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Abstract

We define and study in this paper families of conjugate and reflected curve
congruences associated to a self-adjoint operator A on a smooth and oriented
surface M endowed with a Lorentzian metric g. These families trace parts of the
pencil joining the equations of the A-asymptotic and the A-principal curves, and
the pencil joining the A-characteristic and the A-principal curves respectively.
The binary differential equations (BDEs) of these curves can be viewed as points
in the projective plane. Using the polar lines of various BDEs with respect to the
conic of degenerate quadratic forms, we obtain geometric results on the above
pencils and their relation with the metric g, on the type of solutions of a given
BDE and of its A-conjugate equation, and on BDEs with orthogonal roots.

1 Introduction

Let M be a smooth and orientable surface in the Euclidean space R? and N : M — S?
its Gauss map. The shape operator S, = —(dN), : T,M — T,M, p € M, is a self-
adjoint operator and determines three pairs of foliations on M in the following way. As
T,M inherits the Euclidean scalar product “.”, it has a basis of orthonormal vectors
given by the eigenvectors of S,. The directions of these vectors are called the principal
directions and their integral curves are the lines of principal curvature. Two tangent
directions u, v € T,M are conjugate if S,(u).v = 0. A direction u € T,,M is asymptotic
if it is self-conjugate, i.e., if S,(u).u = 0. There are two asymptotic directions at hyper-
bolic points (these are points where the Gaussian curvature K = det(S,) is negative)
and their integral curves are called the asymptotic curves. At an elliptic point (where
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K > 0) there is a unique pair of conjugate directions for which the included angle
is extremal ([6]). These directions are called the characteristic directions and their
integral curves the characteristic curves. The three pairs asymptotic, characteristic
and principal foliations are given, in a local chart, by (quadratic) Binary Differential
Equations (BDEs). These are equations in the form

(w) : a(x,y)dy* + 2b(x,y)dxdy + c(x,y)dz* = 0, (1)

where a, b, ¢ are smooth functions in some open set U of R?. The set where b*> —ac = 0
is called the discriminant of the BDE. In this paper, if (w) denotes a given BDE (1)
then w denotes the left hand side of the same equation.

In [7] (resp. [3, b]) is constructed a natural 1-parameter family of BDEs, called
conjugate curve congruence (resp. reflected conjugate curve congruence) and denoted
by (Ca) (resp. (Ra)), which links the equation of the asymptotic (resp. characteristic)
curves and that of the lines of principal curvature of M. (There is no natural family
that links the equations of the asymptotic and characteristic curves; see Remark 6.4(3)
in [5].) The family (C,) (resp. (R,)) is obtained by seeking directions in the tangent
plane T, M that make an oriented angle o with their conjugate directions (resp. with
the reflection of their conjugate directions with respect to a principal direction).

The families (C,) and (R,) have another interesting geometric interpretation ([5]).
A BDE (1) can be viewed as a quadratic form and represented at each point in U by
the point (a(z,y) : 2b(z,y) : ¢(x,y)) in the projective plane. Let I denote the conic of
degenerate quadratic forms. To a point in the projective plane is associated a unique
polar line with respect to I', and vice-versa. A triple of points is called a self-polar
triangle if the polar line of any point of the triple contains the remaining two points. It
turns out that, at non-parabolic and non-umbilic points on M, the triple asymptotic,
characteristic and principal curves BDEs form a self-polar triangle. Also, the family
of BDEs (C,) (resp. (R.)) as « varies in [—7/2,7/2] parametrises the whole pencil
joining the principal and asymptotic (resp. characteristic) BDEs.

Now, the concepts of asymptotic, characteristic and principal foliations on a surface
M C R? are derived from the fact that S, is a self-adjoint operator with respect to
the Riemannian metric on M. This means that one can associate the same concepts
to a self-adjoint operator on a smooth surface M endowed with a metric g which is
not necessary Riemannian ([10, 15]).

In this paper, we suppose that M is endowed with a Lorentzian metric g and
consider a self-adjoint operator A on (M, g), that is, a smooth map TM — TM
with the property that its restriction A, : T,M — T,M is a linear map satisfying
g(A,(u),v) = g(u, Ay(v)) for any p € M and any u,v € T,M. Our aim is to define, as
in [3, 5, 7], families of BDEs that link the BDE of A-asymptotic (resp. A-characteristic)
curves and that of the lines of A-principal curvature. For this, we use the concept of A-
conjugacy and say that two directions u,v € T,M are A-conjugate if g(A,(u),v) = 0,
and the concept of oriented hyperbolic angle between two non-lightlike directions.



We prove in Theorem 3.2 (resp. Theorem 4.2) that there are at most two directions
in 7, M that make an oriented angle a with their conjugate directions (resp. with the
reflection of their conjugate directions with respect to an A-principal direction). This
yield two families of BDEs that we call Lorentzian conjugate curve congruence (resp.
Lorentzian reflected conjugate curve congruence) and denote by (LC") (resp. (LR.)),
i=1,2.

The families (£C) and (LC?) (we have also similar results for the families (LR
and (LR?)) are best understood by considering pencils of forms in the projective plane
(§5). At each point on M, the families (£CL) and (LC?), a € R, parametrise two
disjoint open intervals of the pencil joining the A-asymptotic BDE and the lines of
A-principal curves BDE. The union of the closure of these intervals is the full pencil.
The boundary BDEs £C! = £LC?  and LCL = LC? _ have the property that one
of the solution curves of one BDE is a lightlike foliation and one of the solution curves
of the other is the other lightlike foliation of M. The A-asymptotic BDE is a member
of (LCY) and the lines of A-principal curves BDE a member of (£C?). Therefore,
the BDEs (£LCL_ ) form an obstruction for linking the A-asymptotic and A-principal
curves BDEs via the families of conjugate curves congruence. This phenomenon is
explained in more details in Theorem 5.2. We show in §5 (Theorem 5.3) that the
various BDEs considered here are completely determined by the lightlike curves BDE
and its A-conjugate BDE. We also obtain results on BDEs with orthogonal roots
(Theorem 5.5) and on the A-conjugate BDE of a given BDE (Theorem 5.7).

Our results apply to, for example, the foliations determined by the shape operator
of a timelike surface in the Minkowski R3; the shape operator along a normal vector of
a timelike surface in the Minkowski R}; the shape operator derived from the de Sitter
Gauss map ([8]) of a timelike surface in the de Sitter space S; C R}. The approach of
considering general self-adjoint operators deals with all these cases (and others that
we do not list here) in a unified way. It is also worth pointing out that this approach

lead in [15] to a new definition of lines of principal curvature on a smooth surface in
R%.

2 Preliminaries

Let M be a smooth and orientable surface endowed with a Lorentzian metric g. We
say that a vector v € T,M is spacelike if g(v,v) > 0, lightlike if g(v,v) = 0 and timelike
if g(v,v) < 0. The norm of a vector v € T,M is defined by ||v|| = /|g(v,v)|.

Let r: U — M be a local parametrisation of M, where U is an open subset of R2.
The first fundamental form of M at a point p is the quadratic form I, : T,M — R
given by I,(v) = g(v,v). If p € r(U) and v = ar, +br,, then I,(v) = Ea*+2Fab+ GV?,
where

E:g(rfmrr)? F:g(rw,ry), G:g(ry7ry)7



are the coefficients of I, with respect to the parametrisation r.

As g is Lorentzian, EG — F? < 0 on M. This means that there are two linearly
independent lightlike directions in 7,M at all points p € r(U). These are determined
by the BDE

(L): Gdy* +2Fdydx + Eda* =0 (2)

We call (L) the lightlike BDE and its solutions the lightlike foliations. We can
take a local chart at any point on M in such a way that the coordinate curves are
the lightlike curves (see Theorem 3.1 in [10]). In this chart, £ = G = 0 and F is
strictly positive or negative function. This parametrisation will prove very useful in
subsequent sections.

Given a self-adjoint operator A : TM — T'M, we denote by A, the restriction of
A to T,M. If v = ar, + br,, then g(A,(v),v) = la* + 2mab + nb*, where

l=g(Ap(rs),rs), m = g(Ap(rs), 1) = g(Ay(ry),12), n = g(Ay(r,), 1)

are referred to as the coefficients of A,. We still denote by A, the matrix of the linear
operator A, with respect to the basis {r,,r,}. This matrix is given by

Apzﬁ(—GF _EF)(L?Z) )

Because ¢ is Lorentzian, the self-adjoint operator A, does not always have real
eigenvalues. When it does, we denote them by k;, © = 1,2 and call them the A-
principal curvatures. The eigenvectors of A, are called the A-principal directions and
the integral curves of their associated line fields are called the lines of A-principal
curvature. The equation of the lines of A-principal curvature is analogous to that of
surfaces in R? and is given by

(P): (Fn—Gm)dy* + (En — Gl)dydx + (Em — Fl)dx* = 0. (4)

A direction u € T,M is said to be A-asymptotic if g(A,(u),u) = 0. It follows that
the A-asymptotic curves (whose tangent at all points are A-asymptotic directions) are
solutions of the BDE

(A) . ndy* + 2mdydz + ldr* = 0. (5)

The A-characteristic directions/curves are defined in [10] using the results in [5].
These are given by the BDE which form a self-polar triangle with the A-principal and
A-asymptotic curves BDEs (see §5). It is simply the Jacobian of the asymptotic and
principal curves BDEs and is given by

(2m(mG — nF) —n(IG — nE))dy* + 2(m(IG + nE) — 2InF)dydz+

(©): (@m(mE — IF) — I(nE — 1G))dz? = 0. 0



Remark 2.1 The A-principal directions, when distinct, are orthogonal and one is
spacelike while the other is timelike. The generic local configurations of the lines of
A-principal curves, the A-asymptotic and A-characteristic curves are obtained in [10].

We denote the A-conjugate direction of a direction u by @ (so g(A,(u),a) = 0).
If we consider a parametrisation with £ = G = 0, i.e., the coordinate curves are the
lightlike foliations, then the conjugate of the lightlike direction r, is r, = mr, — Ir,
and that of r, is ¥, = nr, — mr,. Thus, T, is lightlike at a point p = r(g) if and
only if I(¢) = 0 or m(q) = 0. The condition {(¢) = 0 means that r, is self-conjugate
and p is on the discriminant of the BDE (4) which is labelled the Lightlike Principal
Locus (LPL) in [9, 10]. If we call H(p) = (IG —2mF +nkFE)/(2(EG — F?)) the A-mean
curvature at p, then the condition m(q) = 0 is equivalent to H(p) = 0 when r is as
above. When H(p) = 0, r, is parallel to the other lightlike direction. Also, observe
that when H(q) = 0, the A-characteristic directions at p are both lightlike and are
along r, and r,. We have thus the following result.

Proposition 2.2 Let A be a self-adjoint operator on a smooth surface M with a
Lorentzian metric g.
(1) A lightlike direction u at p is self-conjugate if and only if p is on the LPL and
w is the unique A-principal direction at p (which is also an asymptotic direction ).
(2) The conjugate of a lightlike direction w at p is the other lightlike direction at
p if and only if p is on the curve H = 0. At such points both lightlike directions are
A-characteristic directions.

We have more results on A-conjugacy in §5 (Theorem 5.7).

2.1 Angles in the Lorentzian plane

Consider the Minkowski plane R?, which is the vector space R? with the pseudo scalar
product g(u,v) = ujv; — ugve, where u = (uy, us) and v = (vq,vz). A timelike vector
u = (uy,us) is said to be future pointing if us > 0, otherwise it is said to be past-
pointing.

The positive Lorentzian group of R? (which acts transitively on R?\ 0) is generated

by the matrices
_( cosh(a) sinh(a)
F(a) = ( sinh(«) cosh(a) /’ @ cR.

The oriented hyperbolic angle o = Z(u,v) between two non-lightlike vectors u, v
in R? is defined in [1, 2, 12, 13] as follows, and has similar properties to the Euclidean
angle.

If u,v are both future or past pointing unit timelike vectors, then « is defined by
the relation R(a)).u = v and satisfies

cosh(a) = —g(u,v), sinh(a) = —g(u, Sv),
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WhereS:(1 0

U1 = Usp.
If u,v are both unit timelike vectors but one is a future pointing and the other is
a past pointing vector, then « is defined by the relation R(«).u = —v and satisfies

) is the Euclidean reflection with respect to the (lightlike) line

cosh(a) = g(u,v), sinh(a) = g(u, Sv).

If u,v are both unit spacelike vectors, Su and Sv are timelike and can point in
any direction. Then Z(u,v) := —Z(Su,Sv) if Su and Sv are pointing in the same
direction and Z(u,v) := Z(Su, Sv) otherwise.

If v and v are unit vectors of different type, and supposing that u is timelike, then
L(u,v) == —=Z(u, Sv).

For vectors u and v of arbitrary non zero lengths, we divide the above formulae by
the product of the lengths of v and v. For example, if u,v are both future pointing
timelike vectors

g(u,v)
[ul[]]v]|

~ g(u, Sv)
[ulll]ol]”

cosh(a) = — ) sinh(a) =

The notion of hyperbolic angle can of course be defined in any Lorentzian plane,
with pseudo scalar product g. If [; and [, are two lightlike independent vectors, then
er = 2(l1+12)/g(li+1a, 11 +12) and ey = 2(11 —13)/g(l1 —la, l1 — ) form an orthonormal
basis of the Lorentzian plane. We can suppose, without loss of generality, that e; is
spacelike, so ey is timelike. Then the Lorentzian plane, with the basis {e1,es}, can
be identified with the Minkowski plane R?. We proceed as in the case R} and the
formulae for the angle are the same as above, where g now denotes the pseudo scalar
product in the general Lorentzian plane.

Remarks 2.3 (1) The hyperbolic angle between a lightlike vector and any other vec-
tor is not well defined. If we fix u as a non lightlike vector and let v tend to a lightlike
vector, then Z(u,v) tends to +o0.

(2) For a Lorentzian surface M, we define the oriented angle between two tangent
directions at p as the angle between any of their respective directional vectors u and
v. The angle does not depend of the choice of the vectors as Z(u,v) = Z(—u,v) =
L(u,—v) = Z(—u, —v).

3 The Lorentzian conjugate curve congruence

We follow the approach in [5, 7| for surfaces in the Euclidean space but consider
instead oriented hyperbolic angles. We consider directions uw in T,M that make a
fixed oriented (hyperbolic) angle a with their A-conjugate directions u. We need to
consider two cases depending on whether v and u are of the same type (both spacelike
or timelike) or are of different types (one is spacelike while the other is timelike).

6



Definition 3.1 Let M be a smooth oriented Lorentzian surface and let PT M denote
the projective tangent bundle to M. Given a self-adjoint operator A on M, define
©;,: PTM — R, i = 1,2, by ©;(p,v) = a = Z(u,u), with i = 1 when u and its
A-conjugate direction uw are of the same type, and i = 2 when they are of different
types. The A-Lorentzian conjugate curve congruence, for a fized o, is defined to be
O; (), i = 1,2, and is denoted by LC:. (Note that ©;, i = 1,2, are not well defined
at points corresponding to A-asymptotic directions at A-parabolic points.)

We have the following result, where (P) and (A) are the BDEs (4) and (5) respec-
tively.

Theorem 3.2 The A-Lorentzian conjugate curve congruences are given by BDEs and
are as follows.
If uw and w are both spacelike or both timelike:

(LCY) - sinh(a)P + vV F? — EG cosh(a)A = 0.
If u 1s spacelike and u is timelike or vice-versa:
(LC?) - cosh(a)P + vV F? — EG sinh(a)A = 0.

Proof We take a local parametrisation r : U — M of the surface and write, without
loss of generality, u = r, + £ry, for a tangent direction v € T,M, and u = r, + nr, for
its A-conjugate direction, where ¢ and 7 are real numbers.

We start with the case where r, or r, is not lightlike. We assume that r, is spacelike

(the case when it is timelike follows similarly) and choose the following orthonormal

frame {e1,ex} = {\;—TE’ \/F?L—LEG(I.ZJ — £r,)} in T,M. The coordinates of u and @, with

respect to this frame, are

<E+§F {\/F2—EG)
)

S
|

VvVE '’ vE
0= <E+77F m/m)
VE ' vE )

We have g(A,(u),u) = 0, therefore
L+ (§+mm+ & =0,

and we get n = —(Em +1)/(En +m).
If u and u are spacelike, then

tanh (o) = — S ZEC

E4EF 0
_ _ oWF—EG _ _(émt)VF?-ECG
tanh(as) = =505 = fEmr T B

with oy = Z(u, e;) and g = Z(u,e1). Substituting in

tanh(a;) — tanh(ay)
tanh (o — -
an (041 a?) 1 — tanh<041) tanh(O@)
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the expressions for tanh(«;) and tanh(ay) as functions of £ we get

(sinh(a)(Fn — Gm) + ncosh(a)VF2 — EG)&* +
(sinh(a)(En — Gl) + 2mcosh(a)V F? — EG)E +
(sinh(a)(Em — Fl) + lcosh(a)VF? — EG) = 0.

Setting & = dy/dz and re-arranging the above equation yield the expression for
(LCY) in the statement of the theorem.
If u and u are timelike, then

E+¢F
tanh(Oél) = _NFQ—ETG7
_ ___E4qF _ {(En—mF)+Em—IF
tanh(az) = nWF:—EG ~—  (em+)VF2—-EG

Again, considering tanh(a; — as) yields the equation (£LC2) (which is the same as that
for the case when u and @ are spacelike).
If u is timelike and u is spacelike, then

E4+EF
tanh(ozl) = _E\/FQ—ETG
_  nWF?2-EG _ _(¢m+D)VF?-EG
tanh(as) = — E+nF  &(En—mF)+Em—IF’

and the expression for (£C?2) follows in an analogous way.

When both r, and r, are lightlike, we consider the orthonormal frame {e;,es} =
{rx—l-ry ry—ry

, and suppose e; spacelike. We then proceed as above. O
V2IF| \/2IF|}

Remarks 3.3 (1) Theorem 3.2 states that there are at most two directions in T, M
that make a fixed oriented angle o with their A-conjugate directions.

(2) For surfaces in the Euclidean space (and for self-adjoint operators on a Rie-
mannian surface in general), the conjugate curve congruence is given by

(Cq) @ cos(a)P +VEG — F?sin(a)A = 0.

Thus, the family (C,) contains both the asymptotic BDE (Cy) and the principal BDE
(C+z). However, in Theorem 3.2, (LCY) contains the BDE (L£LO}) of the A-asymptotic
curves but not the BDE of the lines of A-principal curves. Similarly, (£LC?2) contains
the BDE (L£C7}) of the lines of A-principal curves but not the BDE of the A-asymptotic
curves.

We analyse now the limit of (£C%), i = 1,2 as a — Zoo. If we divide both
equations by cosh a, we get lim,_, 4 EC; = lim,_ 4o EC’i = L4, which are given
by the BDEs

(LC1o) : +P +VF? - EGA=0.



The above equations have a property that becomes more apparent when considering a
special local parametrisation where the coordinate curves are lightlike, that is, when
E =G =0. Then, P = F(ndy* — ldz*) and we have (up to a factor of F),

(LC 1) : dy(mdx + ndy) = 0,
(LC_) : dx(ldx +mdy) =0

if F' > 0, otherwise the equations are interchanged. The BDEs (£C'+,) determine two
directions at each point, one is lightlike and the A-conjugate of the second direction
is the other lightlike direction. Thus, the angle between the directions determined by
these BDEs and their A-conjugate directions is infinite. (Theorem 5.2 sheds more light
as to why (LC1.) are obstructions for linking the A-asymptotic BDE with the lines
of A-principal curves BDE.)

4 The Lorentzian reflected congruence

A-Conjugation © = C(u) gives an involution on PT,M. Suppose that there are two
A-principal directions at p. (See Remark 4.3(2) for the case when there are no A-
principal directions at p.) Then, there is another involution u — R(u) on PT,M
which is simply reflection in (either of) the principal directions. We use, as in [5],
R o C to determine families of BDEs by asking that the angle between a direction u
and the image of R o C(u) = R(u) is constant.

Definition 4.1 Let M be a smooth oriented Lorentzian surface. Given a self-adjoint
operator A on M, define &, : PTM — R, i=1,2, by ®;(p,v) = a = ZL(u, R(w)), with
i =1 when u and R(u) are of the same type, and i = 2 when they are of different types.
The A-Lorentzian reflected curve congruence, for a fized «, is defined to be ®;'(a),
i = 1,2, and is denoted by LR!,. (Note that ®;, i = 1,2, are not well defined at points
(p,u) with §(p) < 0, where § is the discriminant of the lines of A-principal BDE.)

An alternative way of defining « at (p,u) is as the sum of the angles between u
and a principal direction e and % and e. This does not depend on the choice of the
principal direction. We have the following result, where (P) and (C) are the BDEs
(4) and (6) respectively.

Theorem 4.2 The A-Lorentzian reflected curve congruences are given by BDFEs and
are as follows.
If u and u are both spacelike or both timelike:

2Fm — Gl — En

1y . - _
(LR,) : cosh(a)C + R sinh(a)P = 0.




If u is spacelike and u is timelike or vice-versa:

2Fm — Gl — En

LR2) : inh(a)C +
R oo+ G

cosh(a)P = 0.

Proof We follow the setting in the proof of Theorem 3.2. Suppose that there are
two A-principal directions in r(U). These are the solutions of the BDE (4) and are
given by u; = Mr, + Msr, and uy = Nir, + Nor,, with

M1 :N1 = 2(Fn—mG),

My = —(En—1G) +/(En —1G)? — 4(Fn — mG)(Em — Fl),
Ny = —(En—IG) — \/(En —1G)? — 4(Fn — mG)(Em — Fl).

We use the orthonormal system {ey, e}, €; = w;/\/| g(ui,w;) |, i = 1,2, and assume
that e; is spacelike (see Remark 2.1). We write e; = My r, + Myr,, where M;; =

Mi/\/ | g(ul,ul) |, 7, = 1,2, and €y = NmI‘m —+ Nzgry, where Nz‘z = Nz/ | g(UQ,U2> |
1=1,2.
The coordinates of u = r, + £r, in the coordinates system {e;, es} are given by

1
My1Nag — Moy Noo

(Nag — Nio&, —May + M1;€)

and those of u = r, + nr, (where n = —({ém +1)/(§n + m), see the proof of Theorem
3.2) are given by

1
M1 Nag — Moy Nog

(Nag — Nian, — Moy + Min).

We use the alternative way of defining o = Z(u, R(u)) as a = Z(u,e1) + Z(u, €1).
We observe that @ and R(u) are always of the same type.
If u and u are spacelike, then

tanh(ay) = 22-Mul

VNS Mo )Mo 400
_ My —Mun _ (mMii+nMay)§+mMa 11
tanh(a2) " Na2—Nian = (nNag+mNi2)é+mNas+INy2

with ay = Z(u, e;) and ag = Z(u,e1). We obtain, as in the proof of Theorem 3.2, the
expression for tanh(a; + ay) in terms of £. Setting £ = dy/dx yields the expression
for (CR.). A key observation here is that the terms involving square roots factor out
and we end up with the equation of LR), as in the statement of the theorem times a
function in (z,y).

If u and u are timelike, then

_ Nao—N12€
tanh(ay) = Sy d
tanh(a ) _ Nag—Nian _ (nNa2+mNi2)é+mNao+IN12
2) 7 Ma1—Miin — (mMii+nMar)é+mMar+IMi1
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and we obtain the same expression for (LR.).
If u is timelike and w is spacelike, then

Noo— N
tanh(al) = Mzi—]\jfff’

_ My1—Muin _ (mMii+nMa1)é+mMoi+I1M11
tanh(a2) " N2a—Ni2n ~ (nNa2+mNi2)é+mNaog+IN12 *
Similar calculations yield the expression for (LR2). O

Remarks 4.3 (1) Assuming that there are two A-principal directions at p, Theorem
4.2 states that there are at most two directions in 7, M that make a fixed oriented
angle o with the reflection of their A-conjugate directions with respect to a A-principal
direction.

(2) When there are no A-principal directions at p, we define the A-Lorentzian
reflected curve congruence, for a fixed «, as the solutions of the BDEs (LR!),i =
1,2, in Theorem 4.2. The solutions do not have the geometric characterisation in
Definition 4.1 in terms of angles but have the same characterisation in terms of pencils
of quadratic forms (section 5) as for the case when there are two A-principal directions
at p.

(3) For surfaces in the Euclidean 3-space (and for self-adjoint operators on a Rie-
mannian surface in general), the reflected curve congruence (R,) is given by

2Fm — Gl — En
VEG — F?

Thus, the family (R,) contains both the characteristic curves BDE (R) and the
principal BDE (R.z). However, in Theorem 3.2, (LR}) contains the BDE (LR})
of the A-characteristic curves but not the BDE of the lines of A-principal curves.
Similarly, (CR?) contains the BDE (LR2) of the lines of A-principal curves but not
the BDE of the A-characteristic curves.

(Ra) : cos(a)C + sin(a)P = 0.

We analyse the limit of (CR.), i = 1,2 as a — Foo. If we divide both equations
by cosh a, we get lim,_, 4 ER; = lim,_ 4o ﬁRZ = LR, which are given by
2Fm — Gl — En

LRi): C =+ P=0.
(£Recoc) 2 —EG

We consider a special local parametrisation where the coordinate curves are light-
like, so F = G = 0, and suppose that F' > 0 (if F < 0, the equations below are
interchanged). Then, P = F(ndy* — ldz?), C' = —2F (mndy? + 2Indxdy + mldz?), and
we get (up to some factors)

(LR_) : dy(ldx + mdy) = 0,
(LR o) i dx(mdx + ndy) = 0.
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The BDEs (LR, ) determine two directions at each point, one is lightlike and the
second is its A-conjugate direction. Thus, the angle between the directions determined
by these BDE and their reflection with respect to a principal direction is infinite. (See
Theorem 5.2 as to why LR, are obstructions for linking the A-characteristic BDE
with the lines of A-principal curves BDE.)

5 Pencils of quadratic forms

The relation between the triple BDEs (asymptotic, characteristic and principal) on a
smooth oriented surface in the Euclidean 3-space is explained in [5] using pencils of
forms. As we commented elsewhere in this paper, the results in [5] are also valid for
self-adjoint operators on a Riemannian surface. We investigate here the case when the
metric on M is Lorentzian.

We shall not distinguish between a BDE (1) and its non-zero multiples, so at each
point (z,y) € U we can view the BDE as a quadratic form a3? + 2b3y + ¢y* = 0
(8 = dy and v = dx) and represent it by the point @ = (a : 2b : ¢) in the projective
plane RP?. In RP? there is a conic I' = {Q : b* — ac = 0} of singular quadratic forms.
These can be put in the form (a3 + b17y)?.

The polar line @ of a point @ (with respect to the conic I') is the line that contains
all points O such that () and O are harmonic conjugate points with respect to the
intersection points Ry and Ry of the conic I' and a variable line through Q). Geometri-
cally, if the polar line () meets I', then the tangents to I' at the points of intersection
meet at Q. A point (a; : by : ¢1) is in the polar line of a point @ = (a : 2b : ¢), if
and only if bb; — ac; — a;c = 0. Three points in the projective plane are said to form
a self-polar triangle if the polar of any vertex of the triangle is the line through the
remaining two points.

The next series of remarks are well known results and elementary, but very useful.
They relate some of the invariants of pairs of binary forms to the geometry of the conic
I of singular forms.

Remarks 5.1 (1) Let @ be a binary quadratic form, with distinct roots, determining
a point in the plane RP?. Then @ consists of the line through the two forms which are
the squares of the factors of (), that is, the tangents to the conic at these two points
pass through (). We refer to this intersection point as the polar form of the pencil.
Conversely given any pencil meeting the conic I', the corresponding polar form is the
binary form whose factors are the repeated factors at the two singular members of the
pencil.

(2) The polar form of a pencil is given by the Jacobian of any two of the forms in
the pencil, that is, the 2 x 2 determinant of the matrix of partial derivatives of the
forms with respect to § and . The Jacobian is non-zero provided we have a genuine
pencil, and is a square if and only if the forms have a factor in common.

12



(3) Three forms determine a self-polar triangle with respect to the conic I' if and
only if each is the Jacobian of the other two. Thus, given a self-adjoint operator A on
M, the triangle (P, A, C) is self-polar by construction of C' = Jac(A, P).

(4) If the vertices of a quadrangle lie on I" then the diagonal triangle (the triangle
whose vertices are intersections of the lines joining distinct pairs of distinct points) is
self-polar.

The expressions we use here simplify considerably and the geometry becomes more
apparent when we take, as we shall do in the rest of this paper, a local parametrisation
of M where the coordinate curves are lightlike curves (i.e., F = G = 0). We shall also
assume, without loss of generality, that F' > 0. Then, we can represent the BDEs of
interest by the following points in the projective plane

Lightlike BDE (the metric) (L): (0:1:0)
A-principal BDE (P): (n:0:—I)
A-asymptotic BDE (A): (n:2m:])
A-characteristic BDE (C): (mn :2ln : ml)

We will identify a BDE (w) at p € M with its representative w in the projective
plane. We have the following where the pencil passing through two points )7 and Q)
is denoted by (Q1, Q2).

Theorem 5.2 (1) The lightlike BDE L belongs to the polar line P of the lines of
A-principal curvature.

(2) BDEs whose one solution curves is a lightlike foliation of M form two pencils
El and Eg. These are the two tangent lines to I through the lightlike BDE L (Figure
1).

(3) The pencils El and Eg and the conic I' partition the projective plane into four
connected regions where the type of the solutions, when they exist, of the BDEs in each
region is constant. The type of the solutions is as shown in Figure 1.

(4) The pencils Ly and Lo intersect the pencil (A, P) at LC 1o and LC _,, respec-
tively. The points LC o, and LC _, separate A and P and are thus an obstruction for
linking the A-asymptotic curves with the lines of A-principal curvature via the families
of conjugate curve congruences (Figure 1).

(5) The pencils L, and L, intersect the pencil (C, P) at LR_, and LR, Tespec-
tively. The points LR_o, and LR separate C and P and are thus an obstruction
for linking the A-characteristic curves with the lines of A-principal curvature via the
families of reflected curve congruences (Figure 1).

Proof (1) A point (a : b : ¢) is on the polar line of P = (n : 0 : —[) if and only if
al —nc=0. It is clear that L = (0:1:0) is on this polar line.
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(2) One of the foliations determined by the BDE @ = (a : 2b : ¢) is lightlike if and
only if a = 0 or ¢ = 0. When ¢ = 0, we get the pencil Zl which is parametrised by
(a:2b:0) and is the polar line of L; = (0: 0:1). When a = 0, we get the pencil Ly
which is parametrised by (0 : 2b : ¢) and is the polar line of Ly = (1 :0:0). The two
pencils intersect when a = ¢ = 0, i.e., at the point L. It is not difficult to show that
Ly (resp. Lo) is tangent to I at Ly (resp. La).

(3) The solutions of the BDE @ = (a : 2b : ¢) are given by v; = ar, + (—=b +
(=1)"Vb? — ac)ry, i = 1,2, so g(v1,v1)g(ve, v2) = 4F%a?(ac). If ac > 0, both solutions
are of the same type (either spacelike or timelike), otherwise one is timelike and the
other is spacelike. Of course () has no solutions if it is inside the conic I" which lies in
the region ac > 0.

(4) Clearly, the points given by the families (£C.) and (L£C2) are on the pencil
(A, P). We have LC_o = (0:m : 1) and LCoo = (n: m : 0), so LC_ is on the pencil
a=0 (ie., Zg) and LC | is on the pencil ¢ =0 (i.e., El) In fact, LC_o, = A— P and
LC o = A+P. Therefore, LC_, and LC, , separate A and P and form an obstruction
for linking these two BDEs by the families of conjugate curve congruences.

(5) The points given by the families (LR}) and (LR2) are on the pencil (C, P).
We have LR_oo = (m:1:0)and LR oo = (0:1n:m), so LR_ is on the pencil ¢ = 0
(i.e., El) and LR, is on the pencil a =0 (i.e., Zg) In fact, LR oo = C + 2mP and
LR _o = C —2mP. Therefore, LR, and LR_, separate C' and P. Consequently
LR s and LR, form an obstruction for linking C' and P by the families of reflected
curve congruences. O

We consider the BDE (L) whose solutions at each point p € M are the A-conjugate
directions of the two lightlike directions in 7,M. Then,

(L) : (mdx + ndy)(ldz + mdy) = 0.

A short calculation shows that L is on the polar line P.

We denote by w; = dy, wy = dx, Wy = ldx+mdy, and W = mdz +ndy (so wy =0
and wy = 0 determine the lightlike directions and w; = 0 and wy = 0 their respective
A-conjugate directions). Observe that L; = w?, i = 1,2. In RP?) the tangent lines to
the conic I' through the points L and L determine the four points w?, w32, w2, w,% on
I'. These four points determine in turn the following polar lines (see Figure 2):

z the line through w? and w3,

L the line through w? and w2,

; the line tangent to I' at w2,

L, the line tangent to ' at w?,

;\2 the line tangent to I' at w2,

L, the line tangent to I' at w3,

LC., the line through w? and w3,

14



Figure 1: The lightlike pencils L; and Lo obstructing the linking of the pairs (A, P)
and (C, P) by the families of curve congruences. The figure also shows the type of the
two solutions of a BDE (s for spacelike, ¢ for timelike) in each region of the projective

plane delimited by El, /L\Q and the conic I'.

LC_. the line through w? and w?,

LR+ the line through w% and w3,

27\3 the line through w? and w?.

The followmg result follows from the fact that L N L P, ER N ER_ = A and
LCoNLC_o = C.

Theorem 5.3 The BDEs (A), (C), (P), (LC1w) and (LR1o) are completely deter-
mined by the BDEs (L) and (L) (Figure 2).

Remark 5.4 Note that (L) represents the metric g and (L) determines the shape
operator A. There are other pairs that determine the remaining BDEs listed in The-
orem 5.3. For example, (L) and (A), and (P) and (LRo) will do. However, not all
pairs determine the remaining BDEs. For instance, (P) and (C') do not determine the
metric (L).

We observed in Remark 2.1 that the BDE (P) of the lines of A-principal curves
have orthogonal solutions (when they exist). In fact, P is the unique point on the
polar line of A (or C') with this property, and in particular, A determines both P and
C' (see [15] when the metric g is Riemannian and [10] when it is Lorentzian). We have
the following general result.

Theorem 5.5 (1) The BDEs with orthogonal solutions are those represented by points
on the polar line L and which are located outside the conic I.
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Figure 2: Quadrangle on I' determining the polar lines.

(2) If Q represents a BDE that determines two directions of the same type (both space-
like or timelike) or a BDE that has no solutions, then there is a unique BDE on @
that has orthogonal solutions.

(3) If Q represents a BDE that determines two directions of different types, then there

1s no BDFE on @ that has orthogonal solutions.

Proof (1) Let (Q) : ady? + 2bdxdy + cdz?® = 0 be the BDE we are seeking. Suppose,
without lost of generality, that a # 0 so the solutions of () can be written in the form
r, + s;ry, © = 1,2. These solutions are orthogonal if and only if

g(ry + 511y, 1y + Sory) = (51 + 52)F =0

(we are taking a parametrisation with £ = G = 0). We have s; + s, = —2b/a, so
the condition for the solutions to be orthogonal is b = 0. This is equivalent to the
condition for @ = (a : 2b: ¢) to be on the polar line of L = (0: 1:0). For @ to have
two solutions, it has to be outside the cone I'.

(2) and (3) If @1 = (a1 : by : ¢1) € @ represent a BDE with orthogonal solutions
then @, = @ N L. This implies that b; = 0. The results follow by observing that
sign(aic;) = —sign(ac) and that sign(ac) determines the regions in RP? where the
BDEs has solutions of the same or different types (Theorem 5.2(3)). O

Remarks 5.6 We still denote by (L) the BDE (2) on a Riemannian surface M. Then,
given a self-adjoint operator on M, the statement in Theorem 5.5(1) is also true in
this case, that is, L coincides with the set of BDEs with orthogonal solutions. All
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points of L lie outside I', so the polar line of any BDE contains a unique BDE with
orthogonal solutions.

We return now to A-conjugacy. Given a BDE (Q), we denote by (€) a BDE whose
solutions are the A-conjugate directions of the solutions of (Q)). We call (Q) the A-
conjugate of (@)) and seek to determine the position of () in the projective plane given

the position of Q).

Theorem 5.7 (1) Let L;, i = 1,2 be the pencils through L which are tangent to T.
The pencil Ly (resp. Ly) is the locus of the A-conjugates of BDEs on L (resp. Zg)
and vice versa. ~ R R

(2) The pencil Ly (resp. Lo ) intersects Ly (resp. Lo ) at LR_ o (resp. LRyo). The
pencil Ly (resp. Ly) intersects Ly (resp. Ly) at LC oo (resp. LCO_s). Consequently,
LCO, o = LC_o and the points LR, and LR_. are fized under A-conjugation.

(3) The pencils LAZ-, L;, i =1,2, and the conic T partition the projective plane into
eleven connected regions as shown in Figure 3 (BDEs in region R11 have no solutions).
Table 1 shows the position of () given that of (and vice-versa) and Table 2 gives the
type of the solutions of Q and Q) in each region (s is for spacelike and t for timelike).

Table 1: Position of Q given that of Q (and vice-versa) in Figure 3.

Region
Q| R1|R2|R3| RA| R7|RS8

Q|R1|R6|R3|R5|R9| R10

Table 2: The type of the solutions of () and @ in each region of Figure 3.

Region
Rl |R2 |R3 |R4 |R5 |R6 |R7T |R8 |R9 |RI10
(s, t) (s, t) (t, t) (8, t) (t, t) (t, t) (s, s) t, t) (t, t) (t, t)
(s,t) | (t,8) | (t,0) | (£,8) | (s,8) | (s,0) | (&,8) | (£,8) | (s,8) | (¢, 1)

Proof (1) This follows from the fact that the polar lines of w? and w3 are, respec-
tively, Ly and L.

(2) This follows from the fact that points on the pencils Ly, Lo, El and EQ can be
represent, respectively, in the form wywy, Wows, wiwz and wow, where w;, 1 =1,...,4
are any 1-forms and w? = L;, i = 1,2.

—~

QIO

(3) The type of the solutions changes when crossing one of the lines Ei, Li,i=1,2
or I. The result follows by determining the type of the solutions of one BDE in each
region (and similarly for determining the position of ) given that of Q). a
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Figure 3: Partition of the projective plane RP? = S?/{p, —p}: the figure shows one
hemisphere of the sphere S?, the dotted boundary is the equator.
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