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Abstract

We study the geometry of germs of singular surfaces in R3 whose parametri-
sations have an A-singularity of Ae-codimension ≤ 3, via their contact with
planes. These singular surfaces occur as projections of smooth surfaces in R4

to R3. We recover some aspects of the extrinsic geometry of the surfaces in R4

from those of the images of the projections.

1 Introduction

Our investigation of singular surfaces is motivated by the study of the geometry of
smooth surfaces in R4. Let Pv be the orthogonal projection in R4 along a non zero
direction v ∈ R4 to the 3-space v⊥. Given an embedded surface M in R4, the surface
Pv(M) can be regular or can have generically at any given point one of the local
singularities in Table 1. We seek to extract geometric information about M from
Pv(M). We consider the geometric properties of Pv(M), as a surface in the 3-space
v⊥, obtained via its contact with planes in v⊥.

We take R3 as a model for v⊥. Parametrised surfaces in R3 can have stable singu-
larities of cross-cap type (also called Whitney umbrella). The differential geometry of
the cross-cap is studied, for instance, in [6, 8, 9, 18, 20, 23]. We study in this paper the
geometry of singular surfaces S ⊂ R3 derived from the contact of S with planes. We
shall suppose that S is parametrised by φ : R2, 0→ R3, 0, where φ is A-equivalent to
one of the normal forms in Table 1. (Two germs f and g are said to be A-equivalent,
denoted by f ∼A g, if g = k ◦ f ◦ h−1 for some germs of diffeomorphisms h and k of,
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Table 1: Classes of A-map-germs of Ae-codimension ≤ 3 ([16]).
Name Normal form Ae-codimension

Immersion (x, y, 0) 0
Crosscap (x, y2, xy) 0

S±k (x, y2, y3 ± xk+1y), k = 1, 2, 3 k
B±k (x, y2, x2y ± y2k+1), k = 2, 3 k
C±3 (x, y2, xy3 ± x3y) 3
Hk (x, xy + y3k−1, y3), k = 2, 3 k
P3 * (x, xy + y3, xy2 + ay4), a 6= 0, 1

2
, 1, 3

2
3

* The codimension of P3 is that of its stratum.

respectively, the source and target.) Of course we cannot take φ as one of the normal
forms in Table 1 as diffeomorphisms in the target do not preserve the geometry of the
image of φ.

The singularities in Table 1 are of corank 1, so one can write φ in the form
(x, p(x, y), q(x, y)), with p and q having no constant or linear parts. We can then
associate to φ a pair of quadratic forms (j2p, j2q), given by the second degree Taylor
expansions of p and q at the origin. As the contact of a surface with planes is invari-
ant under affine transformations, we classify the singular points of S according to the
G = GL(2,R)×GL(2,R)-class of (j2p, j2q) (Definition 2.1). We obtain more geomet-
ric information about the cross-cap in §2. For instance, we relate in Theorem 2.3 the
singularities of the height functions on the cross-cap to the torsion of the branches of
its parabolic set. For the remaining singularities in Table 1, we identify in Theorem 2.7
the singularities of the parabolic set of S in the source (which we call the pre-parabolic
set and denote by PPS) as well as those of the height functions on S (Theorem 2.8).
We explain in Remark 2.10 and Table 4 the high degeneracy of the singularities of the
PPS.

In §3 we apply the results in §2 to obtain geometric information about surfaces
in R4. Points on a generic surface in R4 are called elliptic, hyperbolic, parabolic or
inflection point (see §3). One key observation we make here is that this classification is
precisely that of the G-classification of the singular point of Pv(M) along any tangent
direction v (Theorem 3.3). This explains a result in [18] comparing the type of the
cross-cap of Pv(M) at Pv(p) and that of the point p.

It is worth observing that the results in this paper are independent of the metric
as they are derived from the contact of the surfaces with planes and lines. They are
valid, for instance, for projections of surfaces in the projective 4-space to the projective
3-space.
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2 The geometry of singular surfaces

We consider the geometry of singular surfaces S parametrised locally by a germ of
a smooth function φ : R2, 0 → R3, 0, where φ is A-equivalent to a singularity of Ae-
codimension ≤ 3 in Table 1. More specifically, we consider the contact of these singular
surfaces with planes. This contact is measured by the K-singularities of the members
Hv of the family of height functions on S, H : S × S2 → R, given by

H(x, y, v) = Hv(x, y) = φ(x, y) · v,

where S2 denotes the unit sphere in R3. (Two germs, at the origin, of functions f, g are
K-equivalent if g(x, y) = k(x, y)f(h−1(x, y)), where h is a germ of a diffeomorphism
and k is a germ of a function not vanishing at the origin.) The K-singularities we shall
use in this paper are the following simple ones (below left, [1]) and the unimodal ones
(below right, [22]) with normal forms as follows:

Ak : x2 ± yk+1, k ≥ 0 J10 : x3 + ax2y2 + y6, 4a3 + 27 6= 0
Dk : x2y ± yk−1, k ≥ 4 X1,0 : x4 + ax2y2 + y4, a2 − 4 6= 0
E6 : x3 + y4 X1,0 : xy(x2 + axy + y2), a2 − 4 < 0
E7 : x3 + xy3

E8 : x3 + y5

(In the complex case, the singularity X1,0 has one normal form given by x4+ax2y2+
y4, a2 − 4 6= 0, but this form does not include the case of two real roots.) Contact
with planes is affine invariant, therefore we can make affine changes of coordinates in
the target (see [3]).

All the singularities in Table 1 are of corank 1, so we can make changes of coordi-
nates in the source and rotations in the target and write φ in the form

φ(x, y) = (x, p(x, y), q(x, y))

with p, q ∈ M2(x, y) (M(x, y) denotes the maximal ideal in the ring of germs of
functions in (x, y)). We denote by Q1(x, y) = j2p(x, y) = p20x

2 + p21xy + p22y
2 and

Q2(x, y) = j2q(x, y) = q20x
2 + q21xy + q22y

2, where the k-jet jkf of a germ f at the
origin is its Taylor polynomial of degree k at the origin.

We consider the action of G = GL(2,R) × GL(2,R) on the pairs of binary forms
(Q1, Q2), given by linear changes of coordinates in the source and target. The G-orbits
(see for example [12]) are listed in Table 2.

Definition 2.1 The singular point of S is called hyperbolic/elliptic/parabolic or an
inflection point if the G-class of (Q1, Q2) is as in Table 2.
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Table 2: The G-classes of pairs of quadratic forms.
G-class Name
(x2, y2) hyperbolic point

(xy, x2 − y2) elliptic point
(x2, xy) parabolic point

(x2 ± y2, 0) inflection point
(x2, 0) degenerate inflection
(0, 0) degenerate inflection

At the singular point of S, dφ0(T0R2) is a line, which we call the tangent line to
S. There is a plane of directions orthogonal to this tangent line. These directions are
called the normal directions to S at the singular point. The Gauss-map of S is not
defined at its singular point. However, we can still define the closure of the parabolic
set of S as the image by φ of the zero set of

K̃(x, y) = ((φx × φy · φxx)(φx × φy · φyy)− (φx × φy · φxy)
2)(x, y). (1)

Note that away from the singular point, K̃ vanishes if and only if the Gaussian
curvature of S vanishes. We call the zero set of K̃ the pre-parabolic set of S and denote
it by PPS.

Let X be one of the normal forms in Table 1. We define the following subset of
the set E(2, 3) of all smooth map-germs R2, 0→ R3, 0,

TX := {φ ∈ E(2, 3) : φ ∼A X}.

We give TX the induced Whitney topology and say that a property (P ) is generic
if it is satisfied in a residual subset of TX . Map-germs in such a residual subset are
referred to as generic map-germs.

Let W be a codimension k subset of TX . We can proceed as above and give W the
induced Whitney topology. Then φ ∈ W is said to be a generic codimension k germ if
it satisfies a property that holds in a residual subset of W .

2.1 The cross-cap

The differential geometry of the cross-cap from the singularity theory point of view
was initiated in [6, 23]; see also [8, 9, 18, 20] for other studies on the geometry of the
cross-cap. It is shown in [23] that a parametrisation of a cross-cap can be taken, by a
suitable choice of a coordinate system in the source and affine changes of coordinates
in the target, in the form

φ(x, y) = (x, xy + p(y), y2 + ax2 + q(x, y)), (2)
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Figure 1: Hyperbolic and elliptic cross-caps.

where p ∈ M4(y) and q ∈ M3(x, y). The following is also shown in [23]. When
a < 0, the height function along any normal direction at the cross-cap point has
an A1-singularity. Such cross-caps are labelled hyperbolic cross-caps as all points,
except the origin, have negative Gaussian curvature (Figure 1, left). When a > 0,
there are two normal directions (0,±2

√
a, 1) at the cross-cap point along which the

height function has a singularity more degenerate than A1 (i.e., of type A≥2). Such a
cross-cap is labelled elliptic cross-cap (Figure 1, right). The singularity of the height
function along the degenerate normal direction is precisely of type A2 if and only if
q(∓ 1√

a
, 1) 6= 0. When a = 0, there is a unique normal direction at the cross-cap point

where the height function has a singularity more degenerate than A1. The singularity
of its corresponding height function is of type A2 if and only if ∂3q

∂x3 (0, 0) 6= 0. Such a
cross-cap is labelled parabolic cross-cap.

We start with this simple but important observation.

Theorem 2.2 A cross-cap is hyperbolic/elliptic/parabolic if and only if its singular
point is elliptic/hyperbolic/parabolic (as in Table 2).

Proof The pair of quadratic forms associated to φ in (2) is (xy, y2 + ax2). This is
G-equivalent to (xy, x2 − y2), (x2, y2) or (x2, xy) in Table 2 if and only if a < 0, a > 0
or a = 0, and the result follows from the discussion above. 2

We introduce a new notation and call an elliptic cross-cap where the height function
has an Ai-singularity along one degenerate direction and an Aj-singularity along the
other degenerate direction an elliptic cross-cap of type AiAj or an AiAj-elliptic cross-
cap. Likewise, we label an Ak-parabolic cross-cap one where the height function has a
degenerate singularity (of type Ak) along the unique degenerate normal direction.
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When a 6= 0 above, the PPS has an A+
1 -singularity if a < 0 and A−1 -singularity

if a > 0. The closure of the parabolic set on the cross-cap consists of two tangential
curves, and each branch of the parabolic set is linked to one of the two degenerate
normal directions at the cross-cap point.

Theorem 2.3 Let Pi(t), i = 1, 2, be parametrisations of the branches of the parabolic
set on an elliptic cross-cap (with Pi(0) being the cross-cap point) and denote by τi(t)
the torsion of these space curves. Then the height function along the degenerate normal
direction associated to the branch Pi has singularity at the cross-cap point of type

A2 ⇐⇒ τi(0) 6= 0,
A3 ⇐⇒ τi(0) = 0, τ ′i(0) 6= 0,
A4 ⇐⇒ τi(0) = τ ′i(0) = 0, τ ′′i (0) 6= 0.

Proof The proof follows by direct calculations (using Maple). We parametrise the
cross-cap as in (2) and set a = 1 with further affine changes of coordinates. We write
j5p = p44y

4 +p55y
5 and j5q = q3 + q4 + q5 with qi =

∑i
j=0 q3jx

i−jyj. The PPS is given

by the zero set of K̃ in (1). The 2-jet of K̃ is 4(x− y)(x+ y).
Consider for example the branch with tangent direction (1, 1), which is the graph

of the function y(x) = x+ α2x
2 + α3x

3 + α4x
4 + h.o.t, with

α2 = q31 + 1
2
q32 + 3

2
q30,

α3 = −3
4
q31q33 + 3

8
q231 + 1

2
q31q32 − 1

8
q232 + 3

4
q30q32 − 9

8
q230 + 3q40 + 2q42 + 3

2
q43 + 5

2
q41

+q44 − 9
8
q233 − 3

2
q33q32 − 2p44,

α4 = 9
2
q51 + 7

2
q53 + 5q50 + 5

2
q55 − 5p55 − 9

8
q33q

2
31 + 4q52 − 3

2
q41q33 + 9q33p44 + 3

2
q40q32

+3q30q42 − 7q31p44 − 27
8
q33q31q32 − 9

2
q33q30q32 − 9

8
q30q31q33 + 3q54 + 5

16
q231q32

+3q31q42 − 3
16
q30q

2
32 − 9

16
q32q

2
30 − 3

2
q32q44 − 9

16
q30q

2
31 − 9

2
q30q40 − 81

16
q30q

2
33

+ 1
16
q332 + 27

16
q330 + 45

16
q233q32 + 9

2
q30q43 + 3

2
q41q32 − 12p44q30 − 9

2
q33q43 + 2q41q31

+q42q32 + 3q31q43 + 9
2
q30q44 + 2q31q44 − 3q42q33 + 27

8
q333 − 9

4
q31q

2
33 − 6q33q44.

We calculate the torsion of the curve φ(x, y(x)) and its first two derivatives at
x = 0 (using Maple). Observe that τ(0), τ ′(0) and τ ′′(0) depend only on α2, α3 and
α4.

The height function along the degenerate normal direction v1 = (0,−2, 1), which
corresponds to the branch (x, y(x)) of the parabolic set is given by hv1 = (y − x)2 +
q(x, y) + 2p(y) and has a singularity at the origin of type

A2 ⇐⇒ q3(1, 1) 6= 0,
A3 ⇐⇒ q3(1, 1) = 0 and (3q33 + q31 + 2q32)

2 − 4q4(1, 1) + 8p44 6= 0,
A4 ⇐⇒ q3(1, 1) = (3q33 + q31 + 2q32)

2 − 4q4(1, 1) + 8p44 = 0 and O 6= 0

with
O = q5(1, 1)− 2p55 + 1

4
(q32 + 3q33)(q31 + 3q33 + 2q32)

2

−1
2
(q41 + 2q42 + 3q43 + 4q44 − 8p44)(q31 + 3q33 + 2q32).
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The result now follows by observing that the above conditions for the singularities
of the height function hv1 can be expressed in terms of τ(0), τ ′(0) and τ ′′(0) and these
are as in the statement of the theorem. 2

Remark 2.4 Theorem 2.3 gives a geometric characterisation of AiAj-elliptic cross-
caps when i, j ≤ 4. The A2A2-cross-caps are generic, the A2A3-cross-caps are of
codimension 1 and the A2A4 and A3A3-cross-caps are of codimension 2.

2.2 Singularities more degenerate than a cross-cap

We turn now to the remaining singularities in Table 1. We shall describe the singu-
larities of the PPS and those of the height functions along normal directions.

When S has an Sk, Bk, or C3 singularity, we can make changes of coordinates in
the source and affine changes of coordinates in the target and parametrise it in the
form

φ(x, y) = (x, y2 + p(x), q(x, y)), (3)

where p ∈ M2(x) and q ∈ M2(x, y) ([7]; the result follows from the fact that p(x, y)
is an R-versal unfolding of y2, so is R+-equivalent to y2 + p(x). The parametrisation
(3) can also be used for the cross-cap). We set

p(x) = p20x
2 + p30x

3 + p40x
4 + . . .

q(x, y) = q20x
2 + q22y

2 +
∑3

j=0 q3jx
3−jyj +

∑4
j=0 q4jx

4−jyj + . . .

Note that q21 = 0 because the singularity of φ at the origin is worse than a cross-cap.
Then the conditions for φ in (3) to have one the A-types in Table 1 are as follows:

B1 = S1 : q31 6= 0, q33 6= 0;
B2 : q31 6= 0, q33 = 0, 4q31q55 − q243 6= 0;
B3 : q31 6= 0, q33 = 0, 4q31q55 − q243 = 0,

2q331q77 − (2q53q55 + q43q44)q
2
31 + (q43q53 − q41q55)q43q31 − q41q243 6= 0;

S2 : q31 = 0, q33 6= 0, q41 6= 0;
S3 : q31 = 0, q33 6= 0, q41 = 0, q51 6= 0;
C3 : q31 = 0, q33 = 0, q41 6= 0, q43 6= 0.

At an Hk or P3-singularity of S, we can take a parametrisation of the surface in
the form

φ(x, y) = (x, xy + p(x, y), q20x
2 + q(x, y)), (4)

where p, q ∈M3(x, y). The singularities of φ are identified as follows:

H2 : q33 6= 0, 3p55q
2
33 − (4p44q44 + 3p33q55)q33 + 4p33q

2
44 6= 0

H3 : q33 6= 0, 3p55q
2
33 − (4p44q44 + 3p33q55)q33 + 4p33q

2
44 = 0, ξ 6= 0

P3 : q33 = 0, p33q44 − p44q33 6= 0.

The expression ξ depends on the 7-jets of p and q.
We start with the identification of the type of the singular point of the surface S.
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Theorem 2.5 (1) Let φ be as in (3). Then the origin is either a hyperbolic point (if
and only if q20 − p20q22 6= 0) or an inflection point (if and only if q20 − p20q22 = 0).

(2) Let φ be as in (4). Then the origin is either a parabolic point (if and only if
q20 6= 0) or an inflection point (if and only if q20 = 0).

Proof For part (1), we make the affine change of coordinates in the target k(X, Y, Z) =
(X, Y, Z− q22Y ), so that j2(k ◦φ) = (x, y2 +p20x

2, (q20−p20q22)x2). The result follows
by comparing (y2 + p20x

2, (q20− p20q22)x2) with the normal forms in Table 2. Part (2)
is immediate as j2φ = (x, xy, q20x

2). 2

Remark 2.6 It is worth observing that it follows from the above theorem that the
singular point of a surface with a singularity of type Sk, Bk or C3 is never an elliptic
or a parabolic point. Similarly, for a surface with a singularity of type Hk and P3, its
singular point is never an elliptic or a hyperbolic point.

Theorem 2.7 If the singular point of S is not an inflection point, the generic singu-
larities of the PPS are as shown in Table 3. If the singular point of S is an inflection
point, the PPS has generically an X1,0-singularity.

Table 3: The singularities of φ and of the PPS of φ(R2, 0).
φ B±1 B2 B3 S2 S3 C3 H2 H3 P3

PPS D∓4 D5 D5 E7 J10 X1,0 D5 D5 J10

Proof The PPS is given by the vanishing of the function K̃ in (1). For the Sk, Bk

and C3-singularities we take φ as in (3). Then,

j4K̃ = 8(q20 − p20q22)(−q31x2y + 3q33y
3)− 4p20q

2
31x

4

−8(q31(3q30 − p20q32 − 3p30q22) + q41(q20 − p20q22))x3y
+8q31(2p20q33 − 3q31)x

2y2 + 8(3q33(3q30 − p20q32 − 3p30q22)
+3q43(q20 − p20q22)− 4q31q32)xy

3 + 16(4q44(q20 − p20q22)− q232)y4.

The proof is an exercise of recognition of singularities of functions. If q20−p20q22 = 0
(that is, the origin is an inflection point, see Theorem 2.5), the 4-jet of K̃ is generically
a non-degenerate quartic, so the singularity is of type X1,0.

Suppose that q20 − p20q22 6= 0.
The map-germ φ has an S±1 (=B±1 )-singularity if and only if q31q33 6= 0, so the PPS

has a D∓4 -singularity.
At an S2 singularity of φ, q31 = 0, and q41q33 6= 0. Then the coefficient of x3y in K̃

becomes 8(q20 − p20q22)q41, so the PPS has an E7-singularity.
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At an S3-singularity of φ, q31 = q41 = 0, and q51q33 6= 0. Working with the 6-jet of
K̃ we show that the PPS has a singularity of type J10.

If φ has a B2-singularity, q33 = 0 and q31 6= 0 and 4q31q55− q243 6= 0. The coefficient
of y4 in K̃ is not zero if and only if 4(q20 − p20q22)q44 − q232 6= 0. Therefore, the PPS
has generically a D5-singularity. (When 4(q20 − p20q22)q44 − q232 = 0, we get a D6-
singularity.) Observe that the condition to have a D5-singularity is distinct from the
condition 4q31q55 − q243 = 0 for the map-germ φ to have a B≥3-singularity. Therefore,
at a B3-singularity the PPS has also generically a D5-singularity.

At a C3-singularity, q31 = q33 = 0 and q41q43 6= 0. The 3-jet of K̃ is identically zero
and its 4-jet is generically a non-degenerate quartic. Therefore the singularity of the
PPS is of type X1,0.

At an Hk-singularity of S, we can take φ as in (4). Then the singularity is of type
H≥2 if and only if q33 6= 0. The 4-jet of K̃ is given by

12q20q33yx
2 + 4q20q32x

3 − 9q233y
4 + 36p33q20q33y

3x
+4(3q33(p31q20 + 3q30) + 3q20(q43 − q31p33 + p31q33) + q32(q31 + 2p32q20))yx

3

+6(q33q31 + 2p33q20q32 + 2q20(2q44 − q32p33 + q33p32) + 2q33(q31 + 2p32q20))y
2x2

+(−q231 + 4(p31q20 + 3q30)q32 + 4q20(p31q32 + q42 − q31p32))x4.

We have a D5-singularity if q20q33 6= 0. Note that the condition q20 = 0 is that
for the origin to be an inflection point (Theorem 2.5), and if it holds, the singularity
of the PPS is generically of type X1,0. Suppose that q20 6= 0. Then the PPS has a
D5-singularity at an H≥2-singularity of φ. If q33 = 0, we have a P3-singularity of φ
and the PPS has generically a J10-singularity. 2

We consider now the height functions on S = φ(R2, 0).

Theorem 2.8 (1) Suppose that the origin is not an inflection point of S. When S has
an Sk, Bk or C3-singularity, there are two distinct normal directions vi, i = 1, 2 at its
singular point along which the height function Hvi has a singularity of type A≥2. We
say that the surface is of type AkAl if Hv1 has an Ak and Hv2 has an Al-singularity.

The Sk-surfaces are always of type A2A≥2; the generic ones are of type A2A2 and
the type A2A3 is of codimension 1.

The Bk and C3 surfaces are always of type A≥2A3. The generic ones are of type
A2A3 and the type A3A3 is of codimension 1.

If S has an Hk (resp. P3)-singularity, there is a unique degenerate normal direction
at its singular point along which the height function has a singularity of type A2 (resp.
generically of type A3).

(2) If the singular point of S is an inflection point, there is a unique degenerate
normal direction at this point along which the height function has generically a D4-
singularity.
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Proof (1) We take φ as in (3). If we set v = (α, β, γ), we get

Hv(x, y) = αx+ β(y2 + p(x)) + γq(x, y).

This height function is singular at the origin if and only if α = 0, that is, if and
only if v is in the normal plane to S at the origin. For such v, the 2-jet of Hv is

(p20β + q20γ)x2 + (β + q22γ)y2.

The singularity of Hv is of type A1 if and only if (p20β + q20γ)(β + q22γ) 6= 0. It is
of type Ak≥2 if p20β + q20γ = 0 and β + q22γ 6= 0 or vice-versa. Therefore, there are
two distinct directions in the normal plane where the height function has a degenerate
singularity of type Ak≥2 unless p20β + q20γ = β + q22γ = 0. The last two equations
are satisfied if and only if q20− p20q22 = 0, i.e., if and only if the origin is an inflection
point. We suppose in this part of the proof that the origin is not an inflection point
and deal with each degenerate direction separately.

(i) Suppose that β + q22γ 6= 0 and p20β + q20γ = 0. Then v is parallel to v1 =
(0,−q22, 1) and the 3-jet of Hv1 is given by

(q20 − p20q22)x2 + (q30 − q22p30)x3 + q31x
2y + q32xy

2 + q33y
3.

At an Sk-singularity of φ, q33 6= 0, so the height function Hv1 has a singularity of
type A2.

Suppose now that q33 = 0, i.e., φ has a Bk or a C3-singularity. The relevant part
of the 4-jet of Hv1 is

(q20 − q22p20)x2 + q32xy
2 + q44y

4

and the singularity is of type A3 if and only if the above expression is not a perfect
square, that is, if and only if 4(q20−q22p20)q44−q232 6= 0. This is precisely the condition
in the proof in Theorem 2.7 for the PPS to have a D5-singularity when φ has a Bk-
singularity, and is distinct from the conditions determining k in the Bk series or the
C3-singularity. When 4(q20 − q22p20)q44 − q232 = 0, Hv1 has a singularity of type A≥4.

(ii) We suppose now that p20β + q20γ 6= 0 and β + q22γ = 0. We have a degenerate
direction parallel to v2 = (0,−q20, p20) and the 3-jet of Hv2 is given by

−(q20 − p20q22)y2 + (p20q30 − q20p30)x3 + p20q31x
2y + p20q32xy

2 + p20q33y
3.

Thus, Hv2 has an A2-singularity if and only if p20q30 − q20p30 6= 0.
If p20q30 − q20p30 = 0, by analysing the 4-jet of Hv2 , we find that its singularity is

of type A3 if and only if p220q
2
31 − 4(q20 − q22p20)(q20p40 − p20q40) 6= 0.

We turn now to theHk and P3-singularities and take φ as in (4). Then, j2Hv(x, y) =
v2xy + v3q20x

2, so there is a unique direction v = (0, 0, 1) along which Hv has a
singularity more degenerate than A1. We have Hv(x, y) = q20x

2 + q(x, y). As the
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origin is supposed not be an inflection point, q20 6= 0, so the singularity of Hv is
precisely of type A2 when q33 6= 0, i.e., when φ has a singularity of type Hk. It is
generically of type A3 at a P3-singularity of φ.

(2) Suppose now that the origin is an inflection point, so q20 − p20q22 = 0, and
denote by v (= v1 = v2) the unique degenerate normal direction. Then the 3-jet of Hv

is given by
(−q22p30 + q30)x

3 + q33y
3 + q31x

2y + q32xy
2.

This is a singularity of type D4 unless the above cubic has a repeated root. 2

When the height function on S is degenerate along two distinct normal directions
(Theorem 2.8), we can split the PPS of S into two components, with each component
related to one of the degenerate normal directions. The following result clarifies the
high degeneracy of the singularities of the PPS in Theorem 2.7.

We denote by Li the component of the PPS associated to the height function Hvi ,
i = 1, 2 on S, where vi are as in the proof of Theorem 2.8.

Theorem 2.9 The component L2 of the PPS is always a smooth curve.
The component L1 has a singularity of type Ak when S has an Sk-singularity,

k = 1, 2, 3. At a B≥2-singularity of S, its singularity is of type A2 (the singularity
can become an A3 in codimension 1 Bk-surfaces), and at a C3-singularity of S it is
generically of type D4.

The smooth curve L2 is transverse to the tangent directions of L1 at an S1, Bk and
C3 singularities. The transversality fails at the S≥2-singularities.

Proof We parametrise the directions near v1 = (0,−q22, 1) by (α, β − q22, 1), so the
(modified) family of height functions on S is given by

H1(x, y, α, β) = αx+ (−q22 + β)(y2 + p(x)) + q(x, y).

The component L1 of the PPS is the set of points (x, y) for which there exists
(α, β) such that

H1
x = α + 2(q20 − q22p20)x+ h.o.t = 0

H1
y = 2βy + q31x

2 + 2q32xy + 3q33y
2 + h.o.t = 0

(H1
xy)

2 −H1
xxH

1
yy = −4(q20 − q22p20)(q32x+ 3q33y + β) + h.o.t = 0.

We are assuming here that the origin is not an inflection point (see Theorem 2.8).
The first (resp. third) equation gives α (resp. β) as functions in (x, y). Substituting
these in the second equation gives an equation with a 2-jet q31x

2 − 3q33y
2.

If q31q33 6= 0, i.e., φ has an S1-singularity, L1 has an A1-singularity.
If q33 6= 0 and q31 = 0, i.e., φ has an Sk-singularity, the relevant part of the equation

of L1 is given by −3q33y
2 + q41x

3. Thus, this component has an A2-singularity at an
S2-singularity of φ and an A3-singularity at an S3-singularity of φ.

11



If q33 = 0 and q31 6= 0, i.e., φ has an Bk-singularity, then a similar calculation to
the above shows that L1 has an A2-singularity unless 4(q20−q22p20)q44−q232 = 0, where
the singularity becomes of type A3 (or worse).

When q33 = q31 = 0, φ has a C3-singularity and L1 has generically a singularity of
type D4.

For the component L2 of the PPS, we assume without loss of generality that
p20 6= 0 and parametrise the directions near v2 = (0,−q20, p20) by (α, β − q20, p20).
Thus, the (modified) family of height functions on S is given by

H2(x, y, α, β) = αx+ (−q20 + β)(y2 + p(x)) + p20q(x, y).

The component L2 of the PPS is the set of points (x, y) for which there exists
(α, β) such that

H2
x = α+ h.o.t = 0

H2
y = −2(q20 − q22p20)y + h.o.t = 0

(H2
xy)2 −H2

xxH
2
yy = −4(q20 − q22p20)(3(p20q30 − q20p30)x+ p20q31y + βp20) + h.o.t = 0.

The first (resp. third) equation gives α (resp. β) as functions in (x, y). Substituting
these in the second equation gives y = f(x), with f(0) = f ′(0) = 0. Therefore the
component L2 is always a smooth curve. Its tangent direction at the origin is along
(1, 0) and this is transverse to the tangent directions of the of L1 at an S1, Bk and
C3-singularities. The transversality fails at the S≥2-singularities. 2

Remark 2.10 The results in Theorem 2.9 explain the high degeneracy of the singular-
ities of the PPS when it has two components. Each component has a given singularity
type and the two components are transverse except for the S≥2-surfaces; see Table 4
where “tg” is for tangency and “t” is for transversality between the components L1

and L2. Note that the case of an isolated point X1,0-singularity does not occur on the
PPS.

Table 4: The generic structure of the PPS and of its two components.

S B1 B2 B3 S2 S3 C3

L1 A1 A2 A2 A2 A3 D4

L2 A0 (t) A0 (t) A0 (t) A0 (tg) A0 (tg) A0 (t)

PPS D4 D5 D5 E7 J10 X1,0

12



3 Projections of surfaces in R4 to 3-spaces

The geometry of surfaces in R4 is studied, for instance, in [4, 5, 10, 11, 13, 14, 15, 19, 21].
Given a point p ∈ M consider the unit circle in TpM parametrised by θ ∈ [0, 2π].
The set of the curvature vectors η(θ) of the normal sections of M by the hyperplane
〈θ〉 ⊕ NpM form an ellipse in the normal plane NpM , called the curvature ellipse
([14]). Points on the surface are classified according to the position of the point p with
respect to the ellipse (NpM is viewed as an affine plane through p). The point p is
called elliptic/parabolic/hyperbolic if it is inside/on/outside the ellipse.

The curvature ellipse is the image of the unit circle in TpM by a map formed by
a pair of quadratic forms (Q1, Q2). This pair of quadratic forms is the 2-jet of the
1-flat map F : R2, 0 → R2, 0 (i.e. without constant or linear terms) whose graph,
in orthogonal co-ordinates, is locally the surface M. As the contact of the surface
with lines and planes is affine invariant [3], an alternative approach for studying the
geometry of surfaces in R4 is given in [4]. It uses the pencil of the binary forms
determined by the pair (Q1, Q2). Each point on the surface determines a pair of
quadratics

(Q1, Q2) = (ax2 + 2bxy + cy2, lx2 + 2mxy + ny2).

A binary form Ax2 + 2Bxy+Cy2 is represented by its coefficients (A,B,C) ∈ R3,
where the cone B2 − AC = 0 corresponds to perfect squares. If the forms Q1 and Q2

are independent, they determine a line in the projective plane RP 2 and the cone a
conic. This line meets the conic in 0/1/2 if δ(p) < 0/ = 0/ > 0, with

δ(p) = (an− cl)2 − 4(am− bl)(bn− cm).

A point p is said to be elliptic/parabolic/hyperbolic if δ(p) < 0/ = 0/ > 0. The set of
points (x, y) where δ = 0 is called the parabolic set of M and is denoted by ∆. If Q1

and Q2 are dependent, the rank of the matrix

(
a b c
l m n

)
is 1 provided either of the

forms is non-zero; the corresponding points on the surface are referred to as inflection
points. (All the above notions agree with those defined using the curvature ellipse.)

We consider the action of G (see introduction) on the pairs of binary forms (Q1, Q2).
The G-orbits and the characterisation of the corresponding point on the surface are as
those given in Table 2.

The geometrical characterisation of points on M using singularity theory is first
obtained in [15] via the family of height functions H : M×S3 → R, with H(p, w) = p·w

The height function Hw(p) = H(p, w) is singular if and only if w ∈ NpM . It
is shown in [15] that elliptic points are non-degenerate critical points of Hw for any
w ∈ NpM . At a hyperbolic point, there are exactly two directions in NpM , labelled bi-
normal directions, such that p is a degenerate critical point of the corresponding height
functions. The two binormal directions coincide at a parabolic point. A hyperplane
orthogonal to a binormal direction is called an osculating hyperplane.
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The direction of the kernel of the Hessian of the height functions along a binormal
direction is an asymptotic direction associated to the given binormal direction ([15]).
The asymptotic directions are labelled conjugate directions in [14], and are defined as
the directions along θ such that the curvature vector η(θ) is tangent to the curvature
ellipse (see also [10, 15]). Thus, if p is not an inflection point, there are 2/1/0 asymp-
totic directions at p depending on p being a hyperbolic/parabolic/elliptic point. If p
is an inflection point, then every direction in TpM is asymptotic ([15]). The config-
urations of the asymptotic curves at inflection points of imaginary type (where the
parabolic set ∆ has an A+

1 -singularity) are given in [10], and the configurations at
inflection points of real type (where ∆ has an A−1 -singularity) and at other points on
the curve ∆ are given in [5].

Asymptotic directions can also be described as in [17] and [4] via the singularities
of the members of the family of projections P on M to hyperplanes. The family of
orthogonal projections in R4 is given by P : R4 × S3 → TS3 with

P (p, v) = (v, p− (p · v)v).

We denote the second component of P by Pv(p) = p − (p · v)v. For v fixed, the
projection can be viewed locally at a point p ∈ M as a map-germ Pv : R2, 0 → R3, 0.
For a generic surface, the germ Pv has only local singularities of Ae-codimension ≤ 3
in Table 1. (This is why we considered in §2 only surfaces with singularities as in
Table 1.)

The projection Pv is singular at p if and only if v ∈ TpM . The singularity is
a cross-cap unless v is an asymptotic direction at p. The codimension 2 singularities
occur generically on curves on the surface and the codimension 3 ones at special points
on these curves (see Figure 3 for their configurations at non inflection points). The
H2-curve coincides with the ∆-set ([4]). The B2-curve of Pv, with v asymptotic, is also
the A3-set of the height function along the binormal direction associated to v ([4]).
This curve meets the ∆-set tangentially at isolated points ([5]). At inflection points
the ∆-set has a Morse singularity and the configuration of the B2 and S2-curves there
is given in [4].

Let M be a smooth surface in R4 and let ψ : U ⊂ R2 → R4 be a local parametri-
sation of M . To simplify notation, we write M = ψ(U) and still denote by P the
restriction of P to M . Thus, the family of orthogonal projections P : U × S3 → TS3

on M is given by P ((x, y), v) = (v, Pv(ψ(x, y))).
Let w be a unit vector in TvS

3, so w · v = 0 and w · w = 1. We denote by

D = {(v, w) ∈ S3 × S3 | v · w = 0}.

Given (v, w) ∈ D, the height function on the projected surface Pv(M) along the
vector w is given by

H(v,w)(x, y) = Pv(x, y) · w = (ψ(x, y)− (ψ(x, y) · v)v) · w = ψ(x, y) · w.

14
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Figure 2: Special curves and points on generic surfaces in R4 away from inflection
points.

This is precisely the height function on M along the direction w. In particular,

Remark 3.1 The height function H(v,w) on Pv(M) along the direction w has the same
singularities as the height function Hw on M along w.

The family H : U×D → R has parameters in D which is a 5-dimensional manifold.
However, it is trivial along the parameter v. Thus, the generic singularities that can
appear in H(v,w) are those of Ke-codimension ≤ 3.

For v fixed, w varies in a 2-dimensional sphere, so for a generic M and for most
directions v, the height function on Pv(M) has K-singularities of type A±1 , A2 and A±3 ,
and these are versally unfolded by varying w. For isolated directions v, we expect the
following singularities: A4, D

±
4 and an A2 or an A3-singularity which is not versally

unfolded by the family Hv. We denote the later by NV A2 and NV A3.
We recover in this section geometric information about the surface M from the

geometry of the surface Pv(M). In [18] we considered the K-singularities of the pre-
image on M of the parabolic set of Pv(M). We called this pre-image the v − PPS.
The generic singularities that appear on the v−PPS can be of high codimension. The
results in §2 explain where the high degeneracy comes from (Theorem 2.9 and Table
4).

We take the point p of interest on M to be the origin in R4, and take the surface
locally at p in Monge form ψ(x, y) = (x, y, f 1(x, y), f 2(x, y)), with

f 1(x, y) = Q1(x, y) +
∑3

i=0 c3ix
3−iyi +

∑4
i=0 c4ix

4−iyi + h.o.t.,

f 2(x, y) = Q2(x, y) +
∑3

i=0 d3ix
3−iyi +

∑4
i=0 d4ix

4−iyi + h.o.t.,

where the pair of quadratics (Q1, Q2) is one of the normal forms in Table 2.
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3.1 Projecting along a non-tangent direction

Suppose that v ∈ S3 is not a tangent direction at p ∈M . We write v = vT + vN where
vT is the orthogonal projection of v to the tangent space TpM and vN is its orthogonal
projection to the normal space NpM . Since vN 6= 0, the surface Pv(M) is smooth at
Pv(p).

Proposition 3.2 The height function H(v,w) on Pv(M) is singular at Pv(p) if and
only if w ∈ NpM . For a generic surface, the singularity of H(v,w) at Pv(p) is of type

A2: if p is a hyperbolic or parabolic point and w = v⊥N is a binormal direction,
where v⊥N is the orthogonal direction to vN in NpM .

A3: w = v⊥N is a binormal direction, p is on the B2-curve and v is away from
a circle of directions C in the sphere w⊥ ∈ D. Then the v − PPS is a
regular curve.

NV A3 : w = v⊥N is a binormal direction, p is on the B2-curve and v ∈ C. For
generic v ∈ C the singularity of the v − PPS is an A1. For isolated
directions in C the singularity becomes an A2, and for special points on
the B2-curve it becomes an A3-singularity.

A4 w = v⊥N is a binormal direction, p is an A4-point on the B2-curve.
D4: w = v⊥N is a binormal direction, p is an inflection point.

Proof The identification of the singularities of H(v,w) follows from Remark 3.1. To
analyse the structure of the v − PPS, we follow the method in [2] (see also [3]) and
consider (locally) the family of Monge-Taylor maps θ : M × S3 → Vk, where Vk
denotes the vector space of polynomials in x and y of 2 ≤ degree ≤ k. The family
θ is constructed as follows. Given a point q on M near p, we choose an orthonormal
coordinate system in v⊥ ⊂ R4 so that θv(M) is given locally at Pv(q) in Monge form
(x, y, fv(x, y)). We take θ(q, v) to be the Taylor polynomial of degree k of fv at the
origin.

The singularities of interest are determined by the 3-jet of fv, so we shall work
in V3. The set of functions in V3 that have an A≥2-singularity form a smooth variety
of codimension 1, denoted by the A2-set. Following similar arguments in [2], there
is a residual set of embeddings of M in R4 such that the map θ is transverse to the
A2-set. The intersection of the image of θ with the A2-set is then a smooth manifold of
dimension 4. Therefore, near (p, v0) its pre-image is a smooth manifold W of dimension
4 in M ×S3. The v−PPS are the sections of this manifold by the sets v = constant.
By Thom’s transversality theorem, for a generic set of embeddings of M in R4, the
projection π : W ⊂ M × S3, (p, v0) → S3, v0 is A-stable. Thus, the models of the
v− PPS are obtained by considering the fibres of A-stable map-germs R4, 0→ R3, 0.
These are (x, y, z); (x, y, z2±w2); (x, y, z3 +xz+w2); (x, y, z4 +xz2 + yz±w2), where
(x, y, z, w) denote the coordinates in R4. The fibres of these maps (which are models
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of curves in M , so are plane curves) have singularities of type, respectively, A0, A1,
A2 and A3. The specific conditions for these to occur can be found in [18]. 2

3.2 Projecting along a tangent direction

Theorem 3.3 Suppose that v is a tangent direction at p ∈ M . Then the point p on
M is an elliptic/hyperbolic/parabolic or an inflection point if and only if the singular
point Pv(p) of Pv(M) is, respectively, an elliptic/hyperbolic/parabolic or an inflection
point.

Proof Suppose that v = aψx + bψy, with b 6= 0. We make the affine change of coor-
dinates (X, Y, Z,W )→ (bX−aY, aX+bY, Z,W ) in the target so that Pv(x, y) = (bx−
ay, 0, f 1(x, y), f 2(x, y)), which we simplify to Pv(x, y) = (bx − ay, f 1(x, y), f 2(x, y)).
The result follows by observing that (j2f 1(1

b
(x + ay), y), j2f 2(1

b
(x + ay), y)) is G-

equivalent to (j2f 1(x, y), j2f 2(x, y)). (The case b = 0 follows similarly.) 2

It follows from Theorem 2.2 and Theorem 3.3 that if v is a tangent but not an
asymptotic direction at p ∈M , the surface Pv(M) has a hyperbolic/elliptic/parabolic
cross-cap at Pv(p) if and only if p is an elliptic/hyperbolic/parabolic point (see also
[18] for an alternative proof). We have more information on such cross-caps.

Proposition 3.4 Suppose that v ∈ TpM but is not an asymptotic direction at p.
(i) If p is a hyperbolic point, then Pv(M) is a surface with an elliptic cross-cap of

type A2A2 if p is not on the B2-curve. If it is, the elliptic cross-cap becomes of type
A2A3 and at isolated points on this curve it can be of type A2A4 or A3A3.

(ii) If p is a parabolic point, then Pv(M) is in general an A2-parabolic cross-cap
and becomes an A3-parabolic cross-cap if p is the point of tangency of the B2-curve
with the parabolic set ∆.

Proof The type of the cross-cap is determined by the singularities of the height
function H(v,wi) on Pv(M) at Pv(p) along the binormal directions wi, i = 1, 2. The
result follows from Remark 3.1 that these are the same as the singularities of the height
function Hwi

on M at p.
In (i), the A2A4 cross-cap occurs at special points on the B2-curve where the

height function has an A4-singularity, and these are distinct in general from the B3

and C3-points. The A3A3 cross-cap occurs at the point of intersection of two B2-curves
associated to the two binormal directions. 2

Remark 3.5 With the conditions of Proposition 3.4, the v−PPS has a Morse singu-
larity of type A−1 when p is a hyperbolic point. When p is on the ∆-curve, the v−PPS
has an A2-singularity if p is not on the B2-curve and has an A3-singularity if it is. The
v−PPS is studied in [18] by considering the singularities of the function K̃ in (1). We
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observe that the normal to the surface Pv(M) does not have a limit as we approach
its singular point. It is of interest to find a way of extending the Monge-Taylor map
([2]) in the proof of Proposition 3.2 to such cases.

When projecting along an asymptotic direction at p (so p is not an elliptic point),
the generic singularities of Pv are as those in Table 1 which are more degenerate than
a cross-cap. Suppose that p is not an inflection point. The generic singularities of the
PPS in Table 3 also occur in the v − PPS. However, when p is on the B2-curve,
there are isolated points when a D6-singularity occurs on the v − PPS (with v the
binormal direction associated to the B2-curve). These points are precisely those where
the height function along v has an A4-singularity. For the remaining singularities of
Pv(M) of a generic M , the singularities of the v − PPS are as in Table 3 (see also
Table 4 for the componentes of the v − PPS).
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