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Abstract

We study the caustic, evolute, Minkowski symmetry set and parallels of a
smooth and regular curve in the Minkowski plane.

1 Introduction

We consider in this paper the geometry of a smooth and regular curve γ in the
Minkowski plane R2

1 which is captured by its contact with pseudo-circles. This contact
is studied using the family of distance squared functions on γ.

The points on γ where its tangent direction is lightlike are labelled lightlike points.
The evolute of γ (without its inflection points) is well defined away from the lightlike
points (§3). However, its caustic C(γ) is defined everywhere including at the lightlike
points (see §4 and [14] for the caustics of surfaces in the Minkowski 3-space). We deter-
mine the generic behaviour of the caustic C(γ) at the lightlike points of γ (Proposition
4.1), and show that the caustic of an oval lies in the complement of the interior of γ
(Theorem 4.3).

The caustic C(γ) is the local stratum of the bifurcation set of the family of distance
squared functions on γ. We call the multi-local stratum of the bifurcation set of this
family the Minkowski symmetry set (MSS) of γ. We consider in §5 the geometry of
the MSS and deal in some details with the MSS of an ellipse.

The family of distance squared functions also gives information about the parallels
of γ. These are defined away from the lightlike points of γ. We prove in Theorem 6.2
that the parallels undergo swallowtail transitions at a vertex of γ, which when con-
sidered together in R2

1, give a distinct configuration to that of the parallels of a curve
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Figure 1: Parallels of a plane curve at a swallowtail transition: left in the Euclidean
plane and right in the Minkowski plane.

in the Euclidean plane; see Figure 1. We also prove in Theorem 6.2 that the parallels
of curves in the Euclidean plane are as Figure 1, left. (The parallels of curves in the
Euclidean plane are always drawn as in Figure 1, left, but to our knowledge, there is
no proof that it is the only possible generic configuration for these curves.)

It is worth observing that the concepts and the results in this paper are valid for
curves in any Lorentzian plane. In fact, the results can be interpreted in the affine
setting (see Remark 5.4).

2 Preliminaries

The Minkowski plane R2
1 is the plane R2 endowed with the metric induced by the

pseudo-scalar product 〈u,v〉 = −u0v0 + u1v1, where u = (u0, u1) and v = (v0, v1) (see
for example [10], p55). We say that a non-zero vector u ∈ R2

1 is spacelike if 〈u,u〉 > 0,
lightlike if 〈u,u〉 = 0 and timelike if 〈u,u〉 < 0. We denote by u⊥ the vector given by
u⊥ = (u1, u0). Thus, u⊥ is “orthogonal” to u (i.e., 〈u,u⊥〉 = 0). We have u⊥ = ±u
if and only if u is lightlike, and u⊥ is timelike (resp. spacelike) if u is spacelike (resp.
timelike).

The norm of a vector u ∈ R2
1 is defined by ‖u‖ =

√
|〈u,u〉|. We have the following

pseudo-circles in R2
1 with centre p ∈ R2

1 and radius r > 0:

H1(p,−r) = {q ∈ R2
1 | 〈q − p, q − p〉 = −r2},

S1
1(p, r) = {q ∈ R2

1 | 〈q − p, q − p〉 = r2},
LC∗(p) = {q ∈ R2

1 | 〈q − p, q − p〉 = 0}.

We denote by H1(−r), S1
1(r) and LC∗ the pseudo-circles centred at the origin in R2

1.
We consider embeddings γ : J → R2

1, where J = I is an open interval of R or
J = S1. The set Emb(J,R2

1) of such embeddings is endowed with the Whitney C∞-
topology. We say that a property is generic if it is satisfied by curves in a residual
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Figure 2: Examples of closed curves with lightlike points (dotes and thick lines). The
ellipse on the left has exactly four lightlike points and the curve on the right has two
line segments of lightlike points and other isolated lightlike points.

subset of Emb(J,R2
1). A curve that satisfies a generic property is called a generic

curve.
Let γ ∈ Emb(I,R2

1). We say that γ is spacelike (resp. timelike) if γ′(t) is a spacelike
(resp. timelike) vector for all t ∈ I. A point γ(t) is called a lightlike point if γ′(t) is a
lightlike vector.

Proposition 2.1 The set of lightlike points of a curve γ ∈ Emb(S1,R2
1) is the union

of at least four disjoint non-empty and closed subsets of γ (see Figure 2).

Proof The lightlike points are those where the tangent line to γ is parallel to (±1, 1).
We change the metric in R2 and consider γ as a curve γ̃ in the Euclidean plane R2.
Since γ̃ is closed, the image of its Gauss map N : γ̃ → S1 is the whole unit circle
S1. The pre-images of the points (±1,±1) by N have tangent lines parallel to (±1, 1),
i.e., they are lightlike points on γ. It follows by the fact that N is a continuous map
that the set of lightlike points of γ is the union of at least four disjoint non-empty and
closed subsets of γ. 2

We apply tools from singularity theory to obtain geometric information about
curves in R2

1. Given a smooth (i.e., C∞) function f : J → R (J = I or S1), we say
that f is singular at t0 ∈ J if f ′(t0) = 0. We consider the R-singularities of f at
t0 ∈ J , where R is the group of local changes of parameters in the source that fix t0.
The models for the local R-singularities of functions are ±(t− t0)k+1, k ≥ 1, and these
are labelled Ak-singularities. The necessary and sufficient conditions for a function f
to have an Ak-singularity at t0 are

f ′(t0) = f ′′(t0) = . . . = f (k)(t0) = 0, f (k+1)(t0) 6= 0.

The only stable singularity (ignoring the constant terms) is ±(t − t0)
2, i.e., the

A1-singularity. (See [5] for more on singularities of functions and their applications to
the geometry of curves in the Euclidean plane.)
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The contact of a curve γ ∈ Emb(J,R2
1) (J = I or S1) with lines is captured by the

singularities of the family of height functions on γ. Let v be a non-zero vector in R2
1

and consider the parallel lines

Lv
c = {p ∈ R2

1 | 〈p,v〉 = c},

with c ∈ R, which are (pseudo)-orthogonal to v. The contact of γ with the lines Lv
c

is measured by the singularities of the height function hv : J → R, given by

hv(t) = 〈γ(t),v〉.

An important observation is that the function hv is defined for all non-zero vectors
v including lightlike vectors, and at all points on γ including its lightlike points.

We say that the curve γ has an Ak-contact (resp. A≥k-contact) with Lv
c at γ(t0) ∈

Lv
c if hv has an Ak (resp. Al, l ≥ k)-singularity at t0. Thus, the contact of the curve

γ with Lv
c at γ(t0) ∈ Lv

c is of type
A1 if and only if v = λγ′⊥(t0) (λ ∈ R \ {0}) and 〈γ′′(t0), γ′⊥(t0)〉 6= 0;
A2 if and only if v = λγ′⊥(t0), 〈γ′′(t0), γ′⊥(t0)〉 = 0 and 〈γ′′′(t0), γ′⊥(t0)〉 6= 0;
A≥2 if v = λγ′⊥(t0) and 〈γ′′(t0), γ′⊥(t0)〉 = 0.

It follows that γ has an A≥1-contact with Lv
c at γ(t0) ∈ Lv

c if and only if Lv
c is the

tangent line to γ at γ(t0).
We call a point γ(t0) where γ has an A2-contact with its tangent line an (ordinary)

inflection point if γ(t0) is not a lightlike point and a lightlike inflection point if γ(t0)
is a lightlike point. At such points the curve γ lies on both sides of its tangent line.

3 Spacelike and timelike curves

We consider here some properties of curves that have no lightlike points (see also [11]
for related results). Let γ : I → R2

1 be a spacelike or a timelike curve and suppose
that it is parametrised by arc length (i.e., ‖γ′(s)‖ = 1 for all s ∈ I). We denote by t
the unit tangent vector to γ and let n be the unit normal vector to γ such that {t,n}
is oriented anti-clockwise. The vector n is timelike (resp. spacelike) if γ is spacelike
(resp. timelike). We have

t′(s) = κ(s)n(s)

where κ(s) is defined to be the curvature of γ at s. (It follows from the above setting
that n′(s) = κ(s)t(s).) Thus,

κ(s) =
〈t′(s),n(s)〉
〈n(s),n(s)〉

= (−1)w〈t′(s),n(s)〉
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where w = 1 if γ is spacelike and w = 2 if it is timelike. When γ is not parametrised
by arc length, and if t denotes the non-arc length parameter, then

t(t) =
γ′(t)

‖γ′(t)‖
,

n(t) = (−1)w+1 γ
′(t)⊥

‖γ′(t)‖
.

It follows by differentiation and using the fact that d/ds = (1/‖γ′(t)‖)d/dt that

κ(t) = (−1)w+1 〈γ′′(t), γ′(t)⊥〉
|〈γ′(t), γ′(t)〉| 32

.

Remark 3.1 (1) The curvature of a curve γ in the Minkowski plane is not in general
well defined at the lightlike points of γ. For instance, if γ(t0) is an isolated lightlike
point and γ′′(t0) is not parallel to γ′(t0), then 〈γ′′(t0), γ′(t0)⊥〉 6= 0 and the curvature
at points on the spacelike and timelike components of γ tends to infinity as t tends to
t0.

(2) Inflection points of a spacelike or a timelike curve are the points where κ(t) = 0.

A point γ(t0) is called a vertex of γ if κ′(t0) = 0 and an ordinary vertex if κ′(t0) = 0
and κ′′(t0) 6= 0. (See [13] for a 4-vertex thereom for curves in R2

1.)
The evolute of γ, with its inflection points removed, is defined as the curve in R2

1

given by

e(t) = γ(t)− 1

κ(t)
n(t).

We have the following elementary result.

Proposition 3.2 (i) The evolute of a spacelike (resp. timelike) curve is a timelike
(resp. spacelike) curve.

(ii) The evolute of γ is singular at precisely the vertices of γ.

Proof We suppose that γ is parametrised by arc length. Then,

e′(t) =
κ′(t)

κ2(t)
n(t)

and the proof follows from the fact that the vectors t and n are of different types (one
is spacelike while the other is timelike, or vice versa). 2

Proposition 3.3 Let γ : I → R2
1 be a connected spacelike or timelike curve. Then γ

does not intersect its evolute e.
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Proof Suppose that γ intersects its evolute e. Then there exists t1, t2 ∈ I with
t1 6= t2 (and assume for simplicity that t1 < t2), such that

γ(t1)−
1

κ(t1)
n(t1) = γ(t2).

It follows that

γ(t1)− γ(t2) =
1

κ(t1)
n(t1).

But there exists t3 ∈ (t1, t2) such that γ(t1) − γ(t2) is parallel to t(t3). This is a
contradiction as t(t3) and n(t1) are of different types. Therefore, γ cannot intersect
its evolute. 2

4 Caustics of curves in R2
1

We consider a curve γ ∈ Emb(S1,R2
1). To study the local properties of γ at γ(t0), we

consider the germ γ : R, t0 → R2
1 of γ at t0.

The family of distance squared functions f : S1 × R2
1 → R on γ is given by

f(t,v) = 〈γ(t)− v, γ(t)− v〉.

We denote by fv : S1 → R the function given by fv(t) = f(t,v). TheR-singularity
type of fv at t0 measures the contact of γ at γ(t0) with the pseudo-circle of centre
v and radius ||γ(t0)− v||. The type of the pseudo-circle is determined by the sign of
〈γ(t0)− v, γ(t0)− v〉.

The catastrophe set of f is defined by

Σ(f) = {(t,v) ∈ S1 × R2
1 | f ′v(t) = 0}.

We also define

Bif(f) = {v ∈ R2
1 | ∃(t,v) ∈ Σ(f) such that f ′′v(t) = 0}.

The set Bif(f) is the local stratum of the bifurcation set of the family f , i.e., it is
the set of points v ∈ R2

1 for which there exists t ∈ S1 such that fv has a degenerate
(non-stable) singularity at t, i.e., a singularity of type A≥2.

The function g(t,v) = f ′v(t) = 2〈γ(t) − v, γ′(t)〉 is not singular at any point in
Σ(f). Indeed, if we write γ(t) = (x(t), y(t)), then the gradient of g is a multiple of

(〈γ(t)− v, γ′′(t)〉+ 〈γ′(t), γ′(t)〉, x′(t),−y′(t))

and is never a zero vector as γ is a regular curve. Therefore, Σ(f) is a smooth
and regular 2-dimensional submanifold of S1 × R2

1 and the family f is a generating
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family (see [2] for terminology). We write v = (v0, v1) and denote by T ∗R2
1 the

cotangent bundle of R2
1 endowed with the canonical symplectic structure (which is

metric independent). We denote by π : T ∗R2
1 → R2

1 the canonical projection. Then,
the map L(f) : Σ(f)→ T ∗R2

1, given by

L(f)(t,v) = (v, (
∂f

∂v0

(t,v),
∂f

∂v1

(t,v))),

is a Lagrangian immersion, so the map π ◦ L(f) : Σ(f)→ R2
1 given by (t,v)→ v is a

Lagrangian map.
The caustic C(γ) of γ is the set of critical values of the Lagrangian map π ◦ L(f),

and is precisely Bif(f) (see [2] for details). It follows that for a generic curve γ,
the caustic C(γ) is locally either a regular curve or has a cusp singularity. The local
models of the caustic at v corresponding to t ∈ S1 depend on the R-singularity type
of fv at t. For a generic γ, fv has local singularities of type A1, A2 or A3. The caustic
is the empty set at an A1-singularity of fv. It is a regular curve at an A2-singularity
of fv and has a cusp singularity at an A3-singularity of fv.

We can obtain a parametrisation of the caustic as follows. We have fv(t) =
〈γ(t)− v, γ(t)− v〉, so

1

2
f ′v(t) = 〈γ(t)− v, γ′(t)〉.

It follows that fv is singular at t if and only if 〈γ(t)−v, γ′(t)〉 = 0, equivalently, if
and only if γ(t)−v = µγ′(t)⊥ for some scalar µ. (This condition includes the lightlike
points of γ where γ′(t)⊥ is parallel to γ′(t).)

Differentiating again we get

1
2
f ′′v(t) = 〈γ(t)− v, γ′′(t)〉+ 〈γ′(t), γ′(t)〉

= µ〈γ′(t)⊥, γ′′(t)〉+ 〈γ′(t), γ′(t)〉.

The singularity of fv at γ(t) is degenerate if and only if f ′v(t) = f ′′v(t) = 0,
equivalently, if and only if γ(t)− v = µγ′(t)⊥ and

µ〈γ′(t)⊥, γ′′(t)〉+ 〈γ′(t), γ′(t)〉 = 0. (1)

It follows that the caustic of γ is given by

C(γ) = {γ(t)− µγ′(t)⊥ | t ∈ S1 and µ is a solution of equation (1)}.

Away from the lightlike points of γ, we can write γ(t) − v = λn(t), where λ =
µ||γ′(t)⊥|| and n(t) = (−1)w+1γ′(t)⊥/||γ′(t)⊥|| is the unit normal vector (w = 1 if γ(t)
is spacelike and w = 2 if it is timelike). Then a singularity of fv is degenerate if and
only if

v = γ(t)− 1

κ(t)
n(t). (2)
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This is precisely the evolute of the spacelike and timelike components of γ. As in
the case of curves in the Euclidean plane, the evolute of γ (minus its lightlike points)
is the locus of its centres of curvature. It is a subset of the caustic, which is the locus
of centres of “osculating” pseudo-circles (i.e., pseudo-circles that have an A≥2-contact
with γ).

We define the subset Ω of Emb(S1,R2
1) such that a curve γ is in Ω if and only if

〈γ′′(t), γ′(t)〉 6= 0 whenever 〈γ′(t), γ′(t)〉 = 0 (i.e., the lightlike points of γ ∈ Ω are not
lightlike inflection points). One can show, using Thom’s transversality results (see for
example [5], Chapter 9 for an analogous proof), that Ω is an open dense subset of
Emb(S1,R2

1).

Proposition 4.1 Let γ ∈ Ω. Then,
(i) the lightlike points of γ are isolated points;
(ii) the caustic of γ is a regular curve at a lightlike point of γ and has ordinary

tangency with γ at such point. Furthermore, γ and its caustic lie locally on opposite
sides of their common tangent line at the lightlike point.

Proof (i) Since the curve γ is in Ω, we have g′(t) = 2〈γ′′(t), γ′(t)〉 6= 0 whenever
g(t) = 〈γ′(t), γ′(t)〉 = 0. This implies that the lightlike points, given by g(t) = 0, are
isolated points.

(ii) For γ ∈ Ω, we can solve equation (1) at a lightlike point γ(t0) to get

µ(t) = − 〈γ
′(t), γ′(t)〉

〈γ′(t)⊥, γ′′(t)〉

for t near t0. Then, µ(t0) = 0 and the caustic C(γ) is parametrised locally at t0 by

c(t) = γ(t)− µ(t)γ′(t)⊥.

We have

µ′(t) = − 2〈γ′(t), γ′′(t)〉
〈γ′(t)⊥, γ′′(t)〉

− (
1

〈γ′(t)⊥, γ′′(t)〉
)′〈γ′(t), γ′(t)〉

and

µ′′(t) = −2〈γ′(t), γ′′′(t)〉
〈γ′(t)⊥, γ′′(t)〉

− 2〈γ′′(t), γ′′(t)〉
〈γ′(t)⊥, γ′′(t)〉

− 4(
1

〈γ′(t)⊥, γ′′(t)〉
)′〈γ′(t), γ′′(t)〉

−(
1

〈γ′(t)⊥, γ′′(t)〉
)′′〈γ′(t), γ′(t)〉.

At the lightlike point γ(t0) we have γ′(t0)
⊥ = (−1)εγ′(t0), where ε = 2 if γ′(t0) =

(λ, λ) and ε = 1 if γ′(t0) = (−λ, λ). Thus,

µ′(t0) = −2(−1)ε〈γ′(t0), γ′′(t0)〉
〈γ′(t0), γ′′(t0)〉

= −2(−1)ε
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and

µ′′(t0) = −2(−1)ε〈γ′(t0), γ′′′(t0)〉
〈γ′(t0), γ′′(t0)〉

− 2(−1)ε〈γ′′(t0), γ′′(t0)〉
〈γ′(t0), γ′′(t0)〉

−4(
1

〈γ′(t)⊥, γ′′(t)〉
)′|t=t0〈γ′(t0), γ′′(t0)〉

=
2(−1)ε〈γ′(t0), γ′′′(t0)〉
〈γ′(t0), γ′′(t0)〉

− 2(−1)ε〈γ′′(t0), γ′′(t0)〉
〈γ′(t0), γ′′(t0)〉

.

It follows now that

c′(t0) = γ′(t0)− µ′(t0)γ′(t0)⊥ − µ(t0)γ
′′(t0)

⊥

= γ′(t0) + 2(−1)ε(−1)εγ′(t0)
= 3γ′(t0).

Therefore, γ and C(γ) are tangential at γ(t0). Differentiating again, we get

c′′(t0) = γ′′(t0)− 2µ′(t0)γ
′′(t0)

⊥ − µ′′(t0)γ′(t0)⊥ − µ(t0)γ
′′′(t0)

⊥

= γ′′(t0) + 4(−1)εγ′′(t0)
⊥ − 2(

〈γ′(t0), γ′′′(t0)〉
〈γ′(t0), γ′′(t0)〉

− 〈γ
′′(t0), γ

′′(t0)〉
〈γ′(t0), γ′′(t0)〉

)γ′(t0).

We can take {γ′(t0), γ′′(t0)} as a system of coordinate of R2
1 at γ(t0). Then, we can

write c′′(t0) = αγ′(t0) + βγ′′(t0) with

β =
〈c′′(t0), γ′(t0)〉
〈γ′(t0), γ′′(t0)〉

=
〈γ′′(t0) + 4(−1)εγ′′(t0)

⊥, γ′(t0)〉
〈γ′(t0), γ′′(t0)〉

= 1− 4(−1)ε
〈γ′′(t0), γ′(t0)⊥〉
〈γ′(t0), γ′′(t0)〉

= 1− 4(−1)ε(−1)ε
〈γ′′(t0), γ′(t0)〉
〈γ′(t0), γ′′(t0)〉

= −3.

We have then

γ(t)− γ(t0) = ((t− t0) + h.o.t)γ′(t0) + (
1

2
(t− t0)2 + h.o.t)γ′′(t0)

and

c(t)− c(t0) = c(t)− γ(t0) = (3(t− t0) + h.o.t)γ′(t0) + (−3

2
(t− t0)2 + h.o.t)γ′′(t0).

This shows that γ and its caustic have an ordinary tangency at γ(t0) and that the
two curves lie on opposite sides of their common tangent line at γ(t0). 2
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Remark 4.2 At a lightlike inflection point γ(t0) of a curve γ /∈ Ω, the tangent line to
γ is always a component of the caustic C(γ) (any µ ∈ R is a solution of equation (1)
at a lightlike inflection point). The caustic has another component if and only if
ord(〈γ′(t), γ′(t)〉) ≥ ord(〈γ′(t)⊥, γ′′(t)〉) at t = t0. Then equation (1) can be solved for
µ and we obtain a parametrisation of this other component of C(γ). This component,
which could be singular, passes through γ(t0) if and only if µ(t0) = 0.

We consider now some special curves in R2
1. An oval in the Euclidean plane R2 is

defined as a closed and simple curve with everywhere non-vanishing curvature. The
curvature of a curve in R2

1 is not defined at the lightlike points of the curve. However,
we can still define the concept of an oval in the Minkowski plane using the contact of
the curve with lines. We say that a closed and simple curve in R2

1 is an oval if it has
an A1-contact with all its tangent lines. (This definition includes the lightlike points.
An example of an oval is the circle S1 = {(u0, u1) ∈ R2

1 |u2
0 + u2

1 = 1}.)
As an oval is a closed and simple curve, it follows by the Jordan curve theorem

that its complement R2
1 \ γ consists of two open and connected subsets of R2. One

of them is bounded and is called the interior of γ and the other is unbounded and is
called the exterior of γ.

Theorem 4.3 Let γ be an oval in the Minkowski plane. Then,
(i) γ has exactly four lightlike points;
(ii) the caustic of γ is a closed curve which lies in the complement of the interior

of γ;
(iii) the evolute of each spacelike and timelike component of γ has at least one

singular point.

Proof (i) We use the arguments in the proof of Proposition 2.1. The curve γ̃ has
nowhere vanishing (Euclidean) curvature as its contact with its tangent lines is of type
A1 (the contact of γ with lines is an affine property and is independent of the metric
in R2). Therefore, the Gauss map N is a diffeomorphism and the result follows.

(ii) The curve γ is an oval, so it has neither inflection points nor lightlike inflec-
tion points. Therefore, its caustic is defined everywhere and is a closed curve. It
follows from Proposition 4.1(ii) and from the fact that γ is an oval that the caus-
tic of γ, minus the lightlike points, lies in the exterior of γ near the lightlike points.
By Proposition 3.3, the evolute of a spacelike or a timelike component of γ does not
intersect that component. Thus, the evolute of γ remains in the exterior of γ.

(iii) Let I = (a, b) be an interval parametrising a spacelike or timelike component
of γ, with γ(a) and γ(b) lightlike points. As 〈γ′′(t), γ′(t)⊥〉 6= 0, the curvature goes to
infinity as t tends a or b. The curve γ is an oval, so its curvature has constant sign in
I. Therefore, limt→a κ(t) = limt→b κ(t) = ±∞ (with t ∈ I). It follows that there exists
t ∈ I such that κ′(t) = 0, so γ has a vertex at t, and this corresponds to a singular
point on the evolute (Proposition 3.2(ii)). 2
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Figure 3: The caustic (thick curve) of a circle (left) and of an ellipse (centre and right)
drawn using Maple. The dashed lines are the Minkowski symmetry sets.

Example 4.4 An ellipse γ(t) = (a cos(t), b sin(t)), t ∈ R is an oval in R2
1. Figure 3

shows Maple plots of the caustics of some ellipses. The caustic of a circle (a = b = 1)
is shown in Figure 3 left. (Recall that the caustic/evolute of a circle in the Euclidean
plane is the centre of the circle.) We take a = 2 and b = 1 in Figure 3 centre. In
Figure 3 right, we apply an Euclidean rotation to the ellipse and draw its caustic. We
observe that the left figure in Figure 3 can also be found in [9], where the caustic is
defined as the envelope of the normal lines to the circle.

5 Minkowski symmetry set

The symmetry set (SS) of a curve in the Euclidean plane is defined as the closure of
the locus of centres of bi-tangent circles to the curve ([6, 12]). We define as follows its
analogue for a curve in the Minkowski plane.

Definition 5.1 The Minkowski symmetry set (MSS for short) of a curve γ in the
Minkowski plane is the closure of the locus of centres of bi-tangent pseudo-circles to
the curve γ.

The pseudo-circles H1(p,−r) and S1
1(p, r) have two connected components and a

curve γ can be tangent to either a single component at two distinct points or to each
component of these pseudo-circles. If a curve γ is bi-tangent to a “lightcone” LC∗(p),
then generically it is tangent to each line of LC∗(p) at a single point. (One can show
using Thom’s transversality theorem that bi-tangency with a single line of LC∗(p) is
not a generic property of curves in R2

1.)
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The contact of γ with pseudo-circles is measured by the family of distance squared
functions f (§4). The multi-local stratum of the bifurcation set of f is the set of points
v such that fv has singularities at two distinct points t1 and t2 with fv(t1) = fv(t2).

The MSS has the following properties, some of which are similar to those of the
SS.

Theorem 5.2 (i) The MSS of γ is the closure of the multi-local stratum of the bifur-
cation set of the family of distance squared functions on γ.

(ii) If γ is spacelike or timelike and is parametrised by arc length, then there is a
bi-tangent pseudo-circle to γ at γ(t1) and γ(t2) if and only if

〈γ(t1)− γ(t2), t(t1)± t(t2)〉 = 0

(where + or − is determined by the orientation of γ at γ(t1) and γ(t2)).
(iii) The MSS is a regular curve at p if and only if the bi-tangent pseudo-circle to γ

at γ(t1) and γ(t2) is not osculating at γ(t1) or at γ(t2). If this is the case, the tangent
line to the MSS at p is the perpendicular bisector to the chord joining γ(t1) and γ(t2).

(iv) The MSS is a spacelike curve at a point p in the following cases: (1) the curve
γ is tangent to each component of a pseudo-circle H1(p,−r); (2) the curve γ is bi-
tangent to a single component of a pseudo-circle S1

1(p, r); (3) the curve γ is tangent to
one line of LC∗(p) at γ(t1) and to the other line at γ(t2), and γ(t2)−γ(t1) is timelike.

(v) The MSS is a timelike curve at a point p in the following cases: (1) the curve γ
is tangent to each component of a pseudo-circle S1

1(p, r); (2) the curve γ is bi-tangent
to a single component of a pseudo-circle H1(p,−r); (3) the curve γ is tangent to one
line of LC∗(p) at γ(t1) and to the other line at γ(t2), and γ(t2)− γ(t1) is spacelike.

(vi) The MSS has generically no lightlike points.

Proof The proof of (i) follows from the definition of the MSS and the proof of (ii)
is identical to that for the symmetry set of a curve in the Euclidean plane (see [6]).

For (iii), we consider the case where the bi-tangent pseudo-circles are of type
H1(p,−r) and suppose that γ is tangent to both components these pseudo-circles (the
other cases follow similarly). We give the pieces of γ at γ(t1) (resp. γ(t2)) the orienta-
tion of p+(r cosh(t), r sinh(t)) (resp. p+(−r cosh(t), r sinh(t))). To simplify notation,
we write γ1 for γ(t1) and γ2 for γ(t2) and similarly for all information at γ(t1) and
γ(t2). The condition for bi-tangency is then given by g(t1, t2) = 〈γ1 − γ2, t1 + t2〉 = 0.
As 〈t2 + t1,n2 + n1〉 = 0, g(t1, t2) = 0 if and only if γ1 − γ2 = r(n1 + n2). The radius
r of the bi-tangent pseudo-circle can then be given explicitly in the form

r(t1, t2) =
〈γ1 − γ2,n1 + n2〉

2(n1n2 − 1)
.

(We observe that n1n2 − 1 6= 0.) We have

gt1(t1, t2) = −(n1n2 − 1)(1− rκ1),
gt2(t1, t2) = (n1n2 − 1)(1 + rκ2)

12



so the MSS is a regular curve at p if and only if 1−rκ1 6= 0 or 1+rκ2 6= 0, equivalently,
if and only if H1(p,−r) is not osculating at both γ(t1) and γ(t2).

Suppose that H1(p,−r) is not osculating at γ(t1). Then we can parametrise locally
g−1(0) by (t1, t2(t1)) for some smooth function t2(t1). The MSS is then parametrised
by

c(t1) = γ(t1)− r(t1, t2(t1))n(t1).

We have
c′ = (1− rκ1)t1 − (rt1 + t′2rt2)n1

and

rt1 =
(1− rκ1)t1n2

2(n1n2 − 1)
,

rt2 = −(1 + rκ2)t2n1

2(n1n2 − 1)
,

t′2 =
1− rκ1

1 + rκ2

.

Therefore 〈c′,n1 + n2〉 = 0, that is c′(t1) is orthogonal to γ(t1) − γ(t2). To show
that the tangent line to the MSS is the perpendicular bisector to the chord joining
γ(t1) and γ(t2), it is enough to consider these points on the pseudo-circle H1(p,−r)
and observe the said perpendicular bisector passes through p.

For (iv) and (v), the results are immediate using (iii) for bi-tangency with LC∗.
For the other cases, also using (iii), it is enough to choose any two distinct points
q1 and q2 on H1(p,−r) (resp. S1

1(p, r)) and consider the vector −−→q1q2. We can take,
without loss of generality, r = 1 and p to be the origin. Then, a parametrisation of the
components of H1(−1) are given by (cosh(s), sinh(s)) and (− cosh(s),− sinh(s)), and
those of S1

1(1) by (sinh(s), cosh(s)) and (− sinh(s),− cosh(s)). The result now follows
by straightforward calculations.

For (vi), the vector −−→q1q2 (with q1 and q2 as above) is never a lightlike vector, so the
only possible case for a point p ∈MSS to be lightlike is when one of the lines of LC∗

is bi-tangent to the curve γ. However, this does not occur for generic curves in the
Minkowski plane. 2

We consider now the example of an ellipse in the Minkowski plane.

Proposition 5.3 The MSS of an ellipse consists of the two segments of lines join-
ing opposite cusps of the caustic of the ellipse (the dashed lines in Figure 3). These
segments contain the diagonals of the parallelogram formed by the four tangent lines
to the ellipse at its lightlike points (Figure 4, left).

Proof We make an affine transformation A and take the ellipse to a circle (C) and
the rectangle formed by the lightlike tangent lines of the ellipse to a parallelogram (P )
(Figure 4, right). The images by A of the families of hyperbole H1(p,−r) and S1

1(p, r)
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Figure 4: Constructing the MSS of an ellipse (dashed line).

are families of hyperbole l1l2 = c (c ∈ R) with asymptotes l1 = 0 and l2 = 0 parallel
to the sides of the parallelogram (P ). The MSS of the ellipse is the pre-image by A
of the locus of bi-tangency of the circle (C) with the hyperbole l1l2 = c.

Given a bi-tangent hyperbola l1l2 = c to the circle (C), the centre of (C) belongs
to the Euclidean symmetry set of l1l2 = c. Now, the symmetry set of a hyperbola
l1l2 = c consists of the pair of lines which bisect the lines l1 = 0 and l2 = 0. It follows
that the point of intersection of l1 = 0 and l2 = 0 is on a diagonal of the parallelogram
(P ) (Figure 4, right). As the diagonals of the parallelogram are preserved under
affine transformations, it follows that the MSS of the ellipse is a subset of the lines
containing the diagonals of the parallelogram formed by the four tangent lines to the
ellipse at its lightlike points. The result follows now using the fact that the MSS
has endpoints at the cusps of the evolute of the ellipse. (See Figure 3 for the MSS
of various ellipses in the Minkowski plane. Observe that, in general, the MSS of an
ellipse is not along the axes of the ellipse; Figure 3, right.) 2

Remark 5.4 (1) The concepts of evolute, caustic and MSS can be associated to a
curve in any Lorentzian plane (R2, g). We can find a g-orthonormal basis {u1,u2}
of R2 so that the expression for g is given, with respect to this basis, by g(u,v) =
−u0v0 + u1v1, for any u = (u0, u1) and v = (v0, v1) in R2 (so we are back to the
Minkowski plane).

(2) If we write the g-lightlike lines as li = aix + biy = 0, i = 1, 2, where (x, y)
are the coordinates with respect to the standard basis in R2, then the g-pseudo-circles
centred at the origin are the family of hyperbole (including their asymptotes) l1l2 = c,
c ∈ R. Therefore, the results in this paper can be interpreted in the affine setting.
They provide information about the contact of a curve in the affine plane R2 with a
given family of hyperbole l1l2 = c, translated by any vector in R2.
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6 Parallels

A parallel of a curve γ in the Minkowski plane, with its lightlike points removed, is the
curve obtained by moving each point on γ by a fixed distance r along the unit normal
n to γ. Thus, a parametrisation of a parallel is given by

ηr(t) = γ(t) + rn(t).

It is worth observing that the parallels are not defined at lightlike points (as we
require a unit normal vector). Parallels are wave fronts and can be studied following
the same approach for curves in the Euclidean plane using the family of distance
squared functions (see for example [3]). Consider the map F : (S1 \L)×R2

1 → R×R2
1,

given by F (t,v) = (f(t,v),v), where L denotes the set of the lightlike points of γ
and f is the family of distance squared function. The set of critical points Σ(F ) of
F coincides with Σ(f) ∩ (S1 \ L) × R2

1, and is thus a smooth surface (§4). The wave
fronts (parallels) associated to γ are the sets ηr = F (Σ(F )) ∩ {r} × R2

1. Wave fronts
have generic Legendrian singularities ([1, 3]) apart from a discrete set of distances r.
There are three possible transitions at these values of r ([1]). However, it is shown
in [3] that only the A3-transition occurs (i.e., the swallowtail transitions in Figure 5
right), and this happens at an ordinary vertex of γ.

The A3-transition in wave fronts is studied by considering (locally) the big front
F (Σ(F )). This big front is a swallowtail surface, that is, F (Σ(F )) is diffeomorphic to
the discriminant of the polynomial t4 + λ1t

2 + λ2t+ λ3 which is the surface (Figure 5
left)

S = {(λ1,−4t3 − 2λ1t, 3t
4 + λ1t

2), t, λ1 ∈ R, 0}.

To recover the individual wave fronts, one has to consider generic sections of the
surface S. This is done by Arnold [1], where he considered functions f : R3, 0→ R, 0
and allowed changes of coordinates in R3, 0 that preserve S. Then a generic function
is equivalent, under these changes of coordinates, to f(λ1, λ2, λ3) = λ1. Therefore, the
individual wave fronts undergo the transitions in Figure 5 right.

Our concern here is how the individual fronts are stacked together in R2
1. For this,

one needs to project the sections of S by f to a plane. Then, the problem becomes
that of considering the divergent diagramme (f, g)

R2, 0
g←− R3, 0

f−→ R, 0.

Bruce proved in [4] that there are no stable pairs (f, g). (As a consequence, he
showed that there are no discrete smooth models for an implicit differential equation
(IDE) of cusp type. Davydov [8] showed that there is in fact a functional modulus for
an IDE of cusp type even for the topological equivalence. Dara [7] pointed out that
there are two possible configurations of the solutions of the IDE of cusp type and these
are as in Figure 1.)
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Figure 5: The swallowtail surface left and its generic sections right.

Theorem 6.1 There are two generic configurations for the family of curves g(f−1(c)∩
S), c ∈ R, 0. The two configurations are distinguished by g(f−1(0)∩ S) and the image
of the singular set of S by g, which is a cusp. These are as in Figure 1, left, if the
cusp and g(f−1(0) ∩ S) are in the same semi-plane delimited by the limiting tangent
line to g(f−1(0) ∩ S) and as in Figure 1, right, if they are in different semi-planes.

Proof By Arnold’s result ([1]), we can take f(λ1, λ2, λ3) = λ1. Then the zero section
of f in S is a curve with a singularity of type (t3, t4).

We assume that the kernel of dg0 is transverse to the plane λ1 = 0. This insures
that the restriction of g to the planes f−1(c) is a local diffeomorphism, so it preserves
the structure of the curves f−1(c) ∩ S. We also assume that the kernel of dg0 is not
parallel to the direction (1, 0, 0). This insures that the image by g of the singular set
of S is cusp curve. A map g that satisfy both of the above conditions is a generic map.

Suppose that f−1(c) ∩ S has a self-intersection and denote by ∆c the triangular
region whose vertices are the origin and the two cusps of g((f−1(c) ∩ S)), and whose
edges are formed by the image of the singular set of S by g and the segment of
g((f−1(c) ∩ S)) delimited by its singular points (shaded regions in Figure 6).

Then the two configurations of g(f−1(c) ∩ S), c ∈ R, 0, are distinguished by the
fact that the self-intersection point of g(f−1(c)∩S) is inside or outside the triangle ∆c

(Figures 1 and 6). This property depends only on dg0. To show this, write g = dg(0)+h
where h is a smooth map with no linear terms. Let gs = dg(0) + sh, s ∈ [0, 1]. Then
dgs(0) = dg(0) for all s ∈ [0, 1], so the map gs|f−1(c) is a local diffeomorphism and
maps the singular set of S to a cusp curve. For g0 and g1 to give two different
configurations, there must exist s ∈ [0, 1] such that gs|f−1(c) is not a diffeomorphism
(as gs maps the curve f−1(c)∩S to one which is not diffeomorphic to it), which is not
the case.

We can therefore assume that g is a linear projection along a direction u =
(u1, u2, u3) ∈ R3, with u2

1 + u2
2 + u2

3 = 1, to a transverse plane. As we assume that the
kernel of g is not parallel to (1, 0, 0) we can take, for simplicity, u3 6= 0 and project to
the (u1, u2)-plane.

The projection of f−1(0) ∩ S is the curve

l0(t) = (4u1u2t
3 − 3u1u3t

4, 4(u2
2 − 1)t3 − 3u2u3t

4)
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Figure 6: The two generic positions of the intersection point of g(f−1(c)∩ S), outside
the shaded region left and inside it right.

and the projection of the singular set of S is the cusp curve

c0(t) = (6(u2
1 − 1)t2 − 8u1u2t

3 + 3u1u3t
4, 6u1u2t

2 − 8(u2
2 − 1)t3 + 3u2u3t

4).

The limiting tangent directions of the two curves are transverse as u2
1 +u2

2− 1 6= 0.
Then the position of the two curves with respect to the limiting tangent line L0 to l0
at t = 0 is determined by the sign of u1u3 (positive for the two curves to be in the
same semi-plane determined by L0 and negative if they lie in different semi-planes).

The fibre f−1(c)∩S is singular if c < 0. The singular points are given by 6t2+c = 0
and the self-intersection point is given by 2t2 + c = 0. We project these points along
u to the (u1, u2)-plane. It is not difficult to show that the projection of the self-
intersection point is inside the triangle ∆c if and only if u1u3 < 0 and outside if and
only if u1u3 > 0. Thus, the configuration of the curves g(f−1(c)∩S) is determined by
the positions of the curves l0(t) and c0(t) with respect to the limiting tangent line L0

to l0 at t = 0. 2

Theorem 6.2 (a) The parallels of a curve γ in the Euclidean plane are as in Figure
1, left, at an ordinary vertex of γ.

(b) The parallels of a curve γ in the Minkowski plane are as in Figure 1, right, at
an ordinary vertex of γ.

Proof We suppose that γ is parametrised by arc length and apply Theorem 6.1.
The projection of the singular set of the big front is the evolute of γ.

(a) The evolute of a curve γ in the Euclidean plane is given by e(t) = γ(t) +
1/κ(t)n(t). Suppose that t = 0 is an ordinary vertex of γ, that is κ′(0) = 0 and
κ′′(0) 6= 0. Then e′(0) = 0 and e′′(0) = −κ′′(0)/κ2(0)n(0).

We take {t(0),n(0)} as a coordinate system at e(0). Then the evolute is above the
axis parallel to t(0) if κ′′(0) < 0 and below it if κ′′(0) > 0.
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The parallel of interest is ηr0(t) = γ(t) + r0n(t), with r0 = 1/κ(0). We have
η′r0(0) = η′′r0(0) = 0 and

η′′′r0(0) = −κ′′(0)
κ(0)

t(0),

η
(4)
r0 (0) = −κ′′′(0)

κ(0)
t(0)− 3κ′′(0)n(0).

Then

ηr0(t) = (− κ
′′(0)

3!κ(0)
t3 + h.o.t)t(0) + (− 3

4!
κ′′(0)t4 + h.o.t)n(0),

so the parallel ηr0 is above the horizontal axis if κ′′(0) < 0 and below it if κ′′(0) > 0.
That is, the parallel ηr0 and the evolute are always on the same side of the limiting
tangent direction to the parallel. It follows by Theorem 6.1 that the parallels of γ have
the configuration in Figure 1, left.

(b) The evolute of a curve γ in the Minkowski plane is given by e(t) = γ(s) −
1
κ(t)

n(t). At an ordinary vertex t = 0, we have e′(0) = 0 and e′′(0) = κ′′(0)/κ2(0)n(0).

The parallel of interest is ηr0(t) = γ(t) + r0n(t), with r0 = −1/κ(0). Here we have
η′r0(0) = η′′r0(0) = 0 and

η′′′r0(0) = −κ′′(0)
κ(0)

t(0),

η
(4)
r0 (0) = −κ′′′(0)

κ(0)
t(0)− 3κ′′(0)n(0).

Following the same argument above, we conclude that the parallel ηr0 and the
evolute are always on opposite sides of the limiting tangent direction to the parallel.
It follows by Theorem 6.1 that the parallels of γ have the configuration in Figure 1,
right. 2

Figure 7 shows a Maple plot of the parallels of an ellipse with its lightlike points
removed. Observe that the tangent lines to the ellipse at the lightlike points are
asymptotes of its parallels (this is also the case at an isolated lightlike point of any
curve in the Minkowski plane).
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