graded differential space, that is if F is a Z-graded vector space and the
differential raises degree by 1, then H(E,d) is a graded vector space.

If differential algebra is a Zo-graded vector algebra A = A%@ A!, together with
an odd derivation d: E — E such that d od = 0. In this case, H(A,d) inherits
a Zo-graded algebra structure. if the Zs-grading comes from a Z-grading, and d
raises the degree by 1, then the cohomology is a graded algebra. (In a similar way,
one defines differential Lie algebras.)

ExXAMPLE 1.1. Let g be a Lie algebra, and A = Ag* the exterior algebra over
the dual space. Recall that the space of derivations is isomorphic to Hom(g*, Ag*),
since any derivation is determined by its value on generators. Let ¢(§) be the
derivation of degree —1, given by contraction. For any £ € g, let L(£) denote the
derivation of degree 0, given on generators by the co-adjoint representation:

L(&)p = —ad; p.
The commutators of Lie derivatives with contractions are [L(&1), t(€2)] = ¢([€1, &2])-
Define a derivation d of degree 1 by

U&)dp = L(&)p.-
Then [¢(€),d] = L(§) and [L(£),d] = 0 as one easily checks on generators. From
these two equations, we get [t(£),[d, d]] = 0, hence for all p € g*
U&)[d, d]p = [d,d]e(§)p = [d,d](k, &) =0.

This shows that 2dod = [d,d] = 0 i.e. d is a differential. For later reference, let us
summarize the commutation relations between the operators d, L(), ¢(£):

[d,d] =0
[1(€),d] = L(¢)
[L(£),d] = 0

[L(€), L(¢) = L([¢,<])
[L(€), (O] = e([€,¢])
[1(£), ()] =0
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The formula

U&)u(€2)d(k) = — (1, [61 €2]),

shows that d is dual to the Lie bracket; the condition d c d = 0 may be traced
back to the Jacobi identity for g. The cohomology algebra H(A(g*),d) is called
the (Chevalley-Eilenberg) Lie algebra cohomology of g, and is denoted H(g). Using
dual bases e; € g and e’ € g*, the Lie algebra differential may be written

d= %Ze(ei) o L(e;),

as always this is checked on generators. In particular, we see that the g-invariants
(Ag*)?® are all cocycles. For g semi-simple, one can show that the inclusion of
invariants induces an isomorphism in cohomology.

EXAMPLE 1.2. More generally, suppose Ly : g — End(V) is any g-representation.
Let

C. — V ® /\.g*
with grading induced from the grading on the exterior algebra. We obtain a g-

representation on the tensor product, with generators L(£) = Ly (§) @1+ 1Q L (£).
Let ¢(§) =1® ta(§), and define

d= ZLV(ei) ®e(e') +1®@dn.

Then [d, L(§)] = 0 since each of the terms in d is ad-equivariant, and also [d, ¢(zi)] =
Ly(§) ®14 1 ® LA(€). This implies

[L(f)a [d’ d]] = 2[L(§)’ d] =0,

i.e. ¢(§) commutes with [d,d] = 2d o d. By an easy induction on the degree, this
implies dod = 0, as one may also verify by direct calculation. Note that ¢(£), L(£),d
have the same commutation relations as in the special case V = K. Note also that
C° consists of the invariants V® C V, hence

H(g,V)=V".
EXAMPLE 1.3. Suppose g carries an invariant quadratic form B, used to identify

g* = g. Then ad¢ € o(g) for all £ € g. Let A\(§) = A(ad¢) € A%g be as defined in
(19). Thus, by definition

That is, L(§) = {\(£),-}. Define ¢ € A3g in terms of contractions by
U&)d = {9, = ().
The fact that the map \: g — A2g is ad-equivariant implies that ¢ is ad-invariant:
UEL(C)¢ = L({)e(€)d — u([¢, €]) ¢ = L(C)AE) — A([¢,€]) = 0.
Hence d¢ = 0. In fact, we have

as we may once again verify by checking on generators: d¢ = A(§) = {¢,&}. The
relations between ¢(€), L(€),d are now lifted to Poisson bracket relations between
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elements of Ag:

{¢7 ¢} =0,
{0, €} = AM9),
{6, A(&)} =0,

{A©), MO} = A€, <))
{A©), ¢} = [€, ¢
{&, ¢} = B( Q)

These identities quantize to the Clifford algebra. The Clifford commutator [¢(¢), ¢(¢)]
is a (possibly non-zero) scalar since [¢, [¢(#), ¢(¢)]] = 2([¢, a(¢)], a(#)] = 2[+(£), a(¢)] =

0. With some extra effort, one finds that this scalar is —g; tr(Casg), where Cas,
is the Casimir element, and the trace is taken in the adjoint representation. (We
will not explain the calculation here: at this point all that matters is that it is a
constant.) One obtains,

[é-a C]Cl = B(ga C)

As a consequence, Cl(g) is a differential algebra with

dar = [9(¢), ]
is a differential on Cl(g), satisfying the same commutator relations with L(§),¢(£)
as for the exterior algebra. (The cohomology of (Cl(g),d) is zero if tr(Casy) # 0.
This follows because in this case, one can construct a homotopy operator using the
invertibility of g(¢).)

ExaAMPLE 1.4. If E is any differential space, the symmetric and tensor algebras
S(E),T(E) are differential algebras. Here S(E) is defined using the super-sign
convention: That is, S(E) = S(E°) ® A(E'). If E is Z-graded then S(E), T(E)
inherit a Z-grading. The differential d on F is extended to S(E) respectively T(E)
as a derivation: The identity d o d follows because 2d o d = [d,d] is a derivation,
hence determined by its values on generators.

Suppose V be a given (ungraded) vector space, and define a graded vector space
Ey by E}, =V, E{, =V and E}{, =0 for i # 0. For v € V, use the same notation
for the corresponding element in E‘i,, and write v for the element in E?,. Then

dv=9,dv=0
defines a differential space, with trivial cohomology. The differential algebra
S(Ev)=S(V)®A(V)

is called the Koszul algebra. It is characterized by a universal property: For any
commutative differential algebra (A, d) and any linear map V — A! (taking values
in the odd part) there is a unique extension to a homomorphism of differential
algebras S(Ey) — A.
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One can also consider a non-commutative version of the Koszul algebra, using
the tensor algebra T'(Ey) rather than the symmetric algebra. This then has a
similar universal property for non-commutative differential algebras (A, d).

2. Cochain maps, homotopy operators

A morphism of differential spaces (F1,d;) and (E3,d2) is an even linear map
¢: E1 — E5 such that ¢ o d; = dy o ¢. Morphisms are also called cochain maps.
A morphism of differential algebras (A;,d;) and (Ajz,d2) is a cochain map which
is also an algebra homomorphism. In the Z-graded case, one requires in addition
that ¢ has degree 0.

Any morphism ¢ of differential spaces (resp. algebras) induces a morphism of
vector spaces (resp. algebras) in cohomology, H(¢): H(E1,d1) — H(E3,d2).

Two morphisms ¢, ¢': E1 — E, of differential spaces are called homotopic if
there exists an odd linear map h: E; — E; (called homotopy operator) with

hod, +dyoh=¢— ¢

(If E; are Z-graded, one usually requires that h has degree —1.)

Given a homotopy operator h, it follows in particular that ¢— ¢’ takes ker(d;) to
im(dg). That is, H(¢) — H(¢') = H(¢ — ¢') = 0. Two morphisms ¢: E; — E, and
1: Fy — F, are called homotopy inverses if ¢ o1 and ¢ o ¢ are both homotopic to
the identity maps of Es, E1, respectively. In this case, H(¢) induces an isomorphism
in cohomology, with inverse H(1). A morphism ¢ admitting a homotopy inverse is
also called a homotopy equivalence.

EXAMPLE 2.1. The space Ey has trivial cohomology, since the identity map is
homotopy equivalent to the zero map. Indeed, let s: Ey — Ey be the map of degree
—1, s(v) = v, s(v) =0. Then [d, s] = id on Ey. Consider next the Koszul algebra
S(Ev). We want to show that the inclusion of scalars ¢:: K — S(Ey) and the
augmentation map m: S(Ey) — K are homotopy inverses. Consider the derivation
extension of s € End(Ey) to S(Ey). Then [d, s] is the derivation extension of the
identity map id: Ey — Ey. Thus

[d, s] =k

Sk(Ev)

(here k should not be confused with our choice of grading on the Koszul algebra).
It follows that the operator

[d,s]+iom

on S(F) is invertible: Its inverse is equal to % on S*¥(Ey) for k > 0, and equal to
1 on S°%(V).

Note that [d, s] commutes with d (e.g. by check on generators), hence [d, s]+iom
is a morphism of differential spaces. The operator

h=so(d,s]+iom) ™"
is a homotopy equivalence between id and ¢ o 7, by the following calculation:
[h,d] = [s,d] o ([d,s] +iom)™"
=id—tomo([d,s]+iom)”
=id—tom.
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Thus, i: K — A is a homotopy equivalence: the Koszul algebra is acyclic. A
similar proof shows that the non-commutative Koszul algebra T'(Ey ) is acyclic as
well: Just replace ‘S’ with ‘T’ everywhere.

EXAMPLE 2.2 (Stokes formula). Let S be the commutative differential algebra,
with generators ¢ of degree 0 and dt of degree 1. A general element of S is a linear
combination

(28) y=> apt" +> bt'dt
k l

One can think of S as differential forms with polynomial coefficients. Let 7o, m1: S —
K be the two cochain maps, given on the element (28) by

mo(y) = ao, m(y) = Zak.
k

(Think of these as ‘evaluations at ¢ = 0,1’.) Note that mg, 7; are both cochain
maps. A homotopy between these two cochain maps is given by the “integration
operator” J: § - K,

b
J(y) = .
7 [+1

The homotopy identity [d, J] = m; — mg is just the Stokes’ theorem. Indeed,

[J,d](y) = J(dy) = J(Q_ kaxt*~'dt) = Y a = (w1 — 7o) (y)-

k>0 k>0

We conclude by listing some further properties of homotopy operators. Their
proof is straightforward.
PROPOSITION 2.3. Let h: Ehy — E5 be a homotopy between two cochain maps
¢,¢“.E1—%_E}
(1) For any differential space F, the map h® 1: F1 @ F — E3® F is a
homotopy between ¢ ® 1 and ¢’ @ 1.
(2) For any cochain map g: E2 — E3, the map goh: E; — E3 is a homotopy
between go ¢, go ¢'.
(3) For any cochain map f: Eg — E1, the map ho f: Eg — E» is a homotopy
between ¢po f, ¢’ o f.

As an application we can prove:

THEOREM 2.4. Let A be a commutative differential algebra. Then any two
homomorphisms of differential algebras ¢o,d1: S(Ev) — A are (canonically) ho-
motopic. Similarly, for every differential algebra A, any two homomorphisms of
differential algebras ¢o,¢1: T(Ev) — A are (canonically) homotopic.

PRrOOF. We present the proof for T(Ey ). (The proof for S(Ey) is parallel.)
let jo,j1: V — A! be the restrictions of ¢g, ¢1 to V C T(Ey)!. Define a linear map

J:V28SOA v (1—1t) @ jo(v) +t® 41 (v),
and extend to a homomorphism of differential algebras ¢: T(Ey) -+ S ® A. Then
(mo®1)0j =jo, (m0j)=1j,
and hence (79 0 ¢) = ¢y, (m10¢) = 1. Let h=(J® 1) o @. Then
[d,h] = ([d, J]®@1) 0 ¢ = (m —m) ® 10 ¢ =1 — o,
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as required. O

3. g-differential algebras
Suppose that g is a Lie algebra.

DEFINITION 3.1. A g-differential space is a differential space (E,d), together
with the following extra structure: A linear map L: g — End(E), where all L(¢)
are even, a linear map ¢: g — End(FE), where all ¢(§) are odd, such that

[d,d] =0
[(€),d] = L(¢)
[L(£),d] = 0

[L(£), L(O] = L([¢, <))
[L(&), «(Q)] = u([€, <))

[£(€), (O] =0
The operators ¢(§) are called contractions, the operators L(§) are called Lie deriv-

atives. A g-differential algebra is a Z,-graded algebra A, with the structure of a
g-differential space where L(),¢(£) are derivations.

Sometimes we also consider graded g-differential spaces and algebras, where
we assume in addition that E resp. A carries a grading and that d, L(£), ¢(§) have
degrees 1,0, —1.

REMARKS 3.2. The first equation [d,d] = 0 just restates that d is a differential.
[L(&), L(¢)] = L([§,(]) says that L is a representation of g, and [L(£),d] = 0 means
that d is g-equivariant, or in other words that each L(£) is a cochain map. The
condition [¢(£),d] = L(£) means that the contractions are homotopy operators for
the chain maps L(§): In particular, L(£) induces the 0 action on cohomology.

Before giving examples, let us introduce one more concept:

DEFINITION 3.3. A connection on a g-differential algebra A is a g-equivariant
linear map 0: g* — A! with the property ¢(£)0(n) = (u,€). (If A is Z-graded, we
require that 6(u) € A'.)

Sometimes it is more convenient to view the equivariant map §: g* — Al as an
invariant element 6 € A! ® g. The defining condition the reads, (1(§) ®1)§ = 1®¢&.

ExAMPLE 3.4. We have already seen that Ag* and V ® Ag* are g-differential
spaces. If V is an algebra and g acts by derivations, then V ® Ag* is a g-differential
algebra. The map 6(p) = 1 ® p defines a connection.

ExaAMPLE 3.5. If M is a manifold with an action of a Lie group G, the algebra
A = Q(M) of differential forms is a g — da, with d the de Rham differential and
(), L(&) the contractions and Lie derivatives for the generating vector fields. One
can show that if G is compact, then A admits a connection if and only if the action
is locally free, in the sense that for all £ # 0 the generating vector field &y is
non-zero everywhere.

DEFINITION 3.6. Let E be a g-differential space. One defines the basic sub-
complex Ey,s to be the subspace of all z € E with ¢(§)z = 0 and L(§)z = 0 for all

€.
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Note that this is indeed a subcomplex: if x € Ep,s then dx € Ey,s since
L(¢)dz = dL(&)z = 0 and ¢(§)dz = L(&)z — de(§)z = 0. One calls Hpps(E) :=
H(Ebas) the basic cohomology of E. A morphism of g-differential spaces E; — Es
induces a morphism of differential spaces (E1)bas — (F2)bas, hence of the basic
cohomology.

EXAMPLE 3.7. Suppose V is a g-module, with a g-representation by derivations.
An element of V ® Ag* is annihilated by all contractions if and only if it is contained
in V®A%* = V. Thus (V ® Ag*)pas = V? are the g-invariants. The differential
on this space is just zero, so Hpasic(V & Ag*)pas = V8.

4. The Weil algebra

Consider the Koszul differential dx on the tensor product S(Eg-) = Sg* ® Ag*.
A before, we associate to each yu € g* the degree 1 generators u € Alg* and
the degree 2 generators & € S'g*. The Koszul algebra also carries a natural g-
representation, given as the tensor product of the co-adjoint representations on
Sg* and Ag*. Can we turn S(Ey-) into a g-differential algebra?

To describe (&), we have to declare its action on generators z and p. In fact,
the action on g is determined since @ = du we are forced to take

UEE = o(§)dp = L(§)p — de(§)p = L(&)p-
For the degree 1 generators, it is natural to take ¢(§)p = (i, €). It is straightforward
to check the relations involving ¢+(§) on generators, so that we have turned S(Fg-)
into a Z-graded g-differential algebra, with 8(u) = u € Alg* as a connection. A
similar prescription turns the non-commutative Koszul algebra T'(Ey-) into a Z-
graded g-differential algebra.

DEFINITION 4.1. The Koszul algebra S(Eg-) with this structure of a g-differential
algebra is called the Weil algebra, and is denoted Wg. Similarly Wg := T'(Eg-) is
called the noncommutative Weil algebra.

THEOREM 4.2. The basic subcomplexr of the Weil algebra Wy is the space
(Sg*)®, where Sg* is the symmetriz algebra generated by the variables

B =1 — Ap).
Here A\(u) € A?g* is defined by 1(&)A(p) = L(€)u. The differential on the basic

subcomplez s just 0, so
Hpas(Wg) = (Sg7)°.

PROOF. Identify Wg = Sg* ® Ag* where Sg* is the symmetric algebra gener-
ated by the elements 1, and Ag* is the exterior algebra generated by the variables
u. In terms of the new generators p, i the formulas for contractions simplify to

L(Ep=(1,&), L(Eu=0.

It follows that the subalgebra annihilated by all contractions is Sg* ® A%g* = Sg*,
and hence the basic subcomplex is the invariant part, (Wg)pas = (Sg*)¢. Note that
the basic subcomplex is entirely comprised of even elements. Since the differential
d is odd, it must therefore vanish on (Sg*)®?. O

IThe algebra Wy is different from the non-commutative Weil algebra of [?], which we will
discuss below under a different name, the quantized Weil algebra Wy.
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The computation of the algebra Hbas(Wg) is less obvious. We will prove later
that the quotient map Wg — Wg induces an isomorphism in basic cohomology, so
that Hyas(Wg) = (Sg*)9 as well.

Note that we did not have to compute the differential in the new variables,
even though this is of course straightforward: 2

THEOREM 4.3. The differential d on Wg is a sum of two commuting differen-
tials d = di + do, where dy is the Koszul differential for the variables p, i, i.e.
dip=p, dipg =0,
while dy is the (Chevalley-FEilenberg) Lie algebra differential for the g-module Sg*
generated by the variables [i:

dop = A(), dofi=—3 Le)p®e'.

i
PROOF. On odd generators, du = & = g — A(n) = dip + dop, while on even
generators,
dii = d\u) = —3d D L(e)ure' == L{e)n® e; = dofi = difi + dafi.
i i

The fact that d = d; + dg, dy, ds are all differentials implies that
2[d;,ds] = [d,d] — [d1,d1] — [d2,d3] = 0.

5. The quantized Weil algebra

Suppose g carries an invariant quadratic form, used to identify g* with g, and
hence Wg = Sg ® Ag. The contractions and Lie derivatives read

L(E)C = B(&C), L(&)C = [g’dg,

L(&)¢ = [€,¢Clgs L(E)C = [§: (g
while d is the Koszul differential, dé = &, dé = 0. We would like to introduce a
Poisson bracket on Wg, in such a way that

L(f) = {67 '}’ L({:) = {Ea }

The formulas for contractions and Lie derivatives force,

{&,¢=B(£¢), {&=160s {63 =16,

The Weil differential becomes a Poisson bracket as well:

PROPOSITION 5.1. The Weil differential may be written d = {D, -} where D €
(Wg)? is defined by

D= ele;—2¢.

Here e; is a basis of g, with dual basis e;. The Poisson bracket of D with itself is
{D,D} =" e,

the quadratic element in the symmetric algebra Sg generated by the E

2Check signs around here
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PROOF. We have,

{deia £} = E - Z[eivg]gei
— dE +2)(€).

and

{Z gei, Z} = —L(g) dei
=0

since ), eie; is invariant. On the other hand, from the definition of ¢,

{8,6} = &), {#:€} = -L(§)p=0.

This shows d¢ = {D,&}. On the other hand, {D,£} = —L(¢)D = 0 = d€ since D
is invariant. Let us re-write the definition of D in terms of the variables &, ¢:

(It suffices to note that ¢(§)D = £+ AE) =€)
We have

{D,D} = €ieiB(ei,e;) +...= Y el +...

where the dots indicate terms in Sg ® A*Tg. But {D, D} lies in the subspace anni-
hilated by all the contractions, since

L(€){D, D} =2{¢,D} =0.

Hence the ... term all cancel. O

Now let us try to quantize all this! We define a quantum Weil algebra Wg as
the algebra generated by elements £ (odd) and £ (even), with commutator relations

[gaC]W = B(&a()’ [ga C]W = [&C]B’ [ga C]W = [é-a C]B

(More formally, Wg is defined as a quotient of the tensor algebra, W(g) = T'(Ey).)
Note that Ug is contained in Wg as the subalgebra generated by the £’s, and
Cl(g) is the subalgebra generated by the ¢’s. In fact, Wy is nothing but the sem:-
direct product of Ug with Cl(g). We can introduce a filtration on Wg, by assigning
filtration degree 1 to the generators ¢ and filtration degree 2 to the generators €.
Using that gr(Ug) = Sg and gr(Clg) = Ag, it is not hard to see that

gr(Wg) = Wg.

The element D =", efe; — 29(¢) € Wy is called the cubic Dirac operator.
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THEOREM 5.2. We have the following commutator relations in Wy:

D,

1
w = Casg — 6tr(Casg),

D]
€, Dlw =0,
(€, Dlw = ¢
€, Clw = [€,Clg
€, Clw = 1€, ¢q
€ ¢lw = ( 9

Here Casg = ), get € Ug is the Casimir element, and tr(Casgy) its trace in the
adjoint representation.

PROOF. The last three relations hold by definition of the algebra structure. In
particular, L(¢) = £ are the generators of the adjoint action, so [§, D]yy = L(¢)D =
0. The formula [¢,D]yy = £ follows easily from the definition of D. This then
implies [, [D, Dlw]w = 2[€, D] = 0, so that [D,D] € (Ug)® C Wg. Hence we may
compute [D, D], using that all terms in Ug ® ¢(Pi>o A’ g) must cancel:

(D, Dby = Y leie" — 2(9), 5 ~ 20()lw
= Z eigjle’, ef]ar + 4[a(¢), q(¢) mod g ® g(A2g)

1
= Casy ~8 tr(Casg).

Hence, setting

&) =& Iws L&) =& ], d=[D,]
defines the structor of a g-diiferential space on Wg, with connection 0: g* = g —

Wy given by 6(§) = ¢&.
By the same argument as for the Weil algebra W, the contraction operators
simplify if we introduce new variables

E=€+1(9)
where 7(¢) = q(A(€)) € Cl(g):
U&= 16— (Ohw =0.
Note also that [Y(&), ] [{, Clg- As a consequence, we have
Wg =Ug ® Cl(g)

(the usual product of algebras), where Ug is the enveloping algebra generated by
the variables £, and Cl(g) is the Clifford algebra generated by the variables £. As
for the usual Weil algebra, we find that its basic subcomplex is

(W@)bas = (Ug)®
with the zero differential. Thus Hyas(Wg) = (Ug)®.
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6. Chern-Weil homomorphisms

Let 0w, 05 denote the canonical connection for the Weil algebra Wg*, re-
spectively for the non-commutative Weil algebra Wg. The commutative and non-
commutative Weil algebras are characterized by the following universal property:

PRroPOSITION 6.1. The Weil algebra Wy is universal among commutative g-
differential algebras with connection. That is, for any commutative g-differential
algebra A with connection 04 there is a unique homomorphism of g-differential
algebras

(29) c:Wg— A

such that co 0w = 04. Similarly Wg is universal among non-commutative g-
differential algebras with connection.

PROOF. Suppose A is a commutative g-differential algebra with connection. By
the universal property of Koszul algebras, the map 6: g* — A! extends uniquely
to a homomorphism of differential algebras c: Wg — A. The calculation

(&)c(r) = ¢(£)do(u)
= L(£)0(p) — de(£)0(w)
= 0(L(&)p) — d{p, &)
c(L(€)p) = c(L(§)R),

together with ¢(&)e(u) = ¢(§)0(u) = (i, &) = c(¢(é)p), shows that ¢ intertwines
contractions. Since L(&) = [¢(£),d], it intertwines Lie derivatives as well. O

Since 6§ may be recovered from c, we can directly think of a connection as a
morphism of g-differential algebras, Wg — A (or Wg — A if A is commutative).

DEFINITION 6.2. A homotopy h between morphisms ¢,¢': By — Es of g-

differential spaces is called a g-homotopy if it intertwines the contraction operators:
3

[hy ()] :=hot(§) + (&) oh=0.
This then implies that h intertwines Lie derivatives as well:
[h, L(§)] = [k, [d, ¢(8)]]
= [[h,d], ()] = [d, [h, (8]
=[¢—¢,&)]=0.
THEOREM 6.3. Let A be a commutative differential algebra. Then any two

morphisms of g-differential algebras cy,c1: Wg — A are g-homotopic. Similarly
for non-commutative g-differential algebras.

PROOF. We had shown in Theorem 2.4 that any two morphisms from a Koszul
algebra into a commutative differential algebra are canonically homotopic. By
inspection (check on generators), this canonical homotopy intertwines contractions.

O

3By mild abuse of notation, we write a commutator even though the two ¢(£)’s act on different
spaces.
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It follows that if A is a commutative g-differential algebra admitting a connec-
tion, then the algebra homomorphism in basic cohomology

(S¢%) = Hpas(Wg) — Hpas(A)
is independent of the connection. It is called the Chern- Weil homomorphism.

REMARK 6.4. This terminology comes from the differential geometry of prin-
cipal G-bundles P — B with connections §: g* — Q(P). In this case, the basis
subcomplex Q(P)p,s is isomorphic to the de Rham complex Q(B). The elements in
Hyernham (B) = H(2(B)) obtained as images under the Chern-Weil homomorphism
are called the characteristic classes.

Similarly, for a non-commutative g-differential algebra .A with connection, the
characteristic homomorphism ¢: Wg — A induces an algebra homomorphism

Hbas(Wg) — Hbas(-A)-

We will see below that for A = Wy this map is an algebra isomorphism, i.e. that
Hypos(Wg) = (Sg*)® as algebras. It follows that even in the non-commutative case,
there is a canonical algebra homomorphism (Sg*)® — Hpasic(A). In particular,
taking A = Wg we obtain a canonical algebra homomorphism (Sg)? — (Ug)?! To
prove all this, we first of all have to understand the dependence of the characteristic
homomorphism on the connection 6 4.

The following Proposition shows that tensoring a g-differential algebra A with a
Weil algebra does not change the g-homotopy type, provided A admits a connection:

PROPOSITION 6.5. If A is a commutative g-differential algebra with connection,
the map ¢: Wg® A - A, w®z — c(w)z is a g-homotopy equivalence, with g-
homotopy inverse the inclusion, ¥v: A — Wg® A, z — 1 ® x. Similarly for
non-commutative g-differential algebras (replacing Wg with Wy ).

PRrROOF. Clearly, ¢ot) is the identity. The opposite composition is Yop(w®z) =
1®c(w)z. It is enough to show that the two maps Wg — Wg® A, taking w to w®1
and 1 ® c¢(w), are homotopic. But this follows because they are the characteristic
homomorphism for the two natural connections on Wg ® A, given by 8y ® 1 and
1Q04. (Il

7. Symmetrization

Suppose F is a Zs-graded vector space, A is a Z,-graded algebra, and ¢: £ — A
is a linear map preserving grading. Then ¢ admits a canonical extension to the
symmetric algebra,

sym(¢): S(E) —» A

by symmetrization: For homogeneous elements v; € E,

1 V1yeeey0
vy Vg o Z (—1)NS( oo k)(,b(l/s—l(l)) T ¢(vs*1(k))'
kES

Here Ni(v1,...,vx) is the number of pairs ¢ < j such that v;,v; are odd elements
and s~!(i) > s~!(j). For the special case A = T(E), this becomes the inclusion as
‘symmetric tensors’, and the general case may be viewed as this inclusion followed
by the algebra homomorphism T(E) — A.
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Now suppose (E,d) is a differential space, (A,d) a differential algebra, and
¢: E — Ais a morphism of differential spaces. Then sym(¢) is again a morphism
of differential spaces. This is a special case of the following Lemma:

LEMMA 7.1. Let E be a super vector space, A a super algebra, and ¢: E — A
be a homomorphism of super vector spaces. Suppose ¢ intertwines a given endo-
morphism Dg € End(E) with a derivation D4. Let Dggpy € End(S(E)) be the
derivation extension of DY%. Then sym(¢) intertwines Dg and D 4.

Proor. It suffices to prove this for A = T(E), with D4 = Dr(g) the derivation
extension of E. The action of the derivation Dr(g) on T*(E) commutes with

the action of the symmetric group S*, and in particular preserves the invariant
subspace. It therefore restricts to Dg(gy on S(E) C T(E). O

THEOREM 7.2. The quotient map ¢: Wg — Wg is a g-homotopy equivalence,
with homotopy inverse ¥: Wg — Wy given by symmetrization, S(Eg«) — T(Eg+).

ProOF. Clearly, ¢ o 9 is the identity. Let f be the cochain map,
f:Wag@Wg—Wg, wew — wp(w)
and let co,c1: Wg — Wg ® Wg be the two cochain maps, co(w) = w ® 1, ¢1(w) =
1® ¢(w). Then f oy is the identity map, while f o¢; =1 0 ¢. Since ¢, c; are the

characteristic homomorphisms for the two natural connections on Wg ® Wy, they
are homotopic. Hence so are their compositions with f. (I

8. Duflo’s theorem
Consider now the quantized Weil algebra Wg. Define a quantization map
(30) q: Wg —+ Wg

as a composition of the symmetrization map Wg — Wg with the quotient map
(characteristic homomorphism) Wg — Wg. Thus ¢ is a homomorphism of g-
differential spaces, and hence induces an homomorphism of basic subcomplexes,
(W@)bas = (S9)® = (Wg)pas = (Ug)®. Since the map Wg — Wg induces an
algebra isomorphism in basic cohomology, it follows that g induces an algebra iso-
morphism in basic cohomology. We have thus obtained an algebra isomorphism,

(31) (59)* = (Ug)*.

The map ¢ is given on generators by ¢(¢) = ¢ and ¢(€) = &, extended to the sym-
metric algebra Wg = S(E,) by symmetrization. In particular, on the symmetric
algebra Sg generated by the EI it coincides with the standard symmetrization map
for the enveloping algebra, Sg — Ug, while on the exterior algebra generated by the
&’s it coincides with the quantization map for the Clifford algebra, g: A g — Cl(g).
However, the symmetric and enveloping algebras in (?7?) are generated by the vari-
ables E, and on these variables ¢ is not just symmetrization!

We would therefore like to re-express the map g in terms of the symmetrization
map

sym = symg;, ®qc1: Sg ® Ag — Ug ® Cl(g),

where now Sg,Ug are generated by the E’s.
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Recall that the formula relating exponentials in the exterior and in the Clifford
algebra involved a smooth function
S:g—Ag

of the form S(¢) = JV/2(¢) exp(x(£)) where J'/2 is the ‘Duflo factor’ and t is a
certain meromorphic function with values in A%2g. This function gives rise to an
element
S € Sg* ® g,

where the first factor can be thought of as constant coefficient (infinite order)
differential operators. This element acts on Wg = Sg ® Ag in a natural way: The
Sg* factor acts as an infinite order differential operator, while the second factor
acts by contraction.

THEOREM 8.1. The isomorphism of g-differential spaces qg: Wg — Wy is given
in terms of the generators £,£ by

g=symoS: Sg® Ag — Ug ® Cl(g).
In particular, its restriction to Sg C Wg is the Duflo map,
Duf = symoJ/I\/2: Sg — Ug.

_ PROOF. By definition, g is the symmetrization map relative to the variables
&, €. It may be characterized as follows: For all odd variables v* € g* and all even
variables u/ € g*, and all N =0,1,2...,

o(C v+ Lwe)Y) = (Cwtest Suten)™:
i j i j
These conditions may be summarized in a single condition,

q( expW(Z vie; + Z ;ﬂ@-)) = expW(Z vie; + Z uieE;).
i j i j
We want to express g in terms of the generators e;, €; = €;—A(e;) of Wy respectively
ei, € = €; — y(e;) of Wg. Using that €; and e; commute in Wg,
expyy(Y_viei+ ) u'e;) = expai(D_vies + Y w(es)) expy (Y 1E).
i J i J J
The second factor is symexpg(>_; u’€;) by definition of the symmetrization map.

The first factor is the Clifford exponential of a quadratic element, and is related to
the corresponding exponential in the exterior algebra,

expar (Y v'es + D i(es)) = aor (1(S(w) expa (Do ve + D wAGey))).

Hence

expy(D_ Ve + D ueg) = symuy (US(n) expp (3o vies + D0 w(es)) exps (3 wey))

J

= symyy og(expW (Zuiei + ij)\(ej) + ijé\j))
i J J

= symyy og(expW (Zviei + Z,ujéj)).
i J
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