LisTA DE EDO — SISTEMAS LINEARES DE EQUACOES
Prof. Miguel Frasson

Exercicio 1. Reescrever as equagoes diferenciais (ou sistemas) como um sistema de equagoes
diferenciais de primeira ordem na forma matricial, e resolver os sistemas que resultarem ser
lineares de coeficientes constantes.
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Exercicio 2. Encontrar a solugao geral para os seguintes sistemas de equacgoes diferenciais
homogéneos.
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Exercicio 3. Resolva os seguntes sistemas usando transformada de Laplace.

(& =y (i =y

a) Sy =ux C) Cy=20+y+12
(z(0) =1, y(0)=0 (2(0) =0, (0)=0, y(0)=0
(& = —3z + 4y + cost (& =5z — 6y +0(t — 1)

b) Sy =-2w+3y+t d) Ry=ux

z(0)=0, y(0)=1

\

Exercicio 4. Encontre a solugao geral dos sistemas abaixo, ou quando uma condigao inicial
for dada, encontre a tnica solugao. Para encontrar a solugao particular, use ou método dos
coeficientes a determinar ou a féormula da variagao dos parametros.
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Dica: A inversa de uma matriz 2 x 2 & dada por (25)7" = —L (4 ).
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Exercicio 5. (Extra) E possivel resolver sistemas de equagoes diferenciais pelo Método por
elimina¢ao, um método simples, da seguinte forma: I) Da primeira equagdo, isole y (em
fungao de &, x e do termo nao homogéneo) II) entdo derive a primeira equagdo, e nesta
expressao, substitua y pelo que encontramos na 2% equagao e III) persistindo uma ocorréncia
de y nesta ultima expressao, substitua o valor encontrado no passo I). Desta forma, obtenha
uma equacao diferencial de 2* ordem para x e uma expressao (a do passo I) de y em funcao
de = e x.

Para cada uma das equagoes abaixo, aplique e resolva os sistemas utilizando o método
por eliminagao.
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