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Abstract

Asymptotic curves are well defined on a smooth surface M in the Euclidean
space R5 and are solutions of a binary quintic differential equation. We propose
in this paper a definition of the lines of principal curvature on M that uses
covariants of binary quintic forms as well as the metric structure on M .

1 Introduction

Our aim is to define lines of principal curvature on a smooth surface M embedded
in the Euclidean space R5. We want these curves to form an orthogonal net away
from isolated points (umbilics) on M , so their equation should be a binary quadratic
differential equation. Asymptotic curves on M are well defined and are given by a
binary quintic differential equation ([10, 15]). This equation defines at each point on
M a binary quintic form. There are three independent covariant of this form of degree
2 and order 2, 6 and 8 ([17]). These are denoted in [17] by 2.2, 6.2 and 8.2 and we
shall denote them here by C2,2, C6,2 and C8,2. Each one of these can be viewed as a
binary quadratic form and represented by a point in the projective plane. The polar
lines of these points with respect to the conic of degenerate quadratic forms contain
a unique quadratic form P2,2, P6,2 and P8,2, whose roots are orthogonal [16] (this is
where the metric on M appears). We define the Ci,2-lines of principal curvature on
M , i = 2, 6, 8, as the solution curves of the quadratic differential equation associated
to Pi,2.

Lines of principal curvature on smooth orientable surfaces in R3 are classical objects
and are defined as the curves whose tangents at each point are parallel to an eigenvector
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of the shape operator (Weingarten map). They form an orthogonal net away from
umbilic points. Their configurations at umbilics and their structural stability are
studied more recently in [3, 14]. For surfaces in Rn, n ≥ 4, shape operators are defined
along normal vector fields. For a given normal vector field µ on M , one can define, as
is done in [13] when n = 4, µ-lines of principal curvature. These are the curves whose
tangents at each point are parallel to an eigenvector of the shape operator along µ.
They form an orthogonal net on M away from µ-umbilic points. Our aim is to define
a distinguished pair of orthogonal foliations on M and show that they are µ-lines of
principal curvature of some normal vector field µ on M . We did this for surfaces in R4

in [16] using the fact that the asymptotic directions are given by a binary quadratic
differential equation; see Theorem 4.1. (The construction in [16] follows from that in
[5] and is valid for self-adjoint operators on surfaces endowed with a metric g which
could have varying signature [7, 12].) We deal here with the case of surfaces in R5.

We recall in §4 some concepts on the extrinsic geometry of surfaces in R5 and in §3
results on binary forms that are needed in this paper. We define the lines of principal
curvature in §4.

2 Surfaces in R5

Let M be a smooth surface in the Euclidean space R5 defined locally by an embedding
φ : U ⊂ R2 → R5, and TM and NM its tangent and normal bundles. Let ∇̄ denote the
Riemannian (Levi-Civita) connection of R5 and ∇ the induced Riemannian connection
on M (see [6]). Given a normal field µ on M , the second fundamental form along µ,
is the bilinear symmetric map IIµ : TM ×TM → R, given by IIµ = 〈∇̄X̄ Ȳ −∇XY, µ〉,
where X̄ (resp. Ȳ ) denotes a local extension ofX (resp. Y ) to R5. To IIµ is associated a
unique self-adjoint operator Sµ : TM → TM , given by IIµ(X, Y ) =< Sµ(X), Y >. The
map Sµ is referred to as the shape operator along µ and is given by Sµ(X) = −(∇̄X µ̄)T .

Let p ∈ M and e = {e1, e2, e3, e4, e5} be a frame in a neighbourhood of p, such
that {e1, e2} is a tangent frame and {e3, e4, e5} is a normal orthonormal frame in this
neighbourhood. Consider the linear map Lp : NpM → Q2, where Q2 denotes the
space of quadratic forms in two variables and Lp(µ) is the quadratic form associated
to IIµ at q. If µ = (µ3, µ4, µ5) ∈ NpM with respect to the basis {e3, e4, e5}, then
Lp(µ) = µ3(d2φ · e3) + µ4(d2φ · e4) + µ5(d2φ · e5). Let

Λp =

 α3 β3 γ3

α4 β4 γ4

α5 β5 γ5

 ,
with αi = 〈φuu, ei〉 , βi = 〈φuv, ei〉 and γi = 〈φvv, ei〉, i = 3, 4, 5 (subscripts denote
partial differentiation and (u, v) denote the parameters in U). The matrix Λp is referred
to as the matrix of the second fundamental form with respect to the frame e.
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Asymptotic directions on surfaces in R3 are characterised in Differential Geometry
textbooks in terms of the normal curvature. However, this approach does not generalise
easily to manifolds immersed in higher dimensional spaces. A better approach is
to define these directions in terms of certain singularities of maps associated to the
contact of the surface with flat objects (k-planes). For example, given a generic smooth
surface M ⊂ R3, the projection along a tangent direction ξ at p ∈ M to a transverse
plane is right-left equivalent to a cusp (u, uv + v3) if and only if ξ is an asymptotic
direction. (The projections measure the contact of the surface with lines.) Following
this approach, asymptotic directions on surfaces in R4 (resp. R5) are studied in [1,
9] (resp. [10, 15]). Let α = (α3, α4, α5), β = (β3, β4, β5), γ = (γ3, γ4, γ5) be the
coefficients of the second fundamental form written as vectors and let [, , ] denote a
3 × 3-determinant. We have the following result from [15]. The formulae for the
coefficients are simplified here using the identities αv = βu and βv = γu.

Theorem 2.1 ([15]) There is at least one and at most five asymptotic curves passing
through any point on a generic immersed surface in R5. These curves are solutions of
the implicit differential equation

l0dv
5 + l1dudv

4 + l2du
2dv3 + l3du

3dv2 + l4du
4dv + l5du

5 = 0, (1)

where the coefficients li, depend on the coefficients of the second fundamental form and
their first order partial derivatives, and are given by

l0 = [∂γ
∂v
, β, γ],

l1 = 3[∂γ
∂u
, β, γ] + [∂γ

∂v
, α, γ],

l2 = 3[∂α
∂v
, β, γ] + 3[∂γ

∂u
, α, γ] + [∂γ

∂v
, α, β],

l3 = [∂α
∂u
, β, γ] + 3[∂α

∂v
, a, γ] + 3[∂γ

∂u
, α, β],

l4 = [∂α
∂u
, α, γ] + 3[∂α

∂v
, α, β],

l5 = [∂α
∂u
, α, β].

3 Binary forms

Binary forms have a rich history. We give a brief review of results that are of interest
here. These are taken from [8, 11]. A binary form f(x, y) of degree n in the two
variables x and y is a homogeneous polynomial of degree n in x and y, that is,

f(x, y) =
n∑
k=0

(
n
k

)
akx

kyn−k.
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The coefficients ak of f belong to a field K of characteristic zero (in this paper
K = R). Consider the action of c ∈ GL2(K) on the variables x and y

x = c11x̄+ c12ȳ, y = c21x̄+ c22ȳ.

The binary form f is transformed to another binary form f̄ of degree n in the new
variables x̄ and ȳ, with coefficients āk,

f̄(x̄, ȳ) =
n∑
k=0

(
n
k

)
ākx̄

kȳn−k.

A polynomial I in the variables A0, A1, . . . , An, X, Y is said to be a covariant of
index s of binary forms of degree n if for any binary form f(x, y) of degree n and any
c ∈ GL2(K), the following holds I(ā0, ā1, . . . , ān, x̄, ȳ) = (det c)sI(a0, a1, . . . , an, x, y).
We denote I(a0, a1, . . . , an, x, y) by I(f).

A covariant in which the variables x and y do not occur is said to be an invariant.
Let I be a homogeneous polynomial covariant of a binary form. The degree of I

is its degree in the variables x and y. The order of I is its degree in the coefficients
a0, . . . , an. Let

Ωαβ =
∂2

∂xα∂yβ
− ∂2

∂xβ∂yα

The rth order transvectant of a pair of smooth functions Q(x, y) and R(x, y) is the
function

(Q,R)(r) = (Ωαβ)r[Q(xα, yα)R(xβ, yβ)]
x = xα = xβ
y = yα = yβ

.

We have

(Q,R)(r) =
r∑
i=0

(−1)i
(
r
i

)
∂rQ

∂xr−i∂yi
∂rR

∂xi∂yr−i
.

We are seeking covariants of binary quintics that have degree 2. There are three of
them ([17]) and they are represented by the following transvectants (see for example
Theorem 5.4 in [11]):

C2,2 = 1
28800

(f, f)(4)

C6,2 = 1
115200

((f, C2,2)(2), (f, C2,2)(2))(2)

C8,2 = 1
3317760000

((f, (f, C2,2)), (f, (f, C2,2)(2)))(4).

The covariants C6,2 and C8,2 have lengthy expressions and C2,2 is given by

C22 = (a0a4 + 3a2
2 − 4a1a3)y2 + (a0a5 − 3a1a4 + 2a2a3)xy + (a1a5 − 4a2a4 + 3a2

3)x2.

Remark 3.1 The covariant C6,2 has an interpretation in terms of forms apolar to the
quintic form f (see §5 in [8] for terminology and results on apolarity). The set of cubic
forms apolar to f is, under some condition, a one dimensional vector space generated
by the covariant J = (f, C2,2)(2), and C6,2 is a scalar multiple of the Hessian of J .
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4 Lines of principal curvature on surfaces in R5

We start by giving the motivation behind our definition of lines of principal curvature
of surfaces in R5. We recall some notions from [7, 12, 16]. Let M be a two dimensional
manifold (i.e., a surface) and suppose that M is endowed with a non degenerate metric
g. Let φ : U →M be a local parametrisation of M , where U is an open subset of R2.
Then the first fundamental form of M (or the metric g) is the quadratic form

g = Gdv2 + 2Fdudv + Edu2 (2)

with coefficients E = g(φu, φu), F = g(φu, φv), G = g(φv, φv).
Suppose given on (M, g) a self-adjoint operator A, that is, a smooth map TM →

TM with the property that its restriction Ap : TpM → TpM is a linear map satisfying
g(Ap(X), Y ) = g(X,Ap(Y )) at any p ∈M and for any X, Y ∈ TpM . Let

l = g(A(φu), φu), m = g(A(φu), φv) = g(A(φv), φu), n = g(A(φv), φv).

We refer to these as the coefficients of A (they determine A in φ(U)). A direction
X ∈ TpM is called A-asymptotic if g(Ap(X), X) = 0. It follows that the A-asymptotic
curves (whose tangents at all points are A-asymptotic directions) are solutions of the
binary quadratic differential equation

ndv2 + 2mdvdu+ ldu2 = 0. (3)

Points where Ap is a multiple of the identity are called umbilic points. When Ap

has real eigenvalues, we call them the A-principal curvatures and we call their asso-
ciated eigenvectors the A-principal directions. The integral curves of the A-principal
directions are labelled the lines of A-principal curvature. When these exist, they are
orthogonal and are the solution curves of

(Gm− Fn)dv2 + (Gl − En)dvdu+ (Fl − Em)du2 = 0. (4)

Equations (3) and (4) are binary quadratic differential equations in the form

a(u, v)dv2 + 2b(u, v)dvdu+ c(u, v)du2 = 0, (5)

where a, b, c are smooth functions on U . Following [5], equation (5) determines a family
of quadratic forms ay2 + 2bxy + cx2 (parametrised by (u, v)) which is represented at
each point (u, v) by the point Q = (a : 2b : c) in the projective plane RP 2. We say
that Q has orthogonal roots if the solutions of equation (5) are orthogonal. We denote
by Q̂ the polar line of Q with respect the conic of degenerate forms (which are forms
with b2 − ac = 0).

We identify a self-adjoint operator A with λA, where λ is a nowhere vanishing
smooth function on M . Then, A is represented at each point (u, v) ∈ U by the point
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A = (l : 2m : n) in RP 2 (which also represents the equation of the A-asymptotic
curves). The metric g (2) is represented by the point L = (G : 2F : E) in RP 2.
The polar line L̂ of L is the set of quadratic forms whose roots are orthogonal ([12]).
We denote by Jac(A, g) the Jacobian of the quadratic forms ny2 + 2mxy + lx2 and
Gy2 + 2Fxy + Ex2.

Theorem 4.1 ([5, 12, 16]) The polar line Â of A intersects L̂ at Jac(A, g). This
point is the unique quadratic form on Â which has orthogonal roots and is precisely the
quadratic form representing the binary quadratic differential equation (4) of the lines
of A-principal curvature.

The asymptotic curves on surfaces in R3 and R4 are given by a binary quadratic dif-
ferential equation. One can extract a self-adjoint operator from each of these equations
and define the lines of principal curvature as the solutions of the quadratic differential
equation associated to the quadratic form Â ∩ L̂ in Theorem 4.1; see [16]. (This can
also be done for timelike surfaces in the Minkowski spaces R3

1 and R4
1 [7].) However,

the asymptotic curves on a surface M in R5 are given by a binary quintic differential
equation (Theorem 2.1), so we cannot use Theorem 4.1 directly to define the lines of
principal curvature on M . We proceed as follows.

Let φ : U →M be a local parametrisation of M . Equation (1) determines a family
of binary quintic forms parametrised by points in U . If we denote this family by A,
then its coefficients are smooth functions on U and are given by

A = (a0, a1, a2, a3, a4, a5) = (l0,
1

5
l1,

1

10
l2,

1

10
l3,

1

5
l4, l5),

with l0, . . . , l5 as in Theorem 2.1. We denote by C2,2(A), C6,2(A), C8,2(A) the (families
of) transvectants associated to A (see §3). These are binary quadratic forms with
coefficients depending smoothly on those of A. For instance,

C2,2(A) = (20l0l4 − 8l1l3 + 3l22)y2 + 2(50l0l5 − 6l1l4 + l2l3)xy + (20l1l5 − 8l2l4 + 3l23)x2.

We can now apply Theorem 4.1 to define lines of principal curvature on M in terms
of the above transvectants.

Definition 4.2 Let M be a smooth surface embedded in R5. The Ci,2-lines of principal
curvature on M , i = 2, 6, 8, are the solution curves of the binary quadratic differential
equation associated to the quadratic form Jac(g, Ci,2(A)), which is the unique quadratic
form on the polar line of Ci,2(A) which has orthogonal roots.

The equation of the Ci,2-lines of principal curvature that has the simplest expression
is that of C2,2-lines of principal curvature. It is given by

((8l3l1 − 3l22 − 20l4l0)F + (−6l4l1 + 50l5l0 + l3l2)G)dv2+
((8l3l1 − 3l22 − 20l4l0)E + (−8l4l2 + 20l5l1 + 3l23)G)dudv+
((6l4l1 − 50l5l0 − l3l2)E + (−8l4l2 + 20l5l1 + 3l23)F )du2 = 0.
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Proposition 4.3 The Ci,2-lines of principal curvature, i = 2, 6, 8, do not depend on
the choice of the local parametrisation of M . They also do not depend on the choice
of the orthonormal frame e = {e1, e2, e3, e4, e5}, where {e1, e2} (resp. {e3, e4, e5}) is a
tangent (resp. normal) orthonormal frame.

Proof The asymptotic directions do not depend on the choice of the parametrisation
(they are determined by the contact of M with k-dimensional planes, k = 1, 2, 3, 4
([10, 15]). Let h be a change of parameter. Its differential map Dhp determines, at
each point p, a linear transformation in TpM . We follow the notation in §3 for the
action of Dhp on binary forms. Let A be the binary quintic form associated to the
equation of the asymptotic directions at p. Because Ci,2(A) is a covariant binary form

(i = 2, 6, 8), Ci,2(Ā) is simply Ci,2(A). Therefore, the solutions of Jac(ḡ, Ci,2(A)) are

the same as those of Jac(g, Ci,2(A)).
Another choice of a normal frame does not affect the coefficients of equation of the

asymptotic curves nor those the metric. The argument for the tangent frame follows
from the general argument above about changes of the parametrisation. 2

The set M2 = {p ∈M | rank Λp = i}, with Λp as in §2, is defined in [10]. It is shown
there that for a generically immersed surface in R5, M2 is either empty or is a regular
curve on M .

Proposition 4.4 There exists a smooth normal vector field µ on M \M2 such that
the Ci,2-lines of principal curvature (i = 2, 6, 8) on M \M2 as defined in Definition
4.2 are the lines of Sµ-principal curvature of the shape operator Sµ on M \M2.

Proof Using the notation in §2, the shape operator Sµ along µ = (µ3, µ4, µ5) has
coefficients l = µ3α3 + µ4α4 + µ5α5, m = µ3β3 + µ4β4 + µ5β5, n = µ3γ3 + µ4γ4 + µ5γ5.
We are seeking µ so that l = X, m = Y/2, n = Z, where X, Y, Z are the coefficients of
Ci,2(A). We write Ci,2(A) = (X, Y/2, Z)T and obtain a linear system Λp.µ = Ci,2(A)
which has a solution Λ−1

p .Ci,2(A) if Λp is invertible, i.e., if p /∈ M2. (We may not be
able to extend Λ−1

p .Ci,2(A) to M2.) 2

Remarks 4.5 1. It follows from the proof of Proposition 4.4 that any point on the
polar line P̂ of P (varying smoothly with p ∈M \M2) can represent the coefficients of
a shape operator Sµ for some normal vector field µ. (For p ∈M \M2, there is a great
circle in the unit sphere in the normal space NpM such that the coefficients of the shape

operators along this circle trace the polar line P̂ .) The µ-lines of curvature are the same
for all such shape operators and are the solutions of the binary quadratic differential
equation determined by P . Therefore, the normal vector field in Proposition 4.4 is not
unique and cannot be unique. (For surfaces in R4 it is unique up to multiplication by
nowhere vanishing functions on M [16].)
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2. The point L = (G : 2F : E) which represents the metric g is on P̂ . The matrix
of the shape operator SΛ−1

p .L is the identity matrix. Therefore, M \ M2 is totally

Λ−1
p .L-umbilic (i.e., all points on M \M2 are Λ−1

p .L-umbilics). In fact, L is the unique

point on P̂ with this property. (The vector Λ−1
p .L determines, in a sense, a north and

a south pole on the unit sphere in NpM .)
3. The concept of an asymptotic direction is an affine property of the surface (or

submanifold) and is defined, for instance, in terms of the contact of the surface with
lines. We can therefore define them on surfaces in the Minkowski space R5

1. When the
surface M ⊂ R5

1 is timelike/Lorentzian, i.e., the induced metric on M is non-degenerate
and has signature 1, the equation of the asymptotic curves on M is the same as the
one given in Theorem 2.1. Hence, all the results here apply to these surfaces too.
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