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Abstract—Graph vertex ordering is crucial for various
graph-related applications, especially in spatial and urban data
analysis where graphs represent real-world locations and their
connections. The task is to arrange vertices along a single
axis while preserving spatial relationships, but this often results
in distortions due to the complexity of spatial data. Existing
methods mostly assess ordering quality using a global metric,
which may not capture specific use case needs or localized
variations. This work proposes a new methodology to visually
evaluate and compare vertex ordering techniques on spatial
graphs. Two quantitative comparison mechanisms are proposed.
Experiments on urban data from various cities demonstrate
the methodology’s effectiveness in tuning hyperparameters and
comparing well-known vertex ordering techniques. The visual
approach reveals nuanced spatial patterns that global metrics
might miss, providing deeper insights into the behavior of
different vertex ordering methods.

I. INTRODUCTION

Graph vertex ordering is a fundamental task with signif-
icant impact on various applications, including graph visu-
alization [1], finite element nodal ordering [2], word cloud
construction [3], and CPU cache optimization [4]. In spatial
data analysis, where graphs represent real-world locations and
their connections, vertex ordering plays a critical role, par-
ticularly in visualization tasks. Many visualization techniques
rely on one-dimensional graph node embedding to portray the
spatial relationships between locations effectively, enabling
tasks like spatio-temporal visualization where changes are
shown alongside spatial distribution [5]–[7]. By carefully
arranging graph nodes in a single axis, one can create clear
and informative visualizations that reveal patterns and trends
that might be hidden in the data. This paves the way for deeper
understanding and better decision-making based on spatial
information.
Several vertex ordering methods have been proposed in the
literature (see Sec. II). Most of them are designed to exploit
the graph’s topological structure and edge weights to re-index
the graph nodes to avoid large jumps in the indices of neighbor
vertices. However, when the graph includes geometric infor-
mation, meaning the vertices have spatial coordinates (spatial
graphs), dimensionality reduction methods can be applied to
organize the nodes according to their geometric proximity.
This is the case of graphs derived from geolocated entities
such as street map graphs [8], census tract graphs [9], and
mobility graphs [10], which are widely used in urban data
analysis tasks.

The current diversity of existing methods to perform such
ordering naturally raises an important question: which vertex

ordering method does perform better in spatial graphs, mainly
in terms of properly index neighbor nodes?

While numerous metrics to assess the ordering quality
exist in the literature, they primarily focus on computing a
global quality measure to rank and compare different ordering
methods. However, analyzing the ordering quality locally is
also of great importance to assess where a provided ordering
is not reliable and how distortions are distributed across the
spatial domain. Fig. 1 illustrates such a situation, where the
nodes corresponding to the corners of a street map graph are
ordered by the Fiedler technique. Notice that the nodes within
the green window are properly ordered, keeping neighbor
corners closely indexed. In contrast, the nodes in the red
window are also closely indexed but they are spatially far
apart from each other, indicating that the ordering method is
not working properly for those nodes. This example shows
clearly the importance of performing local analysis.

This work presents a visual methodology to evaluate and
compare graph vertex ordering methods on spatial graphs.
The methodology is comprised of two local quantitative
measures and suitable visualizations that can reveal relevant
patterns of the orderings, enabling a detailed analysis of the
methods’ performances at a local level. The effectiveness of
the proposed methodology is attested in a comprehensive set
of experiments, making it possible to assess vertex ordering
methods’ quality in different scenarios and parameter settings.
In the presented results, we demonstrate how relevant findings
may be extracted from the visualizations, allowing not only a
qualitative comparison among different ordering methods, but
also providing a deeper understanding of how they behave in
specific datasets.

In summary, the main contributions of this work are:
• a methodology to visually assess vertex ordering;
• two local spatial metrics for evaluating and comparing

vertex ordering techniques;
• a series of experiments that demonstrate how the pro-

posed visual methodology enhances the assessment of
vertex ordering methods in different scenarios.

II. RELATED WORK

This section discusses existing vertex ordering methods and
metrics to assess their quality.
Vertex Ordering. Vertex ordering methods date back to the
1950s [11], initially for matrix reordering [12], [13]. In the
context of geolocated graphs, space-filling curves (SFC) have



been extensively used to traverse the spatial area containing the
graph, ordering the nodes according to a one-dimensional (1D)
curve [14]–[16]. Hierarchical clustering for vertex ordering
relies on similarity measures to arrange vertices based on their
hierarchical merging into clusters [17], [18]. Spectral methods,
particularly those using the Fiedler vector, are notable for their
effectiveness [19] and have been applied for seriation [20]
and ranking [21]. Cauchy graph embedding [22] is a variant
that preserves local topology but is computationally expensive
for large graphs. Heuristic methods iterate through adjacency
matrix rows/columns [23] or transform them into simpler
representations [24]. Graph embedding methods first embed
graphs in high-dimensional space and use PCA to project
vertices into 1D space for ordering [25], [26]. Alternatively,
dimensionality reduction methods [27] such as MDS [28], t-
SNE [29], and UMAP [30] can directly project geolocated
graphs onto a 1D space, which can then be post-processed to
infer an ordering. Recent developments include Graph Neural
Networks (GNNs) [31] and matrix completion [32].

Comparison Metrics. Several metrics have been proposed
to compare vertex ordering techniques. These metrics range
from the local and global aggregation of index jumps between
neighboring vertices [1], to statistical tests [33], and entropy
measures [23]. In [34], the total length of the line formed
by connecting consecutive vertices according to a specific
ordering, referred to as minimal path length, is examined as a
quality measure. The topographic product [35] was proposed
to measure the preservation or violation of neighborhood
relations. To investigate various measures of neighborhood
preservation for graphs embedded in two different metric
spaces, Goodhill and Sejnowski [36] introduced a measure
of discrepancy called C measure, which is essentially the
correlation coefficient between similarities in the two spaces.
Dimensionality reduction methods such as MDS, PCA, t-SNE
and UMAP have been evaluated using various distortion mea-
sures [27], but these are not specifically designed for assessing
vertex ordering. Barik et al. [37] proposed gap measures to
evaluate eleven ordering schemes. However, those measures
are global and do not consider geometric information. There
are also metrics designed to evaluate orderings provided by
graph-based clustering [38] and GNNs [31].

In the context of geolocated graphs, Guo and Gahegan [39]
emphasized the importance of preserving locality between
the original space and the ordering space. They argued that
most prior work focused solely on one direction of this
preservation so they proposed two groups of global measures:
Key Similarity (KS) and Spatial Similarity (SS), which utilize
kNN graphs with different edge weighting schemes. In this
paper, we also introduce metrics aimed at assessing locality
in both directions, forward and inverse. KS and Forward both
focus on preserving spatial proximity but differ in their metrics
and granularity, while SS and Inverse aim to avoid artificial
proximity but differ in how they measure and normalize spatial
relationships, making a direct comparison unfeasible.

Besides, our metrics are specifically designed to evaluate

neighborhood preservation visually, focusing on the com-
pactness of covered regions in both spaces as criteria. The
proposed metrics are defined individually for each vertex
rather than globally for the entire graph. We also propose a
visual evaluation methodology that builds upon the geomet-
ric realization of spatial graphs, enabling visual qualitative
analysis that reveals where the ordering technique performs
better or worse. This methodology also supports quantitative
evaluation, allowing analyses similar to those performed with
other existing metrics.

III. COMPARING VERTEX ORDERING ALGORITHMS

We propose a visual methodology that is aimed at visually
assessing vertex ordering methods on undirected connected
spatial (UCS) graphs. Let G = ((V, s), E) be an UCS graph
where V is the set of vertices, s : V → S assigns spatial
coordinates to each vertex, and E is the set of edges. Here, S
represents the space of geographic coordinates of the vertices
in V (in our context S is R2).

Let V = {v1, v2, . . . , vn} be the set of n vertices of G.
An ordering of V is a bijection ϕ(vk) → R such that the
index of each vertex is defined by the order imposed by ϕ.
In other words, if ϕ(vi1) < ϕ(vi2) < · · · < ϕ(vin), where
ik ∈ {1, 2, . . . , n}, then index 1 is assigned to ϕ(vi1), index
2 to ϕ(vi2), and so on.

Given an UCS graph, an ordering technique is expected
to assign nearly consecutive indices to vertices spatially
close to each other and vice-versa. This motivates the pro-
posed forward and inverse assessment approaches described
in Section III-A and Section III-B, respectively. Section III-C
presents the visualization mechanisms we propose to enable
an intuitive visual analysis of vertex ordering techniques.

A. Forward approach

Let I = {i1, i2, . . . , in} be the ordered indices of the
nodes in G given by a vertex ordering technique. In ad-
dition, let Imik be a window of consecutive indices in I ,
centered at ik, with m being the window size (we assume
m is an odd number). The quality of the ordering for nodes
within Imik can be assessed from the bounding box Bik

of the vertices in the spatial domain. More specifically, let
Imik = {ik−⌊m/2⌋, . . . , ik, . . . , ik+⌊m/2⌋} be the ordered in-
dices within a window centered at ik and Bik be the bounding
box of the vertices Vik = {vik−⌊m/2⌋ , . . . , vik , . . . , vik+⌊m/2⌋}
in the spatial domain (see Fig. 1). For a small value of m, a
good vertex ordering should give rise to a locally compact
region in the spatial domain, thus making Bik small. Vik

compactness can be measured from the Bik diagonal length.
When the vertices coordinates are given as latitude-longitude
pairs, the Haversine distance between the two opposite cor-
ners of Bik can be applied to estimate the diagonal length.
However, the spatial resolution of a graph can vary across
different regions. To address this issue, the diagonal length of
each Bik is normalized by that of its “optimal” bounding box
B̃ik consisting of the m nearest neighbors of ik within the
spatial domain. To compute measures over the entire graph,



Fig. 1: Forward approach applied in the street map of São Paulo:
nodes (street corners) ordered by the Fiedler ordering method are lo-
cally evaluated through sliding windows (bottom). The green window
corresponds to the indices of a set of vertices, which are depicted on
the map, resulting in a small bounding box with a 3.34km diagonal
length. The red window gives rise to a much larger (and undesired)
bounding box with 28.93km diagonal length.

a sliding window approach is adopted, where all possible
windows Imik , k = ⌈m/2⌉, . . . , n− ⌊m/2⌋ are considered, for
a fixed odd value m, resulting in a set D with n − m + 1
diagonal values. Smaller values in D indicate better ordering.

B. Inverse approach

Let Ri(r) = {v ∈ V | dG(v, vi) < r}, where dG(v, vi) is
the length of a shortest path (in terms of graph edges and
weights) from vertex v to a given vertex vi. In other words,
Ri(r) is the set of vertices in the neighborhood of vi whose
graph distance to vi is smaller than r. Let IRi(r) ⊂ I be
the set of indices of the nodes in Ri(r) (ordered by a vertex
ordering method). The vertex ordering local quality in the
spatial neighborhood of vi is measured by the diameter of
IRi(r) normalized by the number of nodes in Ri(r), that is:

dinvi =
max(IRi(r))−min(IRi(r))

|Ri(r)|
.

where IRi(r) is the window comprising the indices of all vertex
in Ri(r), max(IRi(r)) and min(IRi(r)) the left and right most
indices in the window and |Ri(r)| the number of nodes in
Ri(r). Fig. 2 shows an example of a vertex in the city of São
Paulo street map (black dot) and its neighbor vertices with
r = 0.5km. The diameter of IRi(r) is 726 and the normalized
measure is dinvi = 14.26. A set of diameters, denoted by Dinv ,
may be computed by iterating through all graph nodes vi and
computing the corresponding values dinvi for a fixed r value.

C. Visualizations

The sets of local metrics D and Dinv provide rich in-
formation on the quality of vertex ordering methods. We
propose four different visualizations designed to assess an
ordering method. The first two provide an analysis of the
distribution of the local quality through histograms or box-
plots. Fig. 3 illustrates the local measures D distribution for
three different techniques. In this example, the t-SNE ordering
quality distribution is better than a random ordering and the
original OpenStreetMap (OSM, [40]) ordering on the street
map of São Paulo. Specifically, the local measures of t-SNE-
based ordering concentrate in a small range of low values,

Fig. 2: Inverse approach: green nodes are the 0.5km neighbors of
the black node. The quality of the ordering is assessed from the
diameter of the range of the corresponding index set, normalized by
the number of nodes in the range (bottom).
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Fig. 3: Histograms built using the forward approach to compare t-
SNE ordering to the original OSM and a random ordering, on the
street map of São Paulo. The horizontal axis represents diagonal
lengths in kilometers and the vertical axis their frequencies.

meaning that the bounding boxes of the sliding windows tend
to be small. When a comparison among numerous orderings
is required, boxplots may be more suitable, as shown in Fig. 5
for both D and Dinv . However, these visualizations provide
a global quality view.

To assess spatial patterns, we propose two color-coding
schemes applied to the vertices of the spatial graph. The
first coloring scheme codes the nodes according to their
ordered indices, as depicted in Fig. 4, where vertex orderings
generated by t-SNE using different perplexity hyperparameters
are visually analyzed. The second coloring scheme depicts the
local measures on their corresponding vertices, as illustrated
in Fig. 8 for both the forward and the inverse approach. In
this example, generated on the street map of Maceió, the
forward and inverse approaches reveal where discontinuities
in the ordering provided by t-SNE mostly occur.

The visualizations, developed in Python using the matplotlib
and folium libraries within Jupyter Notebook, are available
for use and integration on GitHub: https://github.com/giva-lab/
vertex ordering. These tools enhance graph-based analytics by
uncovering complex patterns and facilitating the identification
of clusters, hierarchies, and trends, thus supporting data sci-
entists, analysts, and visualization experts in deriving faster
insights and making informed decisions.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

We conducted experiments to demonstrate the assessment
capabilities of the proposed methodology on three vertex
ordering techniques: Fiedler, t-SNE, and UMAP, which are
briefly described in Section IV-A. Our evaluation framework

https://github.com/giva-lab/vertex_ordering
https://github.com/giva-lab/vertex_ordering


incorporates both forward and inverse approaches, comple-
mented by visual qualitative analysis. To ensure a diverse
and representative experimental setup, we selected street map
graphs from various cities with distinct characteristics. Specif-
ically, our experiments utilize street graphs from the cities
of São Paulo, Maceió, Barcelona, Busan, Mumbai, Nairobi,
and Bogotá, which were obtained from OpenStreetMap (OSM,
[40]). We employed a window size of n/100 for the forward
approach and a radius of 0.5km for the inverse approach.
For benchmarking, we also compared the results of the vertex
ordering techniques against two baselines: the original OSM
vertex order and a random vertex order.

A. Vertex Ordering Algorithms

In the following we shortly describe the three ordering
techniques assessed in our experiments.
Fiedler. The Fiedler vector arranges graph nodes in a 1D space
using the Laplacian matrix spectrum. The Laplacian matrix L
of a connected graph G is defined as Lij = −1/lij if i and
j are adjacent, Lij = 0 otherwise, and Lii =

∑
j ̸=i |Lij |,

where lij is the length of the edge connecting vertices i and
j. The Fiedler vector is the eigenvector of L associated with
the smallest non-zero eigenvalue (see [41] for details). Each
entry in the Fiedler vector is associated with a vertex, and its
value gives the 1D embedding of the corresponding vertex.
t-SNE. Dimensionality reduction technique maps nearby
points closer together in a lower-dimensional space, with
performance heavily influenced by the number of neighbors, or
perplexity [29]. It computes pairwise similarities in the original
space using a Gaussian kernel, then projects points in the
lower-dimensional space by minimizing the Kullback-Leibler
(KL) divergence between the computed similarity distribution
and a Student’s t-distribution in the lower-dimensional space.
For vertex ordering, the lower-dimensional space is 1D.
UMAP. UMAP is a dimensionality reduction technique aimed
at preserving both local and global structures [30]. The algo-
rithm constructs a weighted k-nearest neighbor graph for each
input point xi, resulting in a local graph. The edge weight
function is determined by the distance between the node
xi and its neighbors, with normalization factors influencing
the weights. The local graphs are combined into a unified
topological representation using the probabilistic t-conorm.
UMAP constructs a low-dimensional layout of the entire graph
using a force-directed graph layout mechanism.

B. Hyperparameters tuning

We first evaluate our methodology for assessing the impact
of the perplexity hyperparameter of t-SNE on vertex ordering
using the São Paulo street graph. Seven perplexity values were
examined: 10, 25, 50, 75, 100, 150, and 200. Fig. 4 visually
demonstrates the qualitative results of the resulting ordering,
where city nodes (corners) are color-coded according to their
indices. The visualization reveals distinct patterns for different
perplexity values: lower perplexity values lead to scattered
and disconnected regions with similar colors (distant vertices
with close indices), whereas higher perplexity values achieve

(a) Perplexity 10 (b) Perplexity 75 (c) Perplexity 200

(d) Color scale of the index ordering

Fig. 4: Visualization of vertex orderings on the street graph of São
Paulo in three distinct vertex orderings generated by t-SNE using
different perplexity values: each node of the graph is color-coded
according to its index (top), using a colormap (bottom).
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Fig. 5: Boxplots of the forward approach (Figure 5a) and inverse
approach (Figure 5b) illustrating the performance of t-SNE across
varying perplexity values on the São Paulo’s street graph. The x-axis
represents different perplexity values, while the y-axis denotes the
diagonal length values for the forward approach and the normalized
diameters for the inverse approach.

smoother and more continuous index distributions. Boxplots
in Fig. 5a illustrate that t-SNE’s performance improves with
increasing perplexity (indicated by shorter bounding box diag-
onals), following an exponential trend. This finding is further
supported by Figure 5b where the boxplots of the inverse
approach show reduced dispersion with higher perplexity. The
stability observed in the boxplots for both bounding box
diagonals (forward measure) and interval diameter (inverse
measure) beyond a perplexity value of 100 suggests an optimal
perplexity range. This experiment demonstrated the value of
the proposed approach for fine-tuning hyperparameters in
vertex ordering methods, as the perplexity for t-SNE.

C. Vertex ordering techniques comparison

Figures 6 and 7 show, respectively, the qualitative and
quantitative comparison of hyperparameters-tuned Fiedler, t-
SNE, UMAP, and the two baseline vertex orderings, using
Maceió street graph as a comparison basis. The color-coded
vertex ordering visualization (Fig. 6) reveals that each ordering
technique gives rise to a particular pattern. The Fiedler order-
ing produces smoother transitions from southeast to northwest.
However, vertices on the far east and far west of the map
tend to have similar colors, indicating that close indices
are assigned to spatially distant vertices. In contrast, t-SNE
displays a more clustered arrangement with clear color (and
index) discontinuities (see the yellow and blue regions). The



(a) Fiedler (b) t-SNE (c) UMAP

(d) Color scale of the index ordering

Fig. 6: Visual analysis of vertex orderings computed with different
techniques on the street map of Maceió.

fiedler t-sne umap original random
Index ordering

0

5

10

15

20

25

30

35

D

(a) Forward approach

fiedler t-sne umap
Index ordering

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
in

v

(b) Inverse approach
Fig. 7: Box plots of the forward approach (Figure 7a) and inverse
approach (Figure 7b) applied to different vertex ordering techniques
on the city of Maceió. The vertical axis represent the diagonal lengths
for the forward approach, and the normalized diameters for the
inverse approach. We omitted the original and random ordering for
the inverse approach due to their significantly inferior performance,
allowing for a clearer visualization of the best techniques.

dark blue regions indicate that close indices are assigned to
vertices distant from each other. Similarly to Fiedler, UMAP
shows smooth transitions in the densest part of the map but
introduces several discontinuities in the less dense areas. The
boxplots of the forward metric, depicted in Fig. 7a, show that
t-SNE outperformed the other techniques globally, a trend
confirmed by the inverse measure (see the median value in
Fig. 7b). This evaluation illustrates the effectiveness of our
methodology in distinguishing the performance of different
vertex ordering techniques and identifying their characteristics.
This experiment highlights the importance of performing local
and global analysis. Analyzing only the global information
provided by the boxplots could misleadingly lead to the
conclusion that t-SNE performs well across the entire graph.
However, the color-coded visualization reveals that disconti-
nuities are locally present.

Figure 8 illustrates the performance of t-SNE ordering for
both measures (forward and inverse approach) on each graph
node, showcasing how t-SNE maintains local orders regarding
the forward and inverse approaches. Figure 8a highlights
regions where neighbors are far apart on the map, indicating
areas of poor local ordering according to the forward measure.
Conversely, Figure 8b highlights the discontinuities observed
in Figure 6b, reflecting areas of poor local ordering according
to the inverse measure. Interestingly, although Figure 6b
suggests a strong discontinuity in the middle of the frontier
between blue and yellow regions, the inverse measure indicates
a weaker discontinuity. Upon further investigation, we found a
gap of vertices in that region due to a green area, which could

(a) t-SNE according to
forward approach

(b) t-SNE according to
inverse approach

Fig. 8: Visual analysis of forward and inverse approach for each node
according to vertex orderings computed by t-SNE (Figure 6b) on the
street map of Maceió. Colors close to beige indicate low values, while
colors close to red represent high values

have led to a misinterpretation of discontinuity if only the
index colormap was considered. Additionally, we can observe
that regions performing well on the forward approach do not
necessarily perform well on the inverse approach, and vice-
versa. Our evaluation method reveals vertex ordering reliability
from multiple perspectives, providing complementary insights
in terms of the ordering method’s local behavior.

We have extended the results obtained for Maceió to other
cities (Barcelona, Busan, Mumbai, Nairobi, and Bogotá).
Figure 9 shows that t-SNE outperformed other techniques for
both forward and inverse measures in three out of five cities,
although exhibiting high variability in terms of outliers in the
inverse measure (Fig. 9c). On the other hand, Fiedler ordering
presents much less variability in the inverse measure, although
it does not achieve a global performance comparable to t-SNE
for most of the cities. UMAP’s performance was consistent
across cities based on the inverse measure, presenting high
variability in terms of the forward measure. Fig. 10 displays
the histograms of the three evaluated methods in comparison
to the random and OSM vertex orders, clearly demonstrating
the superior performance of t-SNE. These histograms were
constructed by aggregating data from all cities.

The evaluations above pinpoint the importance of the pro-
posed measures in analyzing the behavior and performance
of ordering methods. Moreover, they demonstrate that t-
SNE outperformed other techniques, although it exhibits high
variability in the inverse approach metric. In contrast, the
Fiedler ordering showed discrepancies between geolocation
and indexing, assigning close indices for spatially distant
vertices. However, in the inverse approach, Fiedler showed
fewer outliers and thus lower variability compared to t-SNE.
UMAP was the least efficient, presenting smooth boxes like
Fiedler and high variability in the inverse measure, similar
to t-SNE. All these comparisons were possible due to the
local visual analysis enabled by the proposed methodology,
underscoring their value in evaluating the performance of
vertex ordering techniques.

V. CONCLUSION

We introduced a visual methodology and two local measures
designed to assess and compare vertex ordering techniques
for spatial graphs. Our experiments demonstrated that the
proposed methodology effectively uncovers regions where
ordering methods present poor performance, enabling local
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Fig. 9: Analysis of the performance of different techniques across multiple cities. The x-axes represent the techniques, the y-axes (in log
scale) the corresponding measures normalized per city.
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Fig. 10: Forward approach: comparison of the three methods against
baselines (original OSM and random vertex order) for all cities
(Barcelona, Busan, Mumbai, Nairobi and Bogotá) combined into
a single histogram. The horizontal axis represents the normalized
diagonal lengths, while the vertical axis indicates their frequencies.

and global analysis. Additionally, the methodology supports
hyperparameter tuning, valuable for many applications.
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[6] J. Buchmüller, D. Jäckle, E. Cakmak, U. Brandes, and D. A. Keim,
“Motionrugs: Visualizing collective trends in space and time,” IEEE
TVCG, vol. 25, no. 1, pp. 76–86, 2018.

[7] L. Zhou, C. R. Johnson, and D. Weiskopf, “Data-driven space-filling
curves,” IEEE TVCG, vol. 27, no. 2, pp. 1591–1600, 2020.
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