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Abstract

Given a smooth and oriented surface M in the Euclidean space R
3, the

conjugate curve congruence Cα is a family of pairs of foliations on M that
links the lines of curvature and the asymptotic curves of M . This family is
first introduced in [21] and is studied in [8, 13]. When the surface M = M0

is deformed in a 1-parameter family of surfaces Mt, we obtain a 2-parameter
family of conjugate curve congruence Cα,t. We study in this paper the generic
local singularities in Cα0,0 and the way they bifurcate in the family Cα,t, with
(α, t) close to (α0, 0).

1 Introduction

Changes in the geometry of a smooth surface in the Euclidean space R
3 as the surface

is deformed in 1-parameter families of surfaces are investigated in several papers; see
for example [2, 10, 11, 12, 37]. In [12] is given a catalogue of the generic changes
in the local and multi-local geometry of the surface that are governed by its contact
with planes. This includes, for instances, the listing of the generic bifurcations in the
parabolic curve as the surface is deformed. The changes are obtained by studying
the singularities in the family of height functions on the deformed surface. A similar
study is carried out in [10] for listing the generic changes in the local geometry of the
surface that are governed by its contact with spheres. These are obtained by studying
the singularities in the family of distance squared functions on the deformed surface.
In [37] is given a catalogue of the changes in the flecnodal curve, which is the locus
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of geodesic inflections of the asymptotic curves, as the surface is deformed in generic
1-parameter families of surfaces.

We study in this paper the local changes in the configurations of a certain 1-
parameter family of pairs of foliations on the surface, when the surface is deformed in
a 1-parameter family of surfaces. There are three classical pairs of foliations defined
on an oriented surface M in the Euclidean space R

3. These are the lines of curvature
defined away from umbilic points, the asymptotic curves defined in the hyperbolic
region and the characteristic curves defined in the elliptic region of M . The three
pairs of foliations are given, in a local chart r : U ⊂ R

2 → R
3, by binary differential

equations (BDEs), also know as quadratic differential equations. These are equations
in the form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0. (1)

where a, b, c are smooth functions in (x, y) ∈ U , U being an open set in R
2.

The above three pairs of foliations were studied as separate objects for a long time.
However, in [21] is constructed a natural 1-parameter family of BDEs, called conjugate
curve congruence and denoted by Cα, which links the equation of the asymptotic curves
and that of the lines of curvature of M . This link is explained in [13] as follows. A
BDE can be viewed as a quadratic form and represented at each point in the plane
by a point in the projective plane. If Γ denotes the set of degenerate quadratic forms,
then the asymptotic, characteristic and principal BDEs represent a self-polar triangle
with respect to Γ ([13]). In particular, any two of them determine the third one. (This
idea is generalised in [32] for two dimensional surfaces in R

n.) The construction in [13]
also allows to generate other natural families of BDEs on the surface.

The local configurations of the pair of foliation determined by Cα on a fixed surface
M for a fixed value of α and the way they bifurcate when α varies are given in [8, 9].
When the surface is deformed in a 1-parameter family of surfaces Mt, we obtain a
2-parameter family of BDEs Cα,t. The aim of this paper is to give a catalogue of the
generic local bifurcations in Cα,t. We recall that the local codimension 2 singularities
of BDEs and their generic bifurcations are studied in [31, 35]. It is worth observing
here that the family Cα,t is special, so there is no guaranty that it will be a generic
family at a codimension 2 singularity of one of its members. Indeed, we discover two
interesting phenomena in this paper. In one case, the family Cα,t is generic at a given
codimension 2 singularity but this singularity is not generic in 1-parameter families of
surfaces (Remark 3.3). In the other case, the singularity occurs in generic 1-parameter
families of surfaces but the resulting 2-parameter family of BDEs Cα,t is not generic
(Theorem 4.2).

There is another family of BDEs, called the reflected conjugate curve congruence
Rα, which links the equation of lines of curvature and that of the characteristic curves
([13]). The local bifurcations in the family Rα,t will be dealt with elsewhere.

The paper is organised as follows. §2 is devoted to some preliminary results and
notions that are used in the paper. In §3 we study the bifurcations in Cα,t at parabolic
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points and in §4 those that occur at umbilic points. We deal with the bifurcations away
from parabolic and umbilic points in §5. To make the paper self-contained, we give in
the appendix (§6) a brief summary of the results on codimension ≤ 1 singularities in
BDEs. A reader who is not familiar with work on implicit differential equations could
have a look first at the appendix.

2 Preliminaries

In all the paper, M denotes a smooth oriented surface in R
3. Given a local parametri-

sation r : U → R
3 of the surface, the coefficients of the first fundamental form

Ip : TpM × TpM → R, with Ip(u, v) = u.v, are given by

E = rx.rx, F = rx.ry, G = ry.ry,

where “.” denotes the scalar product in R
3 and subscripts (in all the paper) denote

partial derivatives. If S2 denotes the unit sphere in R
3, then the Gauss map is defined

by N : r(U) → S2, where N(p) = (rx × ry/||rx × ry||)(p), is a unit normal vector
to the surface. The differential of the Gauss map at p is an automorphism of TpM .
The shape operator Sp, is the self-adjoint map Sp = −dpN : TpM → TpM . The
determinant K(p) of Sp is the Gaussian curvature of the surface at p. Points where
K > / = / < 0 are called elliptic/parabolic/hyperbolic points respectively.

The second fundamental form IIp : TpM×TpM → R, is given by IIp(u, v) = Sp(u).v.
Its coefficients, with respect to the parametrisation r, are given by

l = S(rx).rx = N.rxx, m = S(rx).ry = N.rxy, n = S(ry).ry = N.ryy.

The eigenvectors of the shape operator are called the principal directions, and their
associated eigenvalues are the principal curvature. Umbilic points are those points
where the principal curvature coincide. Two directions u, v ∈ TpM are conjugate
if IIp(u, v) = 0. A direction u ∈ TpM is asymptotic if it is self-conjugate, that is
IIp(u, u) = 0.

The principal and asymptotic directions define two pairs of foliations on M . These
are the lines of curvature and the asymptotic curves. A line of curvature is a curve
whose tangent line at each point is along a principal direction. The lines of curvature
form an orthogonal net away from umbilic points. Their configurations at umbilics are
as in Figure 13 top (see [30, 7]). The study of the behaviour of the lines of curvature
in a neighbourhood of a closed orbit and of their structural stability is also carried out
in [30].

An asymptotic curve of M is a curve whose tangent line at each point is along an
asymptotic direction. The asymptotic curves are defined in the hyperbolic region of the
surface. They form a family of cusps at generic parabolic points. Their configurations
at a cusp of Gauss (see §3 for definition) are given for example in [3, 4, 26]; for a more
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general approach for studying the singularities of their equation at such points see
[18]. Global properties of this pair of foliations including the study of the close orbits
are given in [22].

The above two pairs of foliations are given, in a local chart, by BDEs and were
previously considered as separate objects. However in [21] (see also [8, 13]) is con-
structed a natural family of BDEs linking the two pairs. Consider the projective space
PTpM of all tangent directions through a point p of M which is neither an umbilic
nor a parabolic point. Conjugation gives an involution on PTpM , v 7→ v = C(v). The
involution C is used in [21, 8, 13] to determine a family of BDEs by asking that the
angle between a direction v and the image of v under C is constant.

Definition 2.1 ([21]) Let PTM denote the projective tangent bundle to M , and define
Θ : PTM → [−π/2, π/2] by Θ(p, v) = α where α denotes the oriented angle between
a direction v and the corresponding conjugate direction v = C(v). Note that Θ is not
well defined at points corresponding to asymptotic directions at parabolic points. The
conjugate curve congruence ( Cα), for a fixed α, is defined to be Θ−1(α).

Proposition 2.2 ([21]) The conjugate curve congruence Cα of a parametrised surface
is given by the BDE

(sinα(Gm− Fn) − n cosα
√
EG− F 2)dy2 +

(sinα(Gl −En) − 2m cosα
√
EG− F 2)dydx+

(sinα(F l −Em) − l cosα
√
EG− F 2)dx2 = 0.

Remark 2.3 1. BDEs (1) determine a pair of transverse foliations away from the
discriminant ∆ = { (x, y) | δ(x, y) = (b2 − ac)(x, y) = 0 }.

2. Observe that C0 is the BDE of the asymptotic curves and C±π/2 is that of the
lines of curvature.

3. The discriminant ∆α of Cα satisfies ∆α = ∆−α and foliates the elliptic region of
the surface as α varies in [−π/2, π/2].

The family Cα is studied in [8, 9, 13]. The bifurcations of the local singularities in
the members of the family Cα when α varies in [−π/2, π/2] are given in [9].

In this paper, the surface M = M0 is deformed in a 1-parameter family of surface
Mt. So we obtain a 2-parameter family of BDEs Cα,t. We study the local bifurcations
in the members of this family by following the work in [31, 35]. We denote a BDE (1)
by w = (a, b, c). As our study is local, we consider germs of BDEs at a given point,
which we can assume to be the origin. So a, b, c are considered as germs of functions
at the origin. We require the following notions.

We adopt the notion of fibre topological equivalence for families of BDEs. Two
germs of families of BDEs ω̃ and τ̃ , depending smoothly on the parameters u and
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v respectively, are said to be locally fibre topologically equivalent if, for any of their
representatives, there exist neighbourhoods U and W of 0 in respectively the phase
space (x, y) and the parameter space u, and a family of homeomorphisms k depending
on u ∈ W , all defined on U such that ku is a topological equivalence between ω̃u and
τ̃ψ(u), where ψ is a homeomorphism defined on W . (In all the paper, superscripts
denote the function/map with the superscript variable fixed. We exclude from our
study the semi-local/global phenomena in ω̃0 but these can of course appear in ω̃u, for
u 6= 0.)

We associate to a germ of an r-parameter family of BDEs ω̃ = (ã, b̃, c̃) the jet-
extension map

Φ : R
2 × R

r, (0, 0) → Jk(2, 3)

((x, y), u) 7→ jk(ã, b̃, c̃)u|(x,y)
where Jk(2, 3) denotes the vector space of polynomial maps of degree k from R

2 to
R

3, and jk(ã, b̃, c̃)u|(x,y) is the k-jet of (ã, b̃, c̃) at (x, y) with u fixed. This is simply

the Taylor expansion of order k of (ã, b̃, c̃)u at (x, y). A singularity in the family
is of codimension m if the conditions that define it yield a semi-algebraic set V of
codimension m+ 2 in Jk(2, 3), for any k greater than some k0. The set V is supposed
to be invariant under the natural action of the k + 1-jets of diffeomorphisms in (x, y)
and multiplication by non-zero functions in (x, y).

The family ω̃ is said to be generic if the map Φ is transverse to V in Jk(2, 3).
Observe that a necessary condition for genericity is that r ≥ m. It follows from
Thom’s Transversality Theorem that the set of generic families is residual in the set
of smooth map germs R

2 × R
r, 0 → R

3, 0.
Our interest in the paper is mainly when the codimension m = 2 (there is however

one case in §4 where the codimension is higher). The bifurcation set of a generic 2-
parameter family consists of the set of parameters u where the associated BDE has a
singularity of codimension ≥ 1. (See §6 for a list of the generic local codimension ≤ 1
singularities in BDEs.) The components of the bifurcation set corresponding to local
codimension 1 singularities are as follows.

(MT1) Morse Type 1 singularity: this is the set of parameters u for which the
discriminant of w̃u has a Morse singularity and the coefficients of w̃u do not
vanish simultaneously at the singularity.

(FSN) Folded saddle-node bifurcations: this is the set of parameters u for which
the lifted field ξu associated to w̃u has a saddle-node singularity.

(FNF ) Folded node-focus change: this is the set of parameters u for which the
lifted field ξu associated to w̃u has equal eigenvalues at the singular point.

(MT2) Morse Type 2 singularity: this is the set of parameters u for which the
discriminant of w̃u has a Morse singularity and the coefficients of w̃u all vanish
at the singularity.
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We also need to consider some semi-local singularities that emerge when the local
codimension 2 singularity is deformed. The stratum of intersest here is the following.

(FSC) Folded saddle connection: this is the set of parameters u for which the
lifted field ξu has a saddle connection.

We obtain a stratification S of a neighbourhood U of the origin in the parameter
space R

2, given by the origin, the above strata and the complement of the union of
these sets. In [31, 35] is given a strategy for obtaining models of generic families of
BDEs at a codimension 2 singularities. It consists in showing that two generic families
have homeomorphic bifurcation sets and that the configurations in each stratum of S
is constant.

For generic surfaces, the family Cα is a generic family at the codimension ≤ 1
singularities of its members ([8, 9]). We consider now 1-parameter families of surfaces
Mt, with M0 = M , and t close to zero. We take α0 ∈ [−π/2, π/2] and deal with the
bifurcations in the family Cα,t as (α, t) varies near (α0, 0). In all the cases but one,
the singularities in the members of Cα,t are of codimension ≤ 2, so we need to show
that the family Cα,t is generic and apply the results in [31, 35]. The remaining case
however is not covered in [31] as the singularity is of codimension > 2. So we follow
the strategy in [31] to deal with it.

In all the paper one foliation is drawn in blue and the other in red. The discriminant
is drawn in thick black and the singularities are represented by thick dots. The figures
in this paper are also checked using a computer programme written by A. Montesinos
([28]).

We shall use the following notation in the paper. Given a germ of a family of BDEs
ω̃ = (ã, b̃, c̃), we write

ã = a0(α, t) + a1(α, t)x+ a2(α, t)y + a20(α, t)x
2 + a21(α, t)xy + a22(α, t)y

2 + . . . ,

b̃ = b0(α, t) + b1(α, t)x+ b2(α, t)y + b20(α, t)x
2 + b21(α, t)xy + b22(α, t)y

2 + . . . ,
c̃ = c0(α, t) + c1(α, t)x+ c2(α, t)y + c20(α, t)x

2 + c21(α, t)xy + c22(α, t)y
2 + . . . .

We take the family of surfaces Mt, depending smoothly on the parameter t, in
Monge form z = h(x, y, t) in a neighbourhood of the origin in R

2 and with t close to
zero. We assume that the tangent space T0M0 is the (x, y)-plane and write

h(x, y, t) = h0(t) + h1(t)x + h2(t)y +
1

2

2
∑

i=0

(

i
2

)

h2i(t)x
2−iyi +

1

6

3
∑

i=0

(

i
3

)

h3i(t)x
3−iyi + . . . ,

where the coefficients hij are germs, at the origin, of smooth functions. To simplify
the notation, we write hij(0) = hij , aij(0, 0) = aij , bij(0, 0) = bij and cij(0) = cij. It
follows from the the assumptions above, that h0(0) = h1(0) = h2(0) = 0.

We split our study into three cases, depending on whether the singularity p ∈ M0

is a parabolic point, an umbilic point or neither of these two. We refer to [1, 5] for the
singularity theory concepts used here.
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3 Bifurcations at parabolic points

The parabolic set is the discriminant of the asymptotic BDE C0 and the zeros of this
BDE are the cusps of Gauss (see §6 for definition of a zero of a BDE). A cusp of
Gauss is a point on the parabolic set where the Gauss map is equivalent, by changes
of coordinates in the source and target, to the cusp map (x, xy+ y3). Other geometric
characterisations of the cusp of Gauss are given in [3], see also [38] for some new
invariants associated to these points.

The cusp of Gauss can also be picked up by the singularities of the height functions
on M = M0. Recall that the family of height functions on M is given by

H : M × S2 → R

(p, u) 7→ p.u

For a fixed direction u ∈ S2 and a point p ∈ M , the height function Hu can be
viewed as a germ of a function R

2, 0 → R. One can make any changes of coordinates
in the source and this leads to the action of the right group R on the set of germs of
functions R

2, 0 → R. When u is along the normal direction of M at p, then the height
function Hu has generically a singularity of type A2 if p is a parabolic point and of
type A3 if it is a cusp of Gauss (Ak-singularities are those that are R-equivalent to
±y2 ± xk+1, [1]).

Using the Monge form setting for t = 0 and the notation in §2, if the origin is a
parabolic point, then we can take without loss of generality j2h = h22y

2. The origin
is then a cusp of Gauss if and only if h30 = 0 and h2

31 − 4h22h40 6= 0. In generic
1-parameter families of surfaces, we expect the following local singularities to occur at
isolated points on the parabolic set (see [12]):

(i) An A4-singularity on a smooth parabolic set. This occurs when h30 = h2
31 −

4h22h40 = 0 and h22(4h50h
2
22 + h32h

2
31 − 2h41h31h22) 6= 0.

(ii) A non-versal A3-singularity, which occurs when the parabolic set is singular
(generically a Morse singularity). That is, when h30 = h31 = 0 and h22h40 6= 0.

(iii) A flat umbilic point, which occurs when the height function has a D±
4 singularity

(modeled by x3 ± xy2). So we have h20 = h21 = h22 = 0 and j3h0 is not a
degenerate cubic form.

In (i) the lifted field ξ has a saddle-node singularity (see §6 for definitions). In (ii)
the asymptotic curves BDE has a Morse Type 1 singularity and in (iii) it has a Morse
Type 2 singularity. So as far as BDEs are concerned the phenomena (i), (ii) and (iii)
are all of codimension 1. The case (i) is dealt with in [9] were it is shown there that
the family Cα is in general a generic family. Therefore the family Cα,t is also generic
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and is trivial along the parameter t. The bifurcations in Cα as α varies near α0 = 0
are given in Figure 10.

We deal now with cases (ii) and (iii). We start with the case (ii).

Theorem 3.1 The family Cα is not generic at a non-versal A3-singularity of the
height function. A generic 1-parameter family of surfaces Mt induces a generic family
Cα,t of the Morse Type 1 singularity of the asymptotic BDE C0,0. The bifurcations in
Cα,t, for α fixed, are as in Figure 12.

Proof According to [9], a family of BDEs is generic at a Morse Type 1 singularity if
and only if the associated family of discriminant functions is an R-versal deformation
of the Morse singularity of the discriminant. The condition for a family of functions
g(x, y, s) depending smoothly on a parameter s to be an R-versal deformation of a
Morse singularity at p0 = (x0, y0, 0) is gs(p0) 6= 0.

At a non-versal A3, and using the Monge form setting, we can take p0 = (0, 0, 0)
and j2h = h22y

2 +h32xy
2 +h33y

3 +h.o.t.. The 2-jet of the discriminant (up to a scalar
multiple) is then given by

j2δ(x, y, α) = −24h22h40x
2 − 12h22h41xy + 4(h2

32 − h22h42)y
2 + h2

22α
2.

Therefore δα(p0) = 0, so Cα is not generic. (A geometric explanation for this is the
following. As ∆α = ∆−α, we do not get the full Morse transitions by varying α near
zero.) For generic 1-parameter families of surfaces Mt, the parabolic set undergoes
Morse transitions [12]. That is, the family δ(x, y, α, t) is a versal deformation of the
Morse singularity. So the induced family Cα,t is generic.

The bifurcation set in the (α, t)-space consists of the Morse Type 1 stratum (MT1).
This is given by the set of parameters (α, t) such that δ = δx = δy = 0. By the
implicit functions theorem, the MT1-stratum is a smooth curve parametrised by α,
say t = k(α), for some germ of a smooth function k. One can show that k′(0) = 0
as δα(0) = 0. In general k′′(0) 6= 0 as δαα(0) 6= 0. Therefore the MT1-stratum has
an ordinary tangency at the origin with the α-axis. Recall that the Morse Type 1
singularity of C0,0 is of codimension 1. The MT1 singularity of Cα,t, for α 6= 0, is no
longer a parabolic point. The bifurcations for any two fixed values of α are equivalent
and are as in Figure 12. There are several cases depending on the type of singularity
of the parabolic set (A+

1 or A−
1 ) and on the type of the zeros that appear in the

bifurcations (folded saddles or folded foci). 2

We consider now the bifurcations at a flat umbilic (case (iii) above). If we write
the surface M = M0 in Monge form z = h(x, y, 0), then at a flat umbilic h(x, y, 0) =
C(x, y) + h.o.t, where C(x, y) is a cubic in (x, y). There are two generic types of flat
umbilic points, the elliptic umbilic (D−

4 ) where C has three real roots and the hyper-
bolic umbilic (D+

4 ) where it has one real root. We can make changes of coordinates in
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the source and set C(x, y) = x2y ± y3. We consider the family Cα with [0, π/2] (the
case [−π/2, 0] is identical). The coefficients of the second fundamental form all vanish
at the origin, so the coefficients of Cα, for all α ∈ [0, π/2], also vanish at the origin. If
(a, b, c) denotes the coefficients of Cα, then

j1a = 2 sin(α) x∓ 6 cos(α) y,
j1b = −4 cos(α) x+ (2 ∓ 6) sin(α) y,
j1c = −2 sin(α) x− 2 cos(α) y.

At an elliptic umbilic the 2-jet of the discriminant of Cα (up to a scalar multiple)
is given by

j2δα(x, y) = x2 + (4 − cos2(α))y2.

It is clear that δα(x, y) has a Morse A+
1 singularity at the origin for all α ∈ [0, π/2].

So Cα has a Morse Type 2 singularity (see §6). To determine the configuration of Cα
we need to determine the number and type of the zeros of ξα on the exceptional fibre.
We have

φ(p) = 6 cos(α)p3 + 10 sin(α)p2 − 6 cos(α)p− 2 sin(α),
α1(p) = 6 cos(α)p2 + 6 sin(α)p− 2 cos(α).

When α 6= π/2, the cubic φ has three distinct roots and −φ′(p)α1(p) is negative at
these roots. So ξ has 3 saddle singularities for all values of α, with α 6= π/2 (see §6).
Therefore Cα has a singularity of type MT2 A+

1 (3S) at the origin (Figure 13(3S), top).
When α = π/2 we need to consider the chart q = dx/dy instead of p = dy/dx (see §6),
and one can show that Cπ/2 has also a singularity of type MT2 A+

1 (3S) at the origin.
At a hyperbolic umbilic the 2-jet of the discriminant of Cα (up to a scalar multiple)

is given by
j2δα(x, y) = x2 − (4 cos2(α) − 1)y2.

The discriminant has a Morse singularity of type A−
1 if α < π/3 and of type A+

1 if
α > π/3. We have

φ(p) = −6 cos(α)p3 − 2 sin(α)p2 − 6 cos(α)p− 2 sin(α),
α1(p) = −2 cos(α)(p2 + 1).

Following the same arguments as above, one can show that Cα has a singularity of
type MT2 A−

1 (1S) at the origin (Figure 14(1S), top) when α < π/3, and a singularity
of type MT2 A+

1 (1S) (Figure 13(1S), top) when α > π/3.
When α = π/3, the 3-jet of the discriminant is given by

j2δ
π

3 = x2 + 3h41x
3 +

9

2
(h42 − 2h40)x

2y +
9

2
(h43 − h41)xy

2 +
3

2
(2h44 − h42)y

3.

This has an A2-singularity (a cusp) at the origin provided 2h44 − h42 6= 0. Consider
the discriminant surface

D = {(x, y, α)|(x, y) ∈ (R2, 0), α ∈ [0, π/2]}
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obtained by putting together the discriminants of the family Cα. The surface D
has a Whitney umbrella singularity at (0, 0, π/3) and its intersection with the planes
α =constant yields generic sections of the Whitney umbrella.

We need to identify the type of the BDE Cπ/3. As its discriminant is a cusp, the
topological type of the equation is determined by the singularities of the cubic φ ([31],

Theorem 3.4). We have φ(p) = −3(p2 + 1)(p+
√

3
3

), so it has one real root. It follows
then by Theorem 3.4 in [31] that Cπ/3 is topologically equivalent to

ydy2 + (x+ y)dxdy + y2dx2 = 0,

see Figure 1 1©. A generic 2-parameter family of this equation is given by

ydy2 + (x+ y)dxdy + (y2 + uy + v)dx2 = 0,

(Theorem 4.4 in [31]) and the bifurcations in the family are given in Figure 1.
We summarise below the above calculations and consider the local bifurcations in

Cα,t with α varying near a fixed value in [0, π/2].

Theorem 3.2 (1) At a flat umbilic of elliptic type, the members of the family Cα have
a Morse Type 2 A+

1 (3S) singularity. The family Cα is not a generic family of such
singularities. A generic 1-parameter family of surfaces Mt induces a generic family
Cα,t. The bifurcations in Cα,t, for α fixed, are as in Figure 13(3S).

(2) At a flat umbilic of hyperbolic type, the members of the family Cα have a Morse
Type 2 A−

1 (1S) singularity if α < π/3 and of type A+
1 (1S) if α > π/3. The family Cα

is not a generic family. A generic 1-parameter family of surfaces Mt induces a generic
family Cα,t. The bifurcations in Cα,t, for α fixed, are as in Figure 14(1S) for α < π/3
and Figure 13(1S) for α > π/3.

The BDE Cπ/3 has a Cusp Type 2 singularity. A generic 1-parameter family of
surfaces Mt induces a generic family Cα,t. The bifurcations in Cα,t, for α near π/3,
are as in Figure 1.

Proof A family of BDEs with coefficients (a, b, c) depending on a parameter s and
with a Morse Type 2 singularity at the origin is generic if and only if

∣

∣

∣

∣

∣

∣

ax ay as
bx by bs
cx cy cs

∣

∣

∣

∣

∣

∣

6= 0,

where the partial derivatives are evaluated at the origin ([15]). This is precisely the
condition for the jet extension map to be transverse to the MT2-variety in J1(2, 3).
At a flat umbilic, aα = bα = cα = 0 at the origin for all α ∈ [0, π/2]. So the family Cα
is not generic at the MT2 singularities. For generic 1-parameter families of surfaces
(which yield a family of height functions that unfolds versally the D±

4 singularity),

10



3

5

6

7

9

28

1

4

(MT1)

(MT2)

1

2

3

8

7

6

5

4

9

Figure 1: Bifurcations in Cα,t at a hyperbolic flat umbilic with α0 = π/3.

the induced family Cα,t becomes generic as the determinant above is non zero when
differentiating with respect to t.

The Morse Type 2-stratum of the bifurcation set in the (α, t)-space is given by the
set of parameters (α, t) such that a = b = c = 0 for some (x, y). This is just the curve
t = 0. We can now use the results in [15] to draw the bifurcations in Cα,t as (α, t)
varies near (α0, 0). We get a trivial family along the α-parameter, with α close to the
initial value α0. At an elliptic umbilic the bifurcations are as in Figure 13(3S) and at
a hyperbolic umbilic (with α 6= π/3) they are as in Figure 14(1S) for α < π/3 and
Figure 13(1S) for α > π/3.

When α = π/3 we need to show that a generic family of surfaces induces a generic
family of equations Cα,t. We shall suppose that the family of surfaces Mt is given in
Monge form z = h(x, y, t), with j3h0(x, y) = x2y − y3. Let ωπ/3 = (a, b, c) denote
the coefficients of Cπ/3,0. We need to consider the jet extension map Φ in §2 and its

11



transversality with V ⊂ Jk(2, 3) at jkωπ/3, where V is the variety of the Cusp Type
2 singularities. If we identify in Jk(2, 3) polynomials with their coefficients, the Cusp
Type 2 variety is given by

V = {a0 = b0 = c0 = 0, g = (2b1b2 − a1c2 − a2c1)
2 − 4(b22 − a2c2)(b

2
1 − a1c1) = 0}.

We can work in J2(2, 3). The variety V is smooth at j2ωπ/3 and its tangent space at
j2ωπ/3 is given by the intersection of the kernels of the 1-forms αi, i = 1, 2, 3, 4 with

α1 = da0, α2 = db0, α3 = dc0, α4 = dg,

The map Φ is transverse to V at j2ωπ/3 if and only if there is no non-zero vector
Z = λ1Φx + λ2Φy + λ3Φu + λ4Φv that belongs to the intersection of the kernels of
the 1-forms αi, i = 1, 2, 3, 4. This gives a linear system αi(Z) = 0, i = 1, 2, 3, 4 in
(λ1, ..., λ4), and the transversality condition is equivalent to the matrix of this linear
system having a non zero determinant. A calculation shows that the determinant is
non zero if and only if

(3htxx − htyy)(0, 0, 0) 6= 0.

Now a simple calculation shows that the above condition is exactly that for the (big)
family of height functions to be a versal unfolding of the D−

4 -singularity of h0. It is
satisfied for generic families of surfaces Mt. Hence, for generic families of surfaces, the
induced family of equations Cα,t is generic. It follows then from Theorem 4.3 in [31]
that the bifurcations in Cα,t when (α, t) varies near (π/3, 0) are as Figure 1. 2

Remark 3.3 Bifurcations at an A5-singularity. An A5-singularity of the height
occurs generically at isolated points on M only when the surface is deformed in 2-
parameter families of surfaces. In general, the parabolic set of M is smooth at this
singularity. Also, one can show that at an A5-singularity, the lifted field ξ has a
degenerate elementary singularity (see Table 1 in §5) so the BDE of the asymptotic
curves has a codimension 2 singularity. One can apply the results in [35] to show that
for an open and dense set of 1-parameter families of surfaces Mt, the induced family
Cα,t is generic. This is an interesting phenomena as it shows that Cα,t is generic at an
A5-singularity, but this singularity does not occur in generic 1-parameter families of
surfaces.

When the parabolic set has a cusp singularity (C0 has a Cusp Type 1 singular-
ity; Table 1 in §5)) or when it has a Morse singularity of type A−

1 with the unique
asymptotic direction there tangent to one branch of the discriminant (C0 has a Non
transverse Morse singularity; Table 1 in §5), then one can show that the family Cα,t is
not generic at such singularities.

12



4 Bifurcations at umbilics

The family of distance squared functions on M is given by

d2 : M × R
3 → R

(p, a) 7→ ||p− a||2

The function d(−, a), with a fixed, has a degenerate singularity (worse than Morse) if
and only if a is the centre of curvature at p, that is, a is a point on the focal set. At
umbilic points the singularity of d(−, a) is generically of type D4.

On a generic surface, the only member of Cα which is singular umbilic points is
C±π/2 (equation of the lines of curvature). We shall deal with Cπ/2 as C−π/2−s = Cπ/2+s.
We take the surface in Monge form z = h(x, y, 0) and suppose that the origin is an
umbilic point. Then we can write

j3h(x, y, 0) =
κ

2
(x2 + y2) + C(x, y),

where the cubic C(x, y) is given by

C(x, y) = ℜ(z3 + βz2z̄),

with z = x + iy and β = u + iv. The configuration of the lines of curvature is
determined by the values of β (see for example [29]). There are two exceptional curves
in the β-plane, the circle |β| = 3 and the hypercycloid β = 3(2eiθ − e−2iθ) (Figure 2).
Away from these curves, the configuration of the lines of curvature are stable and are
as in Figure 13 top. These configuration were first drawn by Darboux and a rigorous
proof is given in [30] (see also [7]) where they are labelled D1 for Figure 13 top left,
D2 for Figure 13 top centre and D3 for Figure 13 top right. They are also called,
respectively, Lemon, Monstar and Star.

L=Lemon

M=Monstar

L
M

M

M

S=Star

S

Figure 2: Partition of the β-plane.
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We need to make an important observation here. Generic umbilics (i.e., with β
away from the exceptional curves) are stable on immersed surfaces in R

3. This means
that if a surface M with a generic umbilic p0 is deformed in a 1-parameter family of
surfaces Mt with M = M0, then the configurations of the lines of curvature of the
surfaces Mt (for t near zero) are all topologically equivalent at their umbilic points
that are the deformations of p0. However, the equation Cπ/2 of the lines of curvature
of M has a Morse Type 2 singularity at a generic umbilic, and this singularity is of
codimension 1 in the set of all BDEs. In this case, the family Cα is a generic family
of the singularity of Cπ/2. Indeed, if we consider the Monge form setting above and
denote by (a, b, c) the coefficients of Cα, then

∣

∣

∣

∣

∣

∣

ax ay aα
bx by bα
cx cy cα

∣

∣

∣

∣

∣

∣

(0, 0,
π

2
) = −16κ(u2 + v2 − 9) 6= 0.

So by the result in [15], the family Cα is a generic family and the bifurcations in Cα
as α varies near π/2 are then as in Figure 13.

On the special curves β = 3(2eiθ − e−2iθ) and |β| = 3, the following happens.
When β = 3(2eiθ−e−2iθ), the discriminant of Cπ/2 has still a Morse singularity but the
lifted field ξ has a saddle-node singularity on the exceptional fibre. This singularity is
denoted byD1

2 in [24] and by MT2 saddle-node in [31]. On |β| = 3, the discriminant has
a degenerate singularity (of type A+

3 ), the cubic C(x, y) has two orthogonal roots, and
the family of distance squared function is not a versal unfolding of the D4-singularity.
This singularity is denoted by D1

2,3 in [24]. We expect the singularities D1
2 and D1

2,3

to occur at isolated points on generic 1-parameter families of surfaces. We start with
the D1

2 singularity.

Theorem 4.1 Let M be a smooth surface with an umbilic point of type D1
2 (i.e.,

β = 3(2eiθ−e−2iθ)). Then a generic family Mt with M = M0 induces a generic family
Cα,t of the singularity of Cπ/2. The bifurcations in Cα,t are as in Figure 3.

Proof As pointed out above, on β = 3(2eiθ − e−2iθ), the BDE Cπ/2 has generically
an MT2 saddle-node singularity at the origin. (Generic here means excluding the cusp
points of the hypercycloid and its points of tangency with the circle |β| = 3.) It follows
by Theorem 1.1 in [31] that it is topologically equivalent to ydy2 + 2(x + y)dxdy −
ydx2 = 0. Theorem 1.2 in [31] states that any generic deformation of this equation is
topologically equivalent to ydy2 + 2(x+ y)dxdy + (−y + ux+ v)dx2 = 0.

We seek to show that a generic family of surfaces Mt induce a generic family Cα,t.
We proceed as in the proof of Theorem 3.2. If we take the 2-jet of a general BDE as
in §2, then MT2 saddle-node singularities determine a variety V in Jk(2, 3) given by

V = {a0 = b0 = c0 = 0,Resultant(φ, φ′, p) = 0},
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Figure 3: Bifurcations in Cα,t at a D1
2 umbilic.

where φ(p) = a2p
3 + (2b2 + a1)p

2 + (2b1 + c2)p+ c1 is the cubic determining the zeros
of the lifted field on the exceptional fibre (see §6).

We shall suppose that the family of surfaces Mt is given in Monge form z =
h(x, y, t), with h(x, y, 0) = κ/2(x2 +y2)+ℜ(z3 +βz2z̄)+h.o.t. Let ω denote the coeffi-
cients of Cπ/2. We need to consider the jet extension map Φ in §2 and its transversality
with V ⊂ Jk(2, 3) at jkω. It is enought to work in J2(2, 3). The variety V is smooth
at j2ω and the map Φ is transverse to V at j2ω if and only if there is no non-zero
vector λ1Φx + λ2Φy + λ3Φα + λ4Φt that belongs to the intersection of the kernels of
the 1-forms

α1 = da0, α2 = db0, α3 = dc0, α4 = dg,

where g = Resultant(φ, φ′, p). This is a linear algebra calculation (carried out with
Maple), and the required determinant is a polynomial of degree 9 in cos θ and sin θ
with coefficients depending on the coefficients of the 4-jet of ht(x, y) and their deriva-
tives with respect to t. We have transversality when this polynomial is not zero. This
is the case, for generic families of surfaces, at all points on β = 3(2eiθ − e−2iθ) ex-
cept for a finite number of them. (For example, the cusp points of the hypercycloid
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are exceptional points where transversality fails.) So for generic families of surfaces
and at generic points on the hypercycloid, the family Cα,t is generic. Therefore the
bifurcations in Cα,t are as described in [31] (see Figure 3). In Figure 3 the bifurcation
set consists of two transverse curves. On one of them we have folded saddle-node
bifurcations and on the other MT2-bifurcations. The BDEs on the MT2-stratum are
the topological models of the configurations of the lines of curvature on the surfaces
Mt. The bifurcations in Cα,t along this stratum agree with the results in [24]. 2

We turn now to the case D1
2,3 on |β| = 3. Here the family of distance squared

functions is not a versal unfolding of the D4-singularity (see for example [10]). For
generic families of surfaces (generic here means that the resulting family of distance
squared functions is versal) we have a birth/death of two umbilic points, one is a Star
(3S) and the other a Monstar (2S+1N). The bifurcations in the lines of curvature as
the surface is deformed are studied in [24]. In [24] the surface is taken in Monge form
z = h(x, y, 0) with

j4h(x, y, 0) =
κ

2
(x2+y2)+

1

6
(ax3 +3bxy2+cy3)+

1

24
(Ax4 +4Bx3y+6Cx2y2+4Dxy3+Ey4).

The condition to have a genuine D1
2,3 is a = b 6= 0 and (A − 2κ3 − C)b + cB 6= 0

([24]). The condition a = b is equivalent to |β| = 3 when the cubic in g is taken in the
form ℜ(z3 + βz2z̄). Now a simple calculation shows that (A− 2κ3 − C)b+ cB 6= 0 is
precisely the condition for the discriminant of Cπ/2 to have a genuine A+

3 -singularity
(i.e., is R-equivalent, up to a sign, to x2 + y4).

We continue to take here the surface in Monge form as in the beginning of this
section. Suppose that |β| = 3, so that β = 3(cos(θ) + i sin(θ)), for some θ ∈ [0, 2π].
Then the 2-jets of the coefficients of Cπ/2 are given by

j2a = 6 sin(θ)x+ 6(1 − cos(θ))y − 3a41x
2 + (κ3 − 4a42)xy − 3a43y

2,
j2b = −12(cos(θ) + 1)x− 12 sin(θ)y + (2a42 − 12a40 − 12a44 + κ3)x2

−6(a41 − a43)xy − (2a42 + κ3)y2,
j2c = −6 sin(θ)x+ 6(cos(θ) − 1)y + 3a41x

2 + (4a42 − κ3)xy + 3a43y
2.

If θ 6= 0, then the 1-jet of Cπ/2 is equivalent (by smooth changes of coordinates in
(x, y) and multiplication by non-zero functions) to (x + y)dxdy. If the singularity of
the discriminant is of type A+

3 , then the 2-jet of Cπ/2 is equivalent to y2dy2 + (x +
y)dxdy + λy2dx2 (see for example [14]), with λ < 0. The result in [24] states that
this 2-jet is in fact topologically sufficient and one can set λ = −1. Therefore Cπ/2 is
topologically equivalent to

−y2dy2 + (x+ y)dxdy + y2dx2 = 0

at a D1
2,3-singularity. We consider now the bifurcations in Cα,t when Cπ/2,0 has a

D1
2,3-singularity.
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Theorem 4.2 Let M be a smooth surface with an umbilic point of type D1
2,3 (i.e.,

|β| = 3). Then any deformation of the surface induces a non-generic family Cα,t of
the singularity of Cπ/2. For generic families of surfaces, the family Cα,t is topologically
equivalent to

(−y2 + u)dy2 + (x+ y)dxdy + (y2 + w)dx2 = 0.

The bifurcations in Cα,t are as in Figure 4.

Proof In [6], Bruce associated to a BDE (1) a symmetric matrix A =

(

a b
b c

)

whose determinant is the discriminant of the BDE, and classified families of sym-
metric matrices up to an equivalence relation that preserves the singularities of the
determinant. Let S(n,K) denote the space of n × n-symmetric matrices with coeffi-
cients in the field K of real or complex numbers. A family of symmetric matrices is
a smooth map germ K

r, 0 → S(n,K). Denote by G the group of smooth changes of
parameters in the source and parametrised conjugation in the target. So if (k,X) ∈ G
and A ∈ S(n,K), then the action is given by XT (A ◦ k)X. A classification of all
G-simple symmetric matrices is given in [6].

If we represent the matrix A by (a, b, c), then the matrix of Cπ/2 at a D1
2,3-singularity

is G-equivalent to (−y2, x, y2). This germ has G-codimension 3 ([6]). Therefore, any
generic deformation of Cπ/2 needs to have at least three parameters. The family Cα,t
has only two, so cannot be generic.

In order to determine the bifurcations in Cα,t we adopt the strategy outlined in
[31, 35]. We first determine the bifurcation set of Cα,t. The bifurcation set determines
a stratification of the (α, t)-plane. On each stratum of this stratification, we determine
the configuration of the discriminant curve, the number, position and type of singular-
ity of Cα,t on this discriminant. We then draw the configuration of the integral curves
of Cα,t and show that these are topologically constant on each stratum.

The bifurcations related to the singularities of the discriminant are best studied
using the symmetric matrices framework in [6]. A G-versal unfolding of the singular-
ity (−y2, x, y2) is given by Ã = (−y2 + u0, x, y

2 + v1y + v0). This matrix has zero
determinant if x2 + (y2 − u0)(y

2 + v1y + v0) = 0. This curve is singular if and only if

u0(v
2
1 − 4v0)((u0 + v0)

2 − u0v
2
1) = 0.

The above equation gives the bifurcation set of the family Ã. It has two compo-
nents. One is given by the set of points (u0, v0, v1) for which there exist (x, y) where
all the coefficients of the matrix vanish. This is the cross-cap (u0 + v0)

2 − u0v
2
1 = 0

and is parametrised by (y2,−v1y − y2, v1). The other component consists of the two
smooth surfaces u0 = 0 and v2

1 −4v0 = 0 and corresponds to matrices with coefficients
not all zero, but with a singular determinant (see Figure 5)
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Figure 4: Bifurcations in Cα,t at a D1
2,3 umbilic.
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Figure 5: Bifurcation set of (−y2 + u0, x, y
2 + v1y + v0) in green and yellow and the

variety W in red, left. Bifurcations in the determinant curve on W , right.

We consider now the matrix ω = (a, b, c) of the family Cα,t. As Ã is a ver-
sal deformation, it follows by definition (of a versal deformation) that there exist
parametrised diffeomorphisms k(x, y, α, t), invertible matrices X(x, y, α, t), and a map
ψ(α, t) = (u0, v0, v1), such that

ω(x, y, α, t) = X(x, y, α, t)T Ã(k(x, y, α, t), ψ(α, t))X(x, y, α, t).

This means that each member ωα,t is G-equivalent to Ãψ(α,t). So the family Cα,t can
be represented by a 2-dimensional variety W (the image of ψ) in the (u0, v0, v1)-space.
The variety W is smooth. To show this it is enough to consider the 1-jet of ω at
(0, 0, π/2, 0). We have

j1a = −6x sin(θ) + 6(cos(θ) − 1)y + htxyt+ κ(α− π
2
),

j1b = 12(cos(θ) + 1)x+ 12y sin(θ) + 2(htxx − htyy)t,
j1c = 6x sin(θ) + 6(1 − cos(θ))y − htxyt+ κ(α− π

2
),

where the partial derivatives are evaluated at (0, 0, π/2, 0). We have assumed above
that θ 6= 0, otherwise β is also on the hypercycloid in Figure 2. Suppose that θ 6= π (if
θ = π we need to make different changes of variables but get the same result). Then
we can change variables in the source and set X = j1b, Y = y. We can eliminate X
in the first and last entries by elements in the group G. Then the 1-jet of the family
ω is G-equivalent to (A,B,C) with

A = (htxy − cos(θ)−1
sin(θ)

(htxx − htyy))t+ κ(α− π
2
),

B = X,

C = (−htxy + cos(θ)−1
sin(θ)

(htxx − htyy))t+ κ(α− π
2
).
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If sin(θ)htxy− (cos(θ)− 1)(htxx−htyy) 6= 0, which is the case for generic families of
surfaces, we can make a further change of variable so that j1ω becomes G-equivalent
to a family of matrices (u,X, v) parametrised by (u, v). This shows that for generic
families of surfaces, the map ψ(α, t) is indeed of rank 2 at (π/2, 0).

Suppose now that the family of distance squared functions is a versal unfolding of
the D4 singularity. This is the case if θ 6= ±2π/3 and sin(θ)htxy − (cos(θ) − 1)(htxx −
htyy) 6= 0. (When θ = ±2π/3, β is also on the hypercycloid in Figure 2, so we have a
higher codimension singularity of Cπ/2.) Then we have a birth of two umbilics in the
family. This means that the variety W must contain the double point curve of the
cross-cap in the bifurcation set of Ã (Figure 2) as this corresponds to the presence of
two umbilic points (two singularities of type (−y, x, y)).

The components of the bifurcation set of the family Cα,t that are associated with
the bifurcations of the discriminant can be modelled by the intersection of W with
the bifurcation set Ã. It follows from the discussion above that the MT2-stratum of
the bifurcation set of Cα,t consists of a segment of a curve ending at (π/2, 0), and the
MT1-stratum consists of two curves intersecting transversaly at (π/2, 0) (Figures 4
and 2 left). It also follows that the changes in the discriminant curves as (α, t) varies
near (π/2, 0) are as in Figure 5 right (see also Figures 4).

In [14] we computed the multiplicities of BDEs with zero coefficients (this is the
maximum number of zeros that can appear in a deformation of the equation). As Cπ/2
is equivalent to (−x2, x+ y, x2), its multiplicity is 6 (see Table 1 in [14]). At a birth of
umbilics, one is a Star and the other is a Monstar, so as these bifurcates, there zeros
appear on each component of the discriminant (so we have six in total).

We deal now with the folded saddle-node (FSN) stratum. Following [31, 35] we
take, an affine chart p = dy

dx
(we also consider the chart q = dx

dy
) and set F (x, y, α, t, p) =

ã(x, y, α, t)p2 +2b̃(x, y, α, t)p+ c̃(x, y, α, t). (We still denote by F the restriction of this
function to (α, t) =constant.) A zero of the BDE w̃α,t, for (α, t) fixed, at a smooth
point on the discriminant is given by F = Fp = Fx + pFy = 0. Suppose, without loss
of generality, that Fy 6= 0 at the point in consideration, say q0 = (x0, y0, p0), so that
the surface of the equation is given by y = g(x, p) for some germ of a smooth function
g at (x0, p0). So F (x, g(x, p), p) = 0 and Fx + gxFy = Fygp + Fp = 0. Therefore, the
linear part of the projection of the lifted field ξα,t to the (x, p)-plane is given by

A =







Fxp − Fx

Fy
Fyp Fpp − Fp

Fy
Fyp

−Fxx + Fx

Fy
Fxy − p(Fxy − Fx

Fy
Fyy) −Fy − Fxp +

Fp

Fy
Fxy − p(Fyp − Fp

Fy
Fyy)






,

where the entries are evaluated at q0. Then the (FSN) stratum is given by the set
of parameters (α, t) for which there exists (x, y, p) such that

F = Fp = Fx + pFy = det(A) = 0

at (x, y, p, α, t). We can solve the above system (with Maple) inductively on the jet
level and get the 1-jet of the (FSN) stratum. It is given by
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(hxxx(hxxt − hyyt) + hyyyhxyt)t− (hyyyhxx)(α− π

2
),

where the partial derivatives are evaluated at (0, 0, 0). So this stratum is generically a
smooth curve. We also find that the tangent directions to the MT1-stratum are given
by

(hxxx(hxxt − hyyt) + hyyyhxyt)
2t2 − h2

xx(h
2
xxx + h2

yyy)(α− π

2
)2 = 0.

where the partial derivatives are evaluated at (0, 0, 0). The MT2 stratum is a segment
of the line α = π/2. Therefore the (FSN) stratum is a smooth curve transverse to
the branches of the MT1-stratum and to the limiting tangent direction of the MT2-
stratum. (See the bifurcation set in Figure 4.)

One can also show, using the transversality of the pair of foliation of Cα,t away
from the discriminant, that there are no other codimension 1 local and semi-local
strata. We can now use the results on the bifurcations of codimension 1 singularities
of BDEs [9, 15, 24, 27, 34] to determine the position and type of the zeros on the
discriminant in each stratum of the stratification determined by the bifurcation set.
We can also use the results on the bifurcations of the codimension 1 singularities to
draw the integral curves in each stratum. At (π/2, 0) and on the MT2-stratum the
configurations are those of the lines of curvature and are given in [24]. On other strata,
they are as in Figure 4. Given any two configurations on the same stratum, one can
use the technique in [9, 34, 35] to construct a homeomorphism that takes one to the
other.

The bifurcation set of the family (−y2 + u)dy2 + (x+ y)dxdy+ (y2 +w)dx2 = 0 is
homeomorphic to that of Cα,t, and following the discussion above, it is topologically
equivalent to Cα,t. (The configurations in Figure 4 are checked on the model family
using the Motesinos’ programme [28].) 2

5 Bifurcations away from umbilics and parabolic

points

Away from umbilics and parabolic points the coefficients of Cα0,0 do not all vanish. So
we expect Cα0,0 to have the codimension 2 singularities listed in [35] at such points
on M0. It is shown in [35] that the singularities of codimension ≤ 2 of this type
of equations (i.e., with coefficients not all vanishing at the singularity) are locally
topologically equivalent to dy2 + f(0,0)(x, y)dx

2 = 0, with f(0,0) as in Table 1, second
column. Any generic 2-parameter family of such BDE is fibre topologically equivalent
to dy2 + f(x, y, u, v)dx2 = 0, with f as in Table 1, third column.
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Figure 6: Bifurcations at a folded degenerate elementary singularity, ǫ = −1 left and
ǫ = +1 right.

Table 1: Codimension 2 singularities of BDEs and their generic deformations, [35].

Name Normal form Generic family Figure
Folded degenerate −y ± x4 −y ± x4 + ux2 + vx Figure 6

elementary singularity
Non-transverse xy + x3 xy + x3 + ux2 + v Figure 7

Morse singularity
Cusp type 1 singularity ±x2 + y3 ±x2 + y3 + uy + v Figure 8

Theorem 5.1 All the local codimension 2 singularities in Table 1 can occur on Cα0,0

at isolated points on M0 that are neither parabolic nor umbilic. Generic 1-parameter
families of surfaces Mt induce generic families Cα,t of these singularities. The bifur-
cations in Cα,t are thus as in Figures 6, 7, 8.

Proof We take the family of surface Mt in the Monge form (x, y, h(x, y, t)) as in §2,
and suppose that the origin is a singularity of Cα0,0. We rotate the coordinates axes
so that (1, 0) is tangent to a solution of Cα0,0 at the origin. Then

sinα0 =
h20

(h2
20 + h2

21)
1

2

and cosα0 = − h21

(h2
20 + h2

21)
1

2

.

We shall assume that α0 6= 0, π
2
, equivalently, h20h21 6= 0, that is (1, 0) is neither

a principal nor an asymptotic direction. The origin is a point on the discriminant of
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Figure 7: Bifurcations at a non-transverse Morse singularity.
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Figure 8: Bifurcations at a cusp type 1 singularity, ǫ = −1 left and ǫ = +1 right.
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Cα0,0 if and only if
h2

20 − h20h22 + 2h2
21 = 0,

and a singularity of Cα0,0 if furthermore

h30h21 − h31h20 = 0.

As the coefficients of Cα0,0 do not all vanish at the origin, we know from [14] that
Cα,t is equivalent, for t small enough, by smooth changes coordinates and multiplication
by a non-zero function, to a family in the form

dy2 + f(x, y, α, t)dx2 = 0. (2)

In fact, we only need to reduce an appropriate k-jet of Cα,t to the above form as
the conditions for a given singularity in the members of the family (2) and that for
the family to be generic depend only on some k-jet of f at the origin ([35]). The
reduction is done inductively on the jet level following the algorithm in [17, 14]. Once
the reduction done, we apply the results in [35] to obtain information about Cα,t

We use the above setting for Cα0,0 in all the cases below. The calculations are
carried out using Maple. The genericity conditions are very lengthy for us to be able
to reproduce them here. We start with the following case.

(i) Folded degenerate elementary singularity: This singularity occurs when the dis-
criminant is smooth and the lifted field has a degenerate elementary singularity of
multiplicity 3. It occurs at q0 = (0, 0, α0, 0) in (2) if and only if

f(q0) = fx(q0) = fxx(q0) = fxxx(q0) = 0 and fy(q0)fxxxx(q0) 6= 0.

Following similar calculations to those in the previous sections, the family (2) is generic
if and only if





fy fα ft
fxy fαx ftx
fxxy fαxx ftxx





has maximal rank at q0 (see [35]. The matrix in [35] is slightly different as the equation
there is reduced to a pre-normal form at (α0, 0). This observation is also valid for the
two other cases below).

For Cα0,0 (and with the above setting), the origin is a folded degenerate elementary
singularity if and only if

(−h2
31 + 4h4

21)h
5
20 + 3h4

20h21h32h31 + (−4h41h21 − 5h2
31 − 2h2

32 + 8h4
21)h

2
21h

3
20 + (4h40h21 +

7h32h31)h
3
21h

2
20 + (−4h21h41 + 4h4

21 − 6h2
31)h

4
21h20 + 4h6

21h40 = 0

and
(24h4

21h31−3h3
31)h

9
20+(−36h5

21h32+13h2
31h21h32)h

8
20+(156h6

21h31−12h3
21h41h31+(−3h2

31h33−
18h2

32h31−13h3
31)h

2
21)h

7
20 +(−16h7

21h32+(24h31h42+16h41h32)h
4
21 +(51h2

31h32+7h31h32h33+

8h3
32)h

3
21)h

6
20 +(232h8

21h31−16h6
21h51 +(−28h32h42−76h41h31)h

5
21 +(−13h2

31h33−58h2
32h31−
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4h2
32h33−12h3

31)h
4
21)h

5
20+(76h9

21h32+16h7
21h50+(76h31h42+60h41h32)h

6
21+(76h2

31h32+18h3
32+

15h31h32h33)h
5
21)h

4
20 + (92h10

21h31 − 32h8
21h51 + (−144h41h31 − 28h32h42)h

7
21 + (−14h2

31h33 +

4h3
31−66h2

32h31)h
6
21)h

3
20+(56h11

21h32+32h9
21h50+(44h41h32+52h31h42)h

8
21+60h7

21h32h
2
31)h

2
20+

(−16h10
21h51 − 80h9

21h41h31 − 8h12
21h31)h20 + 16h11

21h50 = 0.

We then reduce the 4-jet of Cα,t at (0, 0, α0, 0) to the form dy2 + f(x, y, α, t)dx2

and calculate the determinant of the above matrix. The expression of this determinant
is very lengthy to reproduce here. However it does not vanish for generic families of
surfaces. Therefore, for generic families of surfaces, the family Cα,t is generic at a
folded degenerate elementary singularity of Cα0,0. It follows then from [35] that the
bifurcations in Cα,t are as shown in Figure 6.

(ii) Non-transverse Morse singularity: occurs when the discriminant has a Morse
singularity of type node (i.e., given by x2 − y2 = 0 in some coordinates system) and
the unique direction determined by the BDE at the origin has an ordinary tangency
with one of the branches of the discriminant. It occurs at q0 = (0, 0, α0, 0) in (2) if
and only if

f(q0) = fx(q0) = fy(q0) = fxx(q0) = 0 and fxy(q0)fxxx(q0) 6= 0.

The family (2) with a non-transverse Morse singularity at the origin is generic if and
only if









0 0 fα ft
0 fxy fαx ftx
fxy fyy 0 fty
fxxx fxxy fαxx ftxx









has maximal rank at q0 ([35]).
We reduce the 3-jet of Cα,t at q0 to the form dy2 + f(x, y, α, t)dx2 as in the previ-

ous case. We can then read the conditions for a Cα0,0 to have a non-transverse Morse
singularity at the origin. Under these conditions, the determinant of the above ma-
trix has maximal rank for generic families of surfaces. (Again the expression of this
determinant is too lengthy to reproduce here.) Therefore the family Cα,t is generic
at a non-transverse Morse singularity of Cα0,0. It follows then from [35] that the
bifurcations in Cα,t are as shown in Figure 7.

(iii) Cusp type 1 singularity: occurs when the discriminant has a cusp singularity
with a limiting tangent transverse to the unique direction determined by the BDE. It
occurs at q0 = (0, 0, α0, 0) in (2) if and only if

f(q0) = fx(q0) = fy(q0) = (f 2
xy − fxxfyy)(q0) = 0 and fxx(q0)fyyy(q0) 6= 0.

The family (2) with a cusp singularity at the origin is generic if and only if








0 0 fα ft
fxx fxy fαx ftx
fxy fyy 0 fty
m1 m2 ∗ ∗








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has maximal rank at q0 ([35]), where m1 = (2fxyfxxy − fxxfxyy − fyyfxxx)(q0), m2 =
(2fxyfxyy − fxxfyyy − fyyfxxy)(q0). Observe that (f 2

xy − fxxfyy)(q0) = 0, so the deter-
minant of the above matrix does not depend on the entries marked ∗.

We reduce the 3-jet of Cα,t at q0 to the form dy2 +f(x, y, α, t)dx2 and compute the
conditions for having a cusp singularity and for Cα,t to be generic. We find that for
generic families of surfaces Cα,t is indeed generic (the determinant of the above matrix
does not vanish). It follows then from [35] that the bifurcations in Cα,t are as shown
in Figure 8. 2

6 Appendix

BDEs (1) determine a pair of transverse foliations away from the discriminant. The
pair of foliations together with the discriminant are called the configuration of the
solutions of the BDE. We analyse here the configurations of the BDEs at points on
their discriminants and describe the stable and codimension ≤ 1 local phenomena in
these equations. We shall consider the point of interest to be the origin and separate
the study into two cases depending on whether all the coefficients vanish at the origin
or not.

6.1 Not all the coefficients vanish at the origin

A BDE with coefficients not all vanishing at a given point can be considered as an
implicit differential equation (IDE) F (x, y, p) = 0, p = dy/dx, with (x, y, p) in some
open set in R

3. Conversely, any IDE that satisfies F = Fp = 0 and Fpp = 0 at a
given point, is locally smoothly equivalent to a BDE ([14]). (So in particular, one can
deform a BDE in this situation in the set of all IDEs.) One approach for investigating
BDEs with coefficients not all vanishing at a given point consists of lifting the bi-
valued direction field defined in the plane to a single direction field ξ on the surface
N = F−1(0) ⊂ R

3. If ξ does not vanish at the point in consideration then the BDE can
be reduced locally (by smooth changes of coordinates in the plane and multiplication
by non-zero functions) to dy2 − xdx2 = 0. The integral curves in this case is a family
of cusps transverse to the discriminant. (See [18, 25] for details and references.)

If ξ has an elementary singularity (saddle/node/focus), then the corresponding
point in the plane is called a folded singularity of the BDE. At folded singularities, the
equation is locally smoothly equivalent to dy2 + (−y + λx2)dx2 = 0, with λ 6= 0, 1

16
,

provided that ξ is linearzable at the singular point; see [18]. There are three topological
models (see [18] for references): a folded saddle if λ < 0, a folded node if 0 < λ < 1

16

and a folded focus if 1
16
< λ; Figure 9.

The family of cusps and the folded singularities are the only locally structurally
stable configurations of singular BDEs (and indeed of IDEs) .
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N

R
2, 0

Figure 9: Folded saddle (left), node (centre) and focus (right).

The bifurcations in generic 1-parameter families have also been classified. One
of these is the folded saddle-node bifurcation (λ = 0 above) and occurs when the
discriminant is smooth and the lifted field ξ has a saddle-node singularity. Then the
equation is locally smoothly equivalent to dy2 + (−y + x3 + µx4)dx2 = 0 ([19]). A
generic 1-parameter family of BDEs with a folded saddle-node singularity at t = 0 is
fibre topologically equivalent to dy2 + (−y + x3 + tx)dx2 = 0 ([34], Figure 10).

N

R
2, 0

t < 0 t = 0 t > 0

Figure 10: Bifurcations at a folded saddle-node.

When λ = 1
16

, it is shown in [20] that the IDE is still smoothly equivalent to
dy2 + (−y + 1

16
x2)dx2 = 0. We label this singularity a folded node-focus change. One

can show that a generic 1-parameter family of BDEs with this singularity at t = 0 is
fibre topologically equivalent dy2 + (−y + ( 1

16
+ t)x2)dx2 = 0 ([34], Figure 11).

Bifurcations can also occur when the discriminant has a Morse singularity (i.e.,
the discriminant is given by x2 ± y2 = 0 in some coordinates system). BDEs with
discriminants as above are labelled Morse Type 1 in [9]. Generic Morse Type 1 sin-
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N

R
2, 0

t < 0 t = 0 t > 0

Figure 11: Change from a folded node to a folded focus.

gularities are locally topologically equivalent to dy2 + (±x2 ± y2)dx2 = 0 ([9, 27]). A
generic 1-parameter family of BDEs with a Morse Type 1 singularity at t = 0 is fibre
topologically equivalent to dy2 + (±x2 ± y2 + t)dx2 = 0 ([9], Figure 12). As t passes
through 0, two folded saddles or foci singularities appear on one side of the transition
and none on the other. The saddle or focus type are distinguished by the sign of x2

in the normal form (+ for focus and − for saddle).

↔

↔

↔

↔

↔

↔

↔

↔

Figure 12: Bifurcations at Morse Type 1 singularities: A−
1 left and A+

1 right.

In [35] are studied the local codimension 2 singularities and their bifurcations in
generic families. The topological normal forms of these singularities and models of
their generic families are given in Table 1. It is also shown in [35] that there are no
Poincaré-Andronov (Hopf) bifurcations on the lifted field ξ of a BDE at a regular point
on the criminant.
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6.2 All the coefficients vanish at the origin

BDEs with coefficients all vanishing at a given point are of infinite codimension in
the set of all IDEs. So one has to restrict the study of their deformations to the set
of all BDEs. General BDEs with vanishing coefficients at a given point are studied
for example in [7, 16, 23, 27, 33]. The bi-valued field in the plane is lifted to a single
direction field ξ on a surface

N = {(x, y, [α : β]) ∈ R
2, 0 × RP 1 : aβ2 + 2bαβ + cα2 = 0}.

If we consider the affine chart p = β/α and set F (x, y, p) = a(x, y)p2 + 2b(x, y)p+
c(x, y), then the lifted direction field is parallel to the vector field ξ = Fp∂/∂x +
pFp∂/∂y − (Fx + pFy)∂/∂p. The whole exceptional fibre (0, 0) × RP 1 is an integral
curve of ξ. The surface N is regular along the exceptional fibre if and only if the
discriminant of the BDE has a Morse singularity ([16]). It turns out that when this
is the case and when ξ has only elementary singularities on the exceptional fibre, the
topological models of the integral curves of the BDE are completely determined by
the singularity type of the discriminant (an isolated point or a crossing), the number
(1 or 3) and the type (saddle or node) of the singularities of ξ (see for example [16]).
If j1(a, b, c) = (a1x + a2y, b1x + b2y, c1x + c2y), then the singularities of ξ on the
exceptional fibre are given by the roots of the cubic

φ(p) = (Fx + pFy)(0, 0, p) = a2p
3 + (2b2 + a1)p

2 + (2b1 + c2)p+ c1.

The eigenvalues of the linear part of ξ at a singularity are −φ′(p) and α1(p), where

α1(p) = 2(a2p
2 + (b2 + a1)p+ b1).

So the cubic φ and the quadratic α1 determine the number and the type of the singu-
larities of ξ (see [16] for details).

When the discriminant has a Morse singularity we can set j1(a, b, c) = (y, b1x +
b2y, ǫy), ǫ = ±1 (or j1(a, b, c) = (x + a2y, 0, y), a2 >

1
4
), [16, 23]. In the (b1, b2)-plane,

there are curves where singularities of codimension > 1 occur. These are:

(i) b1 = 0, where the discriminant has a degenerate singularity (worse than Morse);
(ii) 2b1 + ǫ = 0 or b1 = 1

2
(b22 − ǫ) where φ has a double root;

(iii) ǫ = 1, b1 = ±b2 − 1 where α1 and φ have a common root.

The topological type of the BDE is constant in the complement of the above curves.
These singularities are of codimension 1 and their bifurcations in generic families are
studied in [15] (see also [27] for the case ǫ = −1). The figures on both sides of the
bifurcations are equivalent, so only one of them is shown in each case in Figures 13
and 14. (The 2S+1N case (b) in Figure 14 was missing in [15]. It was completed in
[31].)
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1S 3S 2S+1N

Figure 13: Bifurcations at an A+
1 Morse Type 2 singularities.

1S 1N 3S 1S+2N

2S+1N

case (a)

2S+1N

case (b)

Figure 14: Bifurcations at an A−
1 Morse Type 2 singularities.
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