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1 Introduction

Our aim in this paper is to obtain geometric information on smooth surfaces in R4

from the geometry of their images under linear projections to 3-spaces. Given a point
p on a surface M and a linear projection πv along a direction v to a transverse 3-space,
we relate the geometry of πv(M) at πv(p) governed by its contact with planes to the
geometry of M at p.

It is shown in [19] that if v is a non-asymptotic tangent direction at p then the
projection πv has a singularity of type cross-cap, that is, πv can be written locally in
the form (x, y2, xy) after smooth changes of coordinates in the source and target. (The
projection is then said to be A-equivalent to (x, y2, xy)). However, this equivalence
relation preserves the singularities of πv(M) but not its affine geometry. The differ-
ential geometry of the cross-cap is studied in [8] and [26]. It is shown there that for
an open and dense set of parameterisations of the cross-cap, the image falls into two
types: the elliptic cross-cap whose parabolic set, in the parameter space, has an A−

1 -
singularity (a pair of transverse curves), and the hyperbolic cross-cap whose parabolic
set has an A+

1 -singularity (an isolated point). (We changed here the way the two types
are labelled in [26].) The passage from one type to another is realised at a parabolic
cross-cap whose parabolic set has an A2-singularity (a cusp), see Figure 2. This classi-
fication of cross-caps is applied to πv(M) in §4 to obtain geometric information about
the surface M at p.

The projection πv can of course be a submersion or have a singularity worse than a
cross-cap. We deal here with all the generic cases and study the singularities of what
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we call the v-pre-parabolic set (v-PPS for short). This is the pre-image on M of the
parabolic set of πv(M). We show that one can recover all the geometry of M related
to its contact with lines by studying the v-PPS.

The approach of associating a singular variety X(M) to a smooth sub-manifold M
in an Euclidean space and recovering the geometry of M from that of X(M) is at the
essence of applications of singularity theory to differential geometry (see the survey
articles [2, 24]). Usually, the geometrical information onM is derived from the singular
set of X(M), which is invariant under diffeomorphisms. There are only few cases where
the affine geometry of X(M) (properties that are invariant under the affine group) has
been exploited to recover information about M . The established results in these cases
are derived from the duality results in [4, 6, 9, 22, 27]. They concern curves in Rn and
surfaces in R3 with X(M) being the dual of M or its focal set. For example, in the
case where X(M) is the focal set, the pre-image on M of the parabolic set of X(M)
is labelled the sub-parabolic set and is the locus of the geodesic inflections of the lines
of curvatures of M ([20]). The focal set can be described as the bifurcation set of the
family of distance squared functions. The structure of sub-parabolic set is obtained by
exploiting the duality result in [9] between the bifurcation sets of the family of folding
maps and that of distance squared functions. In the cases investigated in this paper,
the image πv(M) does not fall into this category (i.e. is neither a bifurcation set nor a
discriminant), so we proceed by analysing the singularities of the Gaussian curvature
of πv(M).

The paper is organised as follows. In §2 we recall some results on the flat geometry
of surfaces in R4 and give the expression of the Gaussian curvature of πv(M). In §3
(resp. §4) we study the cases where the direction v is not tangent (resp. is tangent)
to M at p. In §5 we look at the way the v-PPS bifurcates as v changes in TpM near
the initial direction of the projection.

2 Preliminaries

The geometry of surfaces in R4 has been studied in [4, 7, 11, 12, 14, 15, 16, 17, 21, 23].
Given a point p ∈ M consider the unit circle in TpM parametrised by θ ∈ [0, 2π].
The set of the curvature vectors η(θ) of the normal sections of M by the hyperplane
〈θ〉 ⊕ NpM form an ellipse in the normal plane NpM , called the curvature ellipse
([15]). Points on the surface are classified according to the position of the point p with
respect to the ellipse (NpM is viewed as an affine plane through p). The point p is
called elliptic/parabolic/hyperbolic if it is inside/on/outside the ellipse.

The curvature ellipse is the image of the unit circle in TpM by a map formed by
a pair of quadratic forms (Q1, Q2). This pair of quadratic forms is the 2-jet of the
1-flat map F : R2, 0 → R2, 0 (i.e. without constant or linear terms) whose graph,
in orthogonal co-ordinates, is locally the surface M. As the flat geometry of surfaces
is affine invariant [5], an alternative approach for studying the geometry of surfaces
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in R4 is given in [4]. It uses the pencil of the binary forms determined by the pair
(Q1, Q2). Each point on the surface determines a pair of quadratics (Q1, Q2) = (ax2 +
2bxy + cy2, lx2 + 2mxy + ny2). A binary form Ax2 + 2Bxy + Cy2 is represented by
its coefficients (A,B,C) ∈ R3, where the cone B2 − AC = 0 corresponds to perfect
squares. If the formsQ1 andQ2 are independent, they determine a line in the projective
plane RP 2 and the cone a conic. This line meets the conic in 0,1,2 points according
as δ(p) < 0,= 0, > 0, with

δ(p) = (an− cl)2 − 4(am− bl)(bn− cm).

A point p is said to be elliptic/parabolic/hyperbolic if δ(p) < 0/ = 0/ > 0. The set of
points (x, y) where δ = 0 is called the parabolic set of M and is denoted by ∆. If Q1

and Q2 are dependent, the rank of the matrix

(

a b c
l m n

)

is 1 provided either of the

forms is non-zero; the corresponding points on the surface are referred to as inflection
points. (All the above notions agree with those defined using the curvature ellipse.)

Since the flat geometry is affine invariant, we consider the action of G = GL(2,R)×
GL(2,R) on the pairs of binary forms (Q1, Q2). The G-orbits (see for example [13])
and the characterisation of the corresponding point on the surface are as follows:

(x2, y2) hyperbolic point
(xy, x2 − y2) elliptic point

(x2, xy) parabolic point
(x2 ± y2, 0) inflection point

(x2, 0) degenerate inflection
(0, 0) degenerate inflection

The geometrical characterisation of points on M using singularity theory is first
carried out in [16] via the family height functions. Recall that the family of height
functions on M is given by

h : M × S3 → R

(p, v) 7→ h(p, v) = < p, v >

where S3 denotes the unit sphere in R4. The height function hv is singular if and only
if v ∈ NpM . It is shown in [16] that elliptic points are non-degenerate critical points of
hv for any v ∈ NpM . At a hyperbolic point, there are exactly two directions in NpM ,
labelled binormal directions, such that p is a degenerate critical point of the corre-
sponding height functions. The two binormal directions coincide at a parabolic point.
A hyperplane orthogonal to a binormal direction is called an osculating hyperplane.

The direction of the kernel of the Hessian of the height functions along a binormal
direction is an asymptotic direction associated to the given binormal direction ([16]).
The asymptotic directions are labelled conjugate directions in [15], and are defined as
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the directions along θ such that the curvature vector η(θ) is tangent to the curvature
ellipse (see also [11, 16]). So if p is not an inflection point, there are 2/1/0 asymptotic
directions at p depending on p being a hyperbolic/parabolic/elliptic point. If p is an
inflection point, then every direction in TpM is asymptotic ([16]). The configurations
of the asymptotic curves at inflection points of imaginary type (where ∆ has an A+

1 -
singularity) are given in [11], and the configurations at inflection points of real type
(where ∆ has an A−

1 -singularity) and at other points on the curve ∆ are given in [7].
Asymptotic directions can also be described as in [19] and [4] via the singularities

of the projections of M to hyperplanes. The family of projections is given by

Π : M × S3 → TS3

(p, v) 7→ (v, p− < p, v > v).

For v fixed, the projection can be viewed locally at a point p ∈ M as a map germ
πv : R2, 0 → R3, 0. If we allow smooth changes of coordinates in the source and target
(i.e. consider the action of the Mather group A) then the generic singularities of πv

are those that have Ae-codimension ≤ 3 (which is the dimension of S3). These are
listed in Table 1 (see [18]).

Table 1: Generic local singularities of the projection of M to a 3-space ([18]).

Name Normal form Ae-codimension
Immersion (x, y, 0) 0
Crosscap (x, y2, xy) 0
B±

k (x, y2, x2y ± y2k+1), k = 2, 3 k
S±

k (x, y2, y3 ± xk+1y), k = 2, 3 k
C±

k (x, y2, xy3 ± xky), k = 3 k
Hk (x, xy + y2k+2, y3), k = 2, 3 k

The projection πv is singular at p if and only if v ∈ TpM . The singularity is
a cross-cap unless v is an asymptotic direction at p. The codimension 2 singularities
occur generically on curves on the surface and the codimension 3 ones at special points
on these curves (see Figure 1 for their configurations at non inflection points). The
H2-curve coincides with the ∆-set ([4]). The B2-curve of πv, with v asymptotic, is
also the A3-set of the height function along the binormal direction associated to v
([4]). This curve meets the ∆-set tangentially at isolated points ([7]) and intersects
the S2-curve transversally at a C3-singularity. At inflection points the ∆-set has a
Morse singularity and the configuration of the B2 and S2-curves there is given in [4].

Definition 2.1 We say that a point p ∈ M is v-pre-parabolic if πv(p) is a parabolic
point of πv(M). The set of v-pre-parabolic points is called the v-pre-parabolic set
(v-PPS for short).

4



B2-curve

B3

S2-curve

S3

C3

B1 = S1

B1 = S1

∆ = H2
H3

Hyperbolic region

Elliptic region

Parabolic curve

Figure 1: Special curves and points on a surface in R4, away from inflection points.

Suppose that M is parametrised locally at a point p by a smooth map φ : U ⊂
R2 → R4. We denote by (x, y) the coordinates in R2 and use subscripts for partial
differentiation. Then the expression for the v-PPS is as follows.

Lemma 2.2 The v-pre-parabolic set is given by

Pv(x, y) = (det(v, φx, φy, φxx) det(v, φx, φy, φyy) − det(v, φx, φy, φxy)
2)(x, y) = 0.

Proof Given three vectors X, Y, Z in R4, we have

det(v,X, Y, Z) = det(πv(X), πv(Y ), πv(Z)),

where the determinant in the right hand side is taken with respect to the orientation
induced by v in its normal hyperplane. The image πv(M) is parametrised by ψ = πv◦φ
and hence its parabolic set in U is given by the vanishing of

Pv(x, y) = det(ψx, ψy, ψxx) det(ψx, ψy, ψyy) − det(ψx, ψy, ψxy)
2

= det(v, φx, φy, φxx) det(v, φx, φy, φyy) − det(v, φx, φy, φxy)
2.

2

Changing the parametrisation of the surface and making affine changes of coordi-
nates in R4 transforms the surface πv(M) to one whose pre-parabolic set has the same
structure as that of v-PPS. Let φ : R

2, 0 → R
4, 0 be a local parametrisation of M , A

an affine transformation in R4 and h : R2, 0 → R2, 0 a germ of a diffeomorphism. (We
also denote by A the associated linear transformation to A.) We consider the Av-PPS
of the surface M ′ parametrised by A(φ ◦ h). If we denote this set by QAv, then we
have the following relation, where K denotes the contact group (see for example [24]
for a definition).
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Lemma 2.3 The germs Pv and QAv are K-equivalent.

Proof The proof follows by using Lemma 2.2 and observing that

QAv(x, y) = det(A)2Jac(h)4Pv(h(x, y)).

2

So we are interested in the K-singularities of the function Pv(x, y) in Lemma 2.2.
The R-singularities (smooth changes of coordinates in the source) are classified by
Arnold (see [1]). The simple R and K-singularities coincide and are as follows.

Table 2. K-simple singularities of functions ([1]).
Name Ak Dk E6 E7 E8

Normal form x2 ± yk+1, k ≥ 0 x2y ± yk−1, k ≥ 4 x3 + y4 x3 + xy4 x3 + y5

We also need the following unimodal K-singularities from [25] which are also unimodal
R-singularities ([1]. The notation in the table below are from [1]).

Table 3. K-unimodular singularities of functions ([1, 25]).
Name J10 X1,0 X1,1 Y 1

1,1

Normal form x3 + ax2y2 + y6 x4 + ax2y2 + y4 x4 + x2y2 + ay5 x5 + ax2y2 + y5

4a3 + 27 6= 0 a2 − 4 6= 0 a 6= 0 a 6= 0

The above singularities can also be written as Tp,q,r : xp + yq + λx2y2 with r = 2,
(p, q) = (3, 6), (4, 4), (4, 5), (5, 5) (see [25]).

Remark 2.4 The flat geometry of a smooth submanifold in R
n (i.e. the geometry re-

lated to its contact with k-dimensional planes) and that of its projection to a subspace
of Rn are clearly related in some cases. Let X be a smooth m-dimensional manifold in
Rn and π1 : Rn → Rp be a linear projection with π1|X of maximal rank at p ∈ X. Let
π2 : Rp → Rq be another linear projection. Then the contact of π1(X) with ker π2 at
π1(p) is the same as that of X with ker π1⊕ker π2 at p. (If φ is a local parametrisation
of X, then the first contact is described by the singularities of π2 ◦ (π1 ◦ φ) and the
second by those of (π2 ◦ π1) ◦ φ.)

We shall use the following notation in the rest of the paper. The point p is cho-
sen to be the origin in R4 and the surface M is given locally at p in Monge form
φ(x, y) = (x, y, f 1(x, y), f 2(x, y)) with

f 1(x, y) = Q1(x, y) +
∑n

i=3
c3ix

3−iyi +
∑n

i=4
c4ix

4−iyi + · · ·
f 2(x, y) = Q2(x, y) +

∑n

i=3
d3ix

3−iyi +
∑n

i=4
d4ix

4−iyi + · · · ,

and where the pair of quadratics (Q1, Q2) are taken in normal forms as in §2. The
surface πv(M) is considered in a 3-dimensional affine space through the origin in R4

and transverse to v. Some calculations in this paper are carried out using the computer
algebra packages Maple and Mathematica.
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3 Projecting along a non-tangent direction

We consider in this section the case where v ∈ S3 is not a tangent direction at the
origin. We write v = vT +vN where vT is the orthogonal projection of v to the tangent
space TpM and vN is its orthogonal projection to the normal spaceNpM . Since vN 6= 0,
the image πv(M) is a smooth surface at πv(0).

Proposition 3.1 A point p ∈ M is v-pre-parabolic if and only if it is a non-elliptic
point and 〈v〉 ⊕ TpM is an osculating hyperplane of M at p, that is, if and only if vN

is a binormal direction at p.

Proof Given a local parametrisation φ ofM at p, the tangent space TpM is generated
by φx(p) and φy(p), therefore w = v ∧ φx(p) ∧ φy(p) ∈ NpM \ {0}. Let hw be the
corresponding height function, so that for any X ∈ R

4, we have

det(v, φx(p), φy(p), X) = 〈w,X〉 = hw(X).

By Lemma 2.2, p is v-pre-parabolic if and only if the determinant of the Hessian of
hw is zero, if and only if w is binormal. The result follows by observing that the
orthogonal hyperplane to w is precisely 〈v〉 ⊕ TpM . 2

Proposition 3.2 Suppose that p is a hyperbolic point and vN is one of the binormal
directions at p.

(i) For a generic surface M and a generic point p in its hyperbolic region, the
v-PPS is smooth at p. The tangent line to the v-PPS at p can be in any direction
except the asymptotic direction not associated to vN .

(ii) The v-PPS is tangent to the asymptotic direction not associated to vN if and
only if p is on the B2-curve, if and only if πv(p) is a cusp of Gauss of πv(M).

(iii) For a generic surface, the v-PPS can have singularities of type A1, A2 or A3

on the B2-curve.

Proof We take the surface in Monge form as in §2, with (Q1, Q2) = (x2, y2) and
vN = (0, 0, 1, 0), so v = (α, β, 1, 0). The asymptotic direction associated to vN is
(0, 1, 0, 0) and the other asymptotic direction is (1, 0, 0, 0). The 1-jet of the v-PPS is
given, after scaling, by

j1Pv(x, y) = 2d30x+ (2β + d31)y.

We have d30 = 0 if and only if the height function along the other binormal direction
has an A3-singularity (i.e. the projection along (1, 0, 0, 0) has a B≥2-singularity, [4]).
Following Remark 2.4, this means that the image πv(M) has a cusp of Gauss at πv(p).
It is clear that when d30 6= 0, the tangent line to the v-PPS can be along any direction
except (1, 0, 0, 0). (When β = −d31/2, the v-PPS is tangent to the asymptotic direction
associated to vN .)
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When d30 = 0 and β = −d31/2 the v-PPS becomes singular. Then j2Pv(x, y) is
given, after scaling, by

3(4d40 − d2

31)x
2 − 6(6d31c30 + d32d31 − d41)xy+2(d42 − d31c31 + d32α−

3

2
d33d31 − d2

32)y
2.

The discriminant of the above quadratic form is

−24(4d40 − d2
31)d32α + 36(d31c30 + d32d31 − d41)

2 − 24(4d40 − d2
31)(d42 − d31c31 −

3

2
d33d31 − d2

32).

If d32(4d40 − d2
31) 6= 0, the singularity of the v-PPS is of type A1 for all values of

α, except one. For the exceptional value of α and for generic points on the B2-curve
the singularity of the v-PPS becomes an A2. At special points on the B2-curve it can
degenerate further to an A3.

If d32(4d40 − d2
31) = 0, that is, if p is a C3-singularity of the projection along

(1, 0, 0, 0) (when d32 = 0) or an A4-point of the height function along (0, 0, 0, 1) (when
4d40 − d2

31 = 0), then the singularity of the v-PPS is generically of type A1. 2

Remark 3.3 A calculation shows that for generic surfaces, the family P (x, y, v) =
Pv(x, y), with v near the initial direction, is a versal unfolding of all the singularities of
the v-PPS in Proposition 3.2 (see for example [10] for a definition of a versal unfolding).

Proposition 3.4 Suppose that p is a parabolic point (i.e. p ∈ ∆) and vN is the unique
binormal direction at p.

(i) Away from the inflection points, the v-PPS is a smooth curve tangent to the
∆-curve at p. Furthermore, its tangent direction is independent of v. At a B2-point on
∆, there are two possible generic configurations of the triple ∆, the B2-curve and the
v-PPS. The B2-curve lies in the region delimited by the v-PPS and ∆ or the v-PPS
lies in the region delimited by the B2-curve and ∆.

(ii) The v-PPS has a Morse singularity at an inflection point (and so does ∆).
The singularity type (A+

1 or A−
1 ) is independent of that of ∆. When both sets have an

A−
1 -singularity, their branches are generically transverse.

Proof Here we take (Q1, Q2) = (x2, xy). Then the 1-jet of the v-PPS is given, after
scaling, by d32x + 3d33y. This coincides, up to scalar multiple, with the 1-jet of the
∆-set. The remaining statements follow by analysing the 2-jets of the appropriate
curves. 2

Remark 3.5 We observe that the family P (x, y, v) = Pv(x, y) with v near the initial
direction is not a versal unfolding of the Morse singularity of v-PPS at an inflection
point. We have cone sections as v varies in S3 (see §5 for more details).
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4 Projecting along a tangent direction

We consider now the case where v is a tangent direction at the origin. We first assume
that v is not an asymptotic direction, so the image πv(M) is a cross-cap.

Theorem 4.1 Suppose that v ∈ TpM but is not an asymptotic direction (in particular,
p is not an inflection point).

(i) The v-PPS has a Morse singularity if p /∈ ∆. Furthermore, the singularity is of
type A−

1 , i.e. πv(M) is an elliptic cross-cap, if p is a hyperbolic point and of type A+

1 ,
i.e. πv(M) is a hyperbolic cross-cap, if p is an elliptic point (Figure 2).

(ii) At a generic point on ∆ the v-PPS has an A2-singularity, i.e. πv(M) is a
parabolic cross-cap (Figure 2). At the point of tangency of the B2-curve with ∆, the
singularity of the v-PPS becomes an A3.

(iii) The tangent directions to the v-PPS are along the asymptotic directions to M
at p.

Hyperbolic

Elliptic

Hyperbolic cross-cap

Elliptic cross-cap

Parabolic cross-cap

∆

M

πv(M)

πv(M)

πv(M)

Figure 2: The three types of cross-caps of πv(M) and their parabolic sets.
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Proof We follow the same notation as in previous section. Suppose that p is a
hyperbolic point, so we can take (Q1, Q2) = (x2, y2). The asymptotic directions are
(1, 0, 0, 0) and (0, 1, 0, 0). We consider a tangent vector v = (α, β, 0, 0) which is not an
asymptotic direction, that is, αβ 6= 0. The 2-jet of the v-PPS is given by

j2Pv(x, y) = −16αβxy,

which has an A−
1 -singularity. It is clear that its tangent directions coincide with the

asymptotic directions of M at the origin.
Analogously, if p is an elliptic point, we take (Q1, Q2) = (xy, x2 − y2) and v =

(α, β, 0, 0), with α2 + β2 = 1. (Recall that there are no asymptotic directions at an
elliptic point.) The 2-jet of the v-PPS is given by

j2Pv(x, y) = −4(x2 + y2)

and this has A+

1 -singularity, that is the v-PPS is locally an isolated point.
Consider now the case where p ∈ ∆. We take (Q1, Q2) = (x2, xy) and let v =

(α, β, 0, 0) be a tangent vector with α 6= 0 (α = 0 would give the unique asymptotic
direction). We have

j2Pv(x, y) = −4α2x2,

so the v-PPS has an Ak-singularity, with k ≥ 2. Note that we have one tangent
direction to the v-PPS which is exactly the unique asymptotic direction at the origin.
A computation shows that the coefficient of y3 in j3Pv(x, y) is 12c33α

2. Hence, for
a generic point on the ∆-curve the v-PPS has an A2-singularity. The points where
c33 = 0 correspond to points of tangency of ∆ and the B2-curve (see [4]) and at these
points the v-PPS has generically an A3-singularity. 2

Suppose now that v is an asymptotic direction, so the image πv(M) has a singularity
worse than a cross-cap.

Theorem 4.2 Suppose that v is an asymptotic direction at p.
(i) Let p be a hyperbolic point. Then the singularities of the v-PPS at p distinguish

between the singularities of πv. The correspondence between the singularities of the
v-PPS and those of πv are as follows:

Singularities of the v-PPS D4 D5 D6 E7 J10 X1,0

Singularities of πv B1 B2 B3 S2 S3 C3

(ii) The v-PPS has a D5-singularity at generic points on ∆. It has a J10-singularity
at the point of tangency of the B2-curve with ∆.

(iii) Projecting along a tangent direction at an inflection point yields a v-PPS with
a singularity of type X1,0 or worse. The singularity is generically of type X1,0 except
for a finite number of directions (2, 4 or 6) in the tangent plane. Along these directions
the singularity of the v-PPS is generically of type X1,1.
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Proof (i) We take, as above, (Q1, Q2) = (x2, y2) and v to be one of the asymptotic
directions, for instance, v = (1, 0, 0, 0). The 3-jet of the v-PPS is given, after scaling,
by

j3Pv(x, y) = 3d30x
3 − d32xy

2.

If both coefficients d30 and d32 are not zero, the projection πv has a singularity of type
S1 = B1 (see [4]) and Pv has a D4-singularity.

If d30 = 0 and d32 6= 0, the point belongs to the B2-curve and the v-PPS has a Dk-
singularity, with k ≥ 5. In fact, the coefficient of x4 in j4Pv(x, y) is a scalar multiple
of d2

31 − 4d40. If this coefficient is not zero, Pv has a D5-singularity and the projection
has a B2-singularity. Otherwise, the singularities of Pv and of the projection become
generically of type D6 and B3 respectively.

If d30 6= 0 and d32 = 0, the point belongs to the S2-curve. Then the coefficient of
y4 in j4Pv(x, y) is zero and the coefficient of xy3 is a scalar multiple of c32d31 − d43.
If this coefficient is not zero, Pv has an E7-singularity. A computation shows that
this condition corresponds exactly to the condition for the projection to have an S2-
singularity. If c32d31−d43 = 0, πv has generically an S3-singularity and Pv a singularity
of type J10.

If d30 = d32 = 0, the projection has a C3-singularity and Pv has generically an
X1,0-singularity.

(ii) Suppose that p ∈ ∆ and take (Q1, Q2) = (x2, y2) and v = (0, 1, 0, 0). Then the
3-jet of the v-PPS is given by

j3Pv(x, y) = 4(c32x
3 + 3c33x

2y).

At generic points on ∆, c33 6= 0 and the v-PPS has a Dk-singularity. The coefficient
of y4 in j4Pv(x, y) is −9c233, hence Pv has a D5-singularity. If c33 = 0 the point in
consideration is a point of tangency of ∆ and the B2-curve. In this case, Pv has
generically a J10-singularity.

(iii) We consider finally the case when p is an inflection point. We take (Q1, Q2) =
(x2 ± y2, 0) and v = (α, β, 0, 0), with α2 + β2 = 1. In this case, the 4-jet of the v-PPS
is in the form

j4Pv(x, y) = C0(α, β)x4 + C1(α, β)x3y + C2(α, β)x2y2 + C3(α, β)xy3 + C4(α, β)y4,

where Ci(α, β) are quadratic polynomials in α, β whose coefficients are polynomials
in d30, . . . , d33. The discriminant of j4Pv(x, y) is given by D0(α, β)D1(α, β), where
Di(α, β) are cubic polynomials in α, β whose coefficients are again polynomials in
d30, . . . , d33. It follows that for generic coefficients d30, . . . , d33, there are 2, 4 or 6
directions in the (α, β)-plane where j4Pv(x, y) has multiple roots. Away from these
directions, Pv(x, y) has a singularity of type X1,0, while for such directions, it has an
X1,1-singularity. 2

11



We analyse now in detail the subsets of the set of cubics d30x
3 + . . .+ d33y

3 where
we have 2, 4 or 6 special directions.

At an inflection point of imaginary type ((Q1, Q2) = (x2 + y2, 0)) we can write the
cubic d30x

3 + . . . + d33y
3, by a rotation of the coordinate axes and rescaling, in the

form ℜ{z3 + γz2z}, where z = x + iy and γ ∈ C. There are exceptional curves in
the γ-plane that separate the regions corresponding to cubics where we have 2, 4 or
6 directions of projections for which the v-PPS has an X1,1-singularity. These are the
hypocycloids γ = 2e2iθ +e−4iθ and γ = −3(e−4iθ +2e2iθ), the circle |γ| = 3 and the line
segments arg γ = 0, π

3
, 2π

3
(Figure 3, left). On these curves, there is a double direction

where the singularity is worse than X1,1. (If v is not one of the exceptional directions,
then the v-PPS has an X1,0-singularity.)

In [4] is given a partition of the γ-plane into regions corresponding to cubics where
there are a certain number of directions v in TpM yielding singularities of type B2 or
S2 of πv (see Figure 3, left). It is not hard to show that such directions coincide with
the directions where the v-PPS has an X1,1-singularity.

2

4

6

4

1B2-1S2

1B2-3S2

3B2-3S2

2

4

6

a

b

4

6

4

6

6

4

4

4

4

4

4

1B2-1S2

1B2-3S2

3B2-3S2

3B2-3S2

3B2-3S2

3B2-3S2

3B2-1S2

Figure 3: Partition of the γ-plane left and of the (a, b)-plane right. The encircled
numbers indicate the number of directions yielding X1,1-singularities of the v-PPS.

Analogously, at an inflection point of real type ((Q1, Q2) = (x2−y2, 0) ∼G (xy, 0)),
we take as in [4] the cubic d30x

3+. . .+d33y
3 in the form x3+ax2y+bxy2+y3, with a, b ∈

R. There is a curve in the (a, b)-plane that separates the regions where there are 2, 4 or
6 special directions of projections. This is given by (ab−81)2 −4(b2 +9a)(a2 +9b) = 0
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(thick continuous in Figure 3 right). There are also other exceptional curves in Figure
3, right: the diagonal a − b = 0 (thin dashed), the hyperbola ab − 9 = 0 (thin
continuous), and the curve 729 + 8a3 + 54ab + a2b2 + 8b3 = 0 (thick dashed). These
curves altogether give the set where the cubics D0(α, β) and D1(α, β) in the proof of
Theorem 4.2 either have a multiple root or have a root in common. Again, on the
exceptional curves there is a double direction for which the singularity of the v-PPS
is more degenerated than X1,1. (If v is not an exceptional direction, then the v-PPS
has an X1,0-singularity.)

Figure 3 right also indicates the number of B2 and S2 singularities of the projections
as given in [4].

5 Bifurcations in the v-PPS

We describe in this section how the v-PPS changes as the direction of projection
varies near the initial one. As pointed out in the proof of Proposition 3.2, when p is a
hyperbolic point and v0 is not a tangent direction, the family Pv with v varying in S3

near v0 is a K-versal unfolding of the singularity of Pv0
. Therefore the deformations

of Pv0
are modelled by those of a K-versal deformation of a plane curve singularity.

If p is on the curve ∆ but is not an inflection point and v0 is not a tangent direction,
then the structure of the v-PPS is stable (Proposition 3.4).

When p is an inflection point and v0 is not a tangent direction, Pv is no longer
a versal unfolding of the Morse singularity of Pv0

. Here we have sections of a cone
as v varies in S3 near v0. The parabolic set on πv(M) is the discriminant of the
equation of the asymptotic directions on πv(M) (see for example [7]). The equation
is in the form a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0 and when p is an inflection
point, all the coefficients of the equation vanish at p ([7, 11]). The discriminant of the
equation is the determinant of the symmetric matrix formed by its coefficients. In fact
we have a family of symmetric matrices parametrised by (x, y). The singularities of
the discriminant are studied in [3] by considering the action of a group H on the set
of families of symmetric matrices Rn, 0 → S(n,R). The group H consists of smooth
changes of parameters in the source and parametrised conjugation in the target. It
turns out that the family Pv induces an H-versal deformation of the singularity of
the symmetric matrix of the asymptotic directions of πv0

(M) at p. Therefore the
discriminant (and hence the v-PPS) undergoes the transitions given by sections of a
cone ([3]).

When v0 is a tangent direction, Pv is never a K-versal deformation of Pv0
. (For

example in Theorem 4.2, the singularities are of K-codimension greater than 3, so they
cannot be versally unfolded by Pv.) We shall describe below how the v-PPS changes
as v varies in TpM near v0 ∈ TpM .

If v0 is not an asymptotic direction and p /∈ ∆, then Pv is K-equivalent to Pv0
,

i.e. we have a trivial local deformation so the v-PPS has one of the singularities in
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Theorem 4.1(i). If p ∈ ∆, then the changes in the v-PPS are sections of a Whitney
umbrella, see Figure 4 and Theorem 4.1(ii).

Hyperbolic cross-cap Elliptic cross-capParabolic cross-cap

↔
↔

↔↔

Figure 4: A change from a hyperbolic to an elliptic cross-cap at a parabolic cross-cap
of the surface πv(M) (bottom) and the corresponding transitions on the v-PPS (top).

Suppose now that v0 is an asymptotic direction and p is not an inflection point.
We take the surface in Monge form (x, y, f 1(x, y), f 2(x, y)) at the origin. We suppose
that v0 = (0, 1, 0, 0) and take v = (u, 1, 0, 0). We compute the relevant jets of Pv in
Lemma 2.2 and deduce the bifurcations in this set as u varies near zero. These are as
shown in Figure 5 when p is not a parabolic point and in Figure 6 for the case when
p is a parabolic point but not an inflection point.

At an inflection point, v can vary in S1 ⊂ TpM . There are several cases to con-
sider depending on the position of the cubic d30x

3 + . . . + d33y
3 in the γ-plane or the

(a, b)-plane (see proof of Theorem 4.2 and Figure 3). Figure 7 shows an example of
bifurcations at each type of inflections.

For an inflection of real type we take γ = i in Figure 3 left, so the point γ is in the
region 1B2 − 3S2 with 4 exceptional directions for which the singularity of the v-PPS
is of type X1,1. Figure 7 (left) shows the bifurcations in the v-PPS at one of these
exceptional directions.

For an inflection of real type we take a = 6, b = 0 in Figure 3 right, so the point
(a, b) is in the region 1B2 − 3S2 with 4 exceptional directions for which the singularity
of the v-PPS is of type X1,1. Figure 7 (right) shows the bifurcations in the v-PPS at
one of these exceptional directions. In both examples, and for genericity reasons, the
4-jet of the parametrisation of the surface must contain some degree 4 terms.
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Figure 5: Bifurcations of the v-PPS at generic singularities of the projection πv away
from parabolic points.

D5 ↔↔

J+

10 ↔↔

J−

10

↔↔

Figure 6: Bifurcations of the v-PPS at a non-inflection parabolic point. The singular-
ities are those of the v0-PPS (see Theorem 4.2).

↔↔
↔↔

Figure 7: Examples of bifurcations of the v-PPS at an inflection point of imaginary
type (left) and of real type (right).
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The pictures in Figures 4 are computer generated and those in Figures 5, 6 and 7
are drawings from computer generated pictures.
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