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Abstract

We study in this paper orthogonal projections in a hyperbolic space to hyper-
horospheres and hyperplanes. We deal in more details with the case of embedded
surfaces M in H3

+(−1). We study the generic singularities of the projections of
M to horospheres and planes. We give geometric characterisations of these sin-
gularities and prove duality results concerning the bifurcation sets of the families
of projections. We also prove Koendrink type theorems that give the curvature
of the surface in terms of the curvatures of the profile and the normal section of
the surface.

1 Introduction

Projections of surfaces in the Euclidean and projective 3-spaces are well studied (see for
example [1, 3, 4, 5, 6, 7, 9, 23, 24, 27, 28, 29, 30]). We initiate in this paper an analogous
study for embedded surfaces in the hyperbolic space H3

+(−1). Projections in the
Euclidean space Rn are linear maps. By such projections, a point in Rn is taken along a
line (a geodesic) until it hits an orthogonal hyperplane of projection (which is an (n−1)-
dimensional flat object). There are two notions of flat objects in the hyperbolic space
Hn

+(−1). One is given by the everywhere vanishing of de Sitter Gaussian curvature
and the other by the everywhere vanishing of the hyperbolic Gaussian curvature (see
Section 2). It is shown in [17] that a totally umbilic hypersurface has everywhere zero
hyperbolic Gaussian curvature if and only if it is part of a hyperhorosphere, and it has
everywhere zero de Sitter Gaussian curvature if and only if it is part of a hyperplane
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([19]). So we consider in this paper orthogonal projections to hyperhorospheres and to
hyperplanes. By such projections, a point in Hn

+(−1) is taken along the unique geodesic
to the point where such geodesic meets orthogonally the chosen hyperhorosphere or
hyperplane of projection.

We deal in Section 3 with projection to hyperhorospheres and in Section 4 with
projections to hyperplanes. In both cases we start by finding the expressions of the
families of orthogonal projections in Hn

+(−1) to hyperhorospheres and hyperplanes
(Theorems 3.1 and 4.1). We then restrict to the cases of embedded surfaces M in
H3

+(−1). We give geometric characterisations of the generic singularities of the or-
thogonal projections of M to horospheres and planes (Theorems 3.5 and 4.4). We
observe that the singularities of these projections measure the contact of the surface
with geodesics in H3

+(−1). We prove duality results (Theorems 3.2 and 4.2) concerning
the bifurcation sets of the families of projections, analogous to those of Shcherback in
[29]. Here, we use the duality concepts introduced by the first author in [11, 12]; see
§2 for details. We also prove Koendrink type theorems that give the curvature of the
surface in terms of the curvature of the profile and of the normal section of the surface
(Theorems 3.6 and 4.5).

2 Preliminaries

We start by recalling some basic concepts in hyperbolic geometry (see for example
[26] for details). The Minkowski (n + 1)-space (Rn+1

1 , 〈, 〉) is the (n + 1)-dimensional
vector space Rn+1 endowed by the pseudo scalar product 〈x, y〉 = −x0y0 +

∑n
i=1 xiyi,

for x = (x0, . . . , xn) and y = (y0, . . . , yn) in Rn+1
1 . We say that a vector x in Rn+1

1 \{0}
is spacelike, lightlike or timelike if 〈x, x〉 > 0, = 0 or < 0 respectively. The norm of a
vector x ∈ Rn+1

1 is defined by ‖x‖ =
√
|〈x, x〉|.

Given a vector v ∈ Rn+1
1 and a real number c, the hyperplane with pseudo normal

v is defined by
HP (v, c) = {x ∈ Rn+1

1 | 〈x,v〉 = c}.
We say that HP (v, c) is a spacelike, timelike or lightlike hyperplane if v is timelike,

spacelike or lightlike respectively. For v = e0 = (1, 0, . . . , 0), we have HP (e0, 0) =
{x ∈ Rn+1

1 | x0 = 0}. This space is identified with the Euclidean n-space and is
denoted by Rn

0 .
We have the following three types of pseudo-spheres in Rn+1

1 :

Hyperbolic n-space : Hn(−1) = {x ∈ Rn+1
1 | 〈x,x〉 = −1},

de Sitter n-space : Sn
1 = {x ∈ Rn+1

1 | 〈x,x〉 = 1},
(open) lightcone : LC∗ = {x ∈ Rn+1

1 \ {0} | 〈x,x〉 = 0}.
We also define the lightcone hypersphere

Sn−1
+ = {x = (x0, . . . , xn) | 〈x,x〉 = 0, x0 = 1}.
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For x ∈ LC∗, we have x0 6= 0 so

x̃ =

(
1,

x1

x0

, . . . ,
xn

x0

)
∈ Sn−1

+ .

The hyperbolic space has two connected components Hn
+(−1) = {x ∈ Hn(−1)| x0 ≥ 1}

and Hn
−(−1) = {x ∈ Hn(−1)| x0 ≤ −1}. We only consider embedded surfaces in

Hn
+(−1) as the study is similar for those embedded in Hn

−(−1).
The wedge product of n vectors a1,a2, . . . , an ∈ Rn+1

1 is given by

a1 ∧ a2 ∧ · · · ∧ an =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

a1
0 a1

1 · · · a1
n

a2
0 a2

1 · · · a2
n

...
... · · · ...

an
0 an

1 · · · an
n

∣∣∣∣∣∣∣∣∣∣∣

,

where {e0, e1, . . . , en} is the canonical basis of Rn+1
1 and ai = (ai

0, a
i
1, . . . , a

i
n), i =

1, . . . , n. One can check that

〈a,a1 ∧ a2 ∧ · · · ∧ an〉 = det(a, a1, . . . , an),

so the vector a1 ∧a2 ∧ · · · ∧an is pseudo orthogonal to all the vectors ai, i = 1, . . . , n.
The extrinsic geometry of hypersurfaces in the hyperbolic space is studied in [11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Let M be a hypersurface embedded in Hn
+(−1).

Given a local chart i : U → M , where U is an open subset of Rn−1, we denote by
x : U → Hn

+(−1) such embedding, identify x(U) with U through the embedding x
and write M = x(U). Since 〈x,x〉 ≡ −1, we have 〈xui

,x〉 ≡ 0, for i = 1, . . . , n − 1,
where u = (u1, . . . , un−1) ∈ U. We define the spacelike unit normal vector e(u) to M
at x(u) by

e(u) =
x(u) ∧ xu1(u) ∧ . . . ∧ xun−1(u)

‖x(u) ∧ xu1(u) ∧ . . . ∧ xun−1(u)‖ .

It follows that the vector x± e is a lightlike vector. Let

E : U → Sn
1 and L± : U → LC∗

be the maps defined by E(u) = e(u) and L±(u) = x(u) ± e(u). These are called,
respectively, the de Sitter Gauss map and the lightcone Gauss map (or hyperbolic Gauss
indicatrix) of M ([17]). For any p = x(u0) ∈ M and v ∈ TpM, one can show that
DvE ∈ TpM, where Dv denotes the covariant derivative with respect to the tangent
vector v. Since the derivative dx(u0) can be identified with the identity mapping 1TpM

on the tangent space TpM, we have dL±(u0) = 1TpM ±dE(u0), under the identification
of U and M via the embedding x. The linear transformation Ap = −dE(u0) is called
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the de Sitter shape operator. Its eigenvalues κi, i = 1, . . . , n−1, are called the de Sitter
principal curvature and the corresponding eigenvectors pi, i = 1, . . . , n− 1, are called
the de Sitter principal directions. The linear transformation S±p = −dL±(u0) is labelled
the lightcone (or hyperbolic) shape operator of M at p. It has the same eigenvectors
as Ap but its eigenvalues are distinct from those of Ap. In fact the eigenvalues κ̄±i of
S±p satisfy κ̄±i = −1± κi, i = 1, . . . , n− 1.

We call Ke(p) =
∏n

i=1 κi(p) (resp. Kh(p) =
∏n

i=1 κ̄i(p)) the de Sitter (resp. hy-
perbolic) Gauss-Kronecker curvature of M at p. The curvature Ke is also called the
extrinsic Gaussian curvature. The set of points where Ke(p) = 0 (resp. Kh(p) = 0)
is labelled the de Sitter (resp. horospherical) parabolic set of M . The restriction of
the pseudo-scalar product to the hyperbolic space is a scalar product, so Hn

+(−1) is a
Rimaniann manifold. When n = 3, we have the sectional curvature KI of M which is
also called the intrinsic Gaussian curvature. It is known that Ke = KI + 1 (see (2.2)
in [8]).

A hypersurface given by the intersection of Hn
+(−1) with a spacelike, timelike

or lightlike hyperplane is called respectively hypersphere, equidistant hypersurface or
hyperhorosphere. The intersection of the surface with timelike hyperplane through
the origin is called simply a hyperplane. As pointed out in the introduction, the
hyperhorospheres (resp. hyperplanes) are the only hypersurfaces with everywhere zero
lightcone (resp. de Sitter) Gaussian curvature. We deal in Section 3 with projections
to hyperhorospheres and in Section 4 with projections to hyperplanes.

We need the notion of curvature of a curve in H3
+(−1). Let γ : I → H3

+(−1) be
a regular curve. Since H3

+(−1) is a Riemannian manifold, we can parametrise γ by
arc-length and assume that γ(s) is unit speed. Let t(s) = γ′(s), with ||t(s)|| = 1.

When 〈t′(s), t′(s)〉 6= −1, we have a unit normal vector n(s) = t′(s)−γ(s)
||t′(s)−γ(s)|| . Let e(s) =

γ(s) ∧ t(s) ∧ n(s), then we have a pseudo orthogonal frame {γ(s), t(s), n(s), e(s)} in
R4

1 along γ. Frenet-Serret type formulae, similar to those for a space curve in R3, can
be proved for the curve γ ([20]). The curvature of γ at γ(s) is defined to be

κh(s) = ||t′(s)− γ(s)||.

In particular, t′(s) = κh(s)n(s) + γ(s). The condition 〈t′(s), t′(s)〉 6= −1 above is
in fact equivalent to κh(s) 6= 0. See [20] for more results on curves in the hyperbolic
plane.

We require some properties of contact manifolds and Legendrian submanifolds for
the duality results in this paper (for more details see for example [2]). Let N be a
(2n + 1)-dimensional smooth manifold and K be a field of tangent hyperplanes on N .
Such a field is locally defined by a 1-form α. The tangent hyperplane field K is said
to be non-degenerate if α∧ (dα)n 6= 0 at any point on N. The pair (N, K) is a contact
manifold if K is a non-degenerate hyperplane field. In this case K is called a contact
structure and α a contact form.
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A submanifold i : L ⊂ N of a contact manifold (N, K) is said to be Legendrian if
dim L = n and dix(TxL) ⊂ Ki(x)

at any x ∈ L. A smooth fibre bundle π : E → M is

called a Legendrian fibration if its total space E is furnished with a contact structure
and the fibres of π are Legendrian submanifolds. Let π : E → M be a Legendrian
fibration. For a Legendrian submanifold i : L ⊂ E, π ◦ i : L → M is called a
Legendrian map. The image of the Legendrian map π ◦ i is called a wavefront set of i
and is denoted by W (i).

There are two families of maps defined on an embedded manifold M in the Eu-
clidean space Rn. These are the family of height functions given by

H : M × Sn−1 → R× Sn−1

(q, v) 7→ q.v

and the family of orthogonal projections given by

P : M × Sn−1 → TSn−1

(q, v) 7→ (q, q − (q.v)v)

where Sn−1 denotes the unit sphere and “.” the scalar product in Rn. The local
bifurcation set of H (resp. P ) is the set of u ∈ Sn−1 for which there exist p ∈M such
that Hu (resp. Pu) has a non-stable singularity at p. When n = 3, a result in [7] shows
that the dual of the A2-stratum of the bifurcation set of the family of height functions
on M ⊂ R3 is the lips/beaks stratum of the family of orthogonal projections on M .
The duality in [7] refers to the double Legendrian fibration S2 π1←− ∆

π2−→ S2, where S2

is the unit sphere in R3 and ∆ = {(u, v) ∈ S2 × S2 | u.v = 0}. The contact structure
on ∆ is given by the 1-form θ = v.du|∆. (There are also other duality results in [29]
regarding the strata of the bifurcation set of the family of projections of surfaces in
the projective space RP 3. Details of these are given in §3.2.)

We prove in §3.2 and §4.2 analogous results to those in [7] and [29]. The duality
concepts we use here are those introduced in [11, 12, 22], where five Legendrian double
fibrations are considered on the subsets ∆i, i = 1, . . . , 5 below, of the product of two
of the pseudo spheres Hn(−1), Sn

1 and LC∗. The geometric ideas behind the choice
of the subsets ∆i and the Legendrian double fibrations are as follows (for more details
see [11, 12, 22]).

To any hypersurface x : U → Hn(−1) is associated the de Sitter Gauss map
E : U → Sn

1 . It is easy to show that the pair (x,E) : U → Hn(−1)×Sn
1 is a Legedrian

embedding into the set ∆1 = {(v,w) ∈ Hn(−1) × Sn
1 | 〈v,w〉 = 0}. (The contact

structure on ∆1 is given below.) This means that M = x(U) and M∗ = E(U) are
dual. We call this duality the ∆1-duality. This is a direct analogue of the spherical
duality in the Euclidean space.

Consider now the lightcone Gauss map L± : U → Hn(−1) × LC∗ which satisfies
〈x(u),L±(u)〉 = −1. The pair (x,L±) : U → Hn(−1) × LC∗ determines a Legedrian
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embedding into the set ∆2 = {(v,w) ∈ Hn(−1)× LC∗ | 〈v,w〉 = −1}, so M = x(U)
and M∗ = L±(U) are dual. We call this duality the ∆2-duality.

Similarly, we have 〈E(u) ± x(u),E(u)〉 = 1 and 〈L+(u),L−(u)〉 = −2 and these
lead to the concepts of ∆3-duality and ∆4-duality respectively.

For spacelike hypersurfaces embedded in one of the pseudo-spheres in the Minkowski
space (i.e. surfaces whose tangent spaces at all points are spacelike), we need to con-
sider only the above four ∆i-dualities, i = 1, . . . , 4. However, if we consider timelike
hypersurfaces in Sn

1 , (i.e. surfaces whose tangent spaces at all points are timelike) we
need the concept of ∆5-duality below which is also a direct analogue to the spherical
duality in the Euclidean space. To summarise, we have the following five Legendrian
double fibrations.

(1) (a) Hn(−1)× Sn
1 ⊃ ∆1 = {(v,w) | 〈v,w〉 = 0},

(b) π11 : ∆1 → Hn(−1), π12 : ∆1 → Sn
1 ,

(c) θ11 = 〈dv,w〉|∆1, θ12 = 〈v, dw〉|∆1.

(2) (a) Hn(−1)× LC∗ ⊃ ∆2 = {(v,w) | 〈v,w〉 = −1 },
(b) π21 : ∆2 → Hn(−1),π22 : ∆2 → LC∗,
(c) θ21 = 〈dv, w〉|∆2, θ22 = 〈v, dw〉|∆2.

(3) (a) LC∗ × Sn
1 ⊃ ∆3 = {(v,w) | 〈v,w〉 = 1 },

(b) π31 : ∆3 → LC∗,π32 : ∆3 → Sn
1 ,

(c) θ31 = 〈dv, w〉|∆3, θ32 = 〈v, dw〉|∆3.

(4) (a) LC∗ × LC∗ ⊃ ∆4 = {(v,w) | 〈v,w〉 = −2 },
(b) π41 : ∆4 → LC∗,π42 : ∆4 → LC∗,
(c) θ41 = 〈dv, w〉|∆4, θ42 = 〈v, dw〉|∆4.

(5) (a) Sn
1 × Sn

1 ⊃ ∆5 = {(v,w) | 〈v, w〉 = 0},
(b) π51 : ∆5 → Sn

1 ,π52 : ∆5 → Sn
1 ,

(c) θ51 = 〈dv,w〉|∆5, θ52 = 〈v, dw〉|∆5.

Above, πi1(v,w) = v and πi2(v,w) = w for i = 1, . . . , 5, 〈dv,w〉 = −w0dv0 +∑n
i=1 widvi and 〈v, dw〉 = −v0dw0+

∑n
i=1 vidwi. The 1-forms θ−1

i1 and θ−1
i2 , i = 1, . . . , 5,

define the same tangent hyperplane field over ∆i which is denoted by Ki.
We have the following duality theorem on the above spaces.

Theorem 2.1 ([11, 12, 22]) The pairs (∆i, Ki), i = 1, . . . , 5, are contact manifolds
and πi1 and πi2 are Legendrian fibrations.

We have the following general remarks, some of which follow from the discussion
proceeding Theorem 2.1.
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Remark 2.2 1. Given a Legendrian submanifold i : L → ∆i, i = 1, . . . , 5, Theorem
2.1 states that πi1(i(L)) is the ∆i-dual of πi2(i(L)) and vice-versa.

2. We have the following geometric properties for a Legendrian submanifold L ⊂
∆i, i = 1, . . . , 5. Take the case i = 1. If π11(i(L)) is smooth at a point π11(i(u)), then
π12(i(u)) is the normal vector to the hypersurface π11(i(L)) ⊂ Hn

+(−1) at π11(i(u)).
Conversely, if π12(i(L)) is smooth at a point π12(i(u)), then π11(i(u)) is the normal
vector to the hypersurface π12(i(L)) ⊂ Sn

1 . The same holds for the ∆i-dualities,
i = 2, . . . , 5, where we take the normal to a hypersurface M ⊂ LC∗ at p ∈ M as the
direction given by the intersection of the normal plane to TpM in Rn+1

1 with TpLC∗.
3. The ∆4-duality is included for completion only and is not used in this paper.
4. Since the normal of a hypersurface in Hn(−1) is always spacelike, we have no

good duality relationship in Hn(−1)×Hn(−1).

3 Projections to hyperhorospheres

Our construction of the family of orthogonal projections works in Hn
+(−1) for n ≥ 3.

So we shall first deal with the general case and then restrict to n = 3 for a detailed
study of the singularities of the members of the family. Let HP (v, c) be a lightlike
hyperplane (so v ∈ LC∗ and c ∈ R). Given a point p ∈ Hn

+(−1), there is a unique
geodesic in Hn

+(−1) which intersects orthogonally the hyperhorosphere HP (v, c) ∩
Hn

+(−1) at some point q(p, v). We call the point q(p, v) the orthogonal projection
of p in the direction of v to the hyperhorosphere HP (v, c) ∩ Hn

+(−1). By varying
c, we obtain orthogonal projections to parallel hyperhorospheres. As the geometry
we are investigating here is the same in all these parallel hyperhorospheres, we fix
c to be 〈e0,v〉, with e0 = (1, 0, . . . , 0) ∈ Hn

+(−1). That is, we consider orthogonal
projections to the hyperhorospheres that passe through the point e0. We observe that
HP (v, 〈e0,v〉) = HP ( 1

v0
v,−1), so the hyperhorospheres we are considering are in fact

parametrised by the sphere Sn−1
+ . We define the fibre bundle

L := {(v, q) ∈ Sn−1
+ ×Hn

+(−1) | 〈v, q〉 = −1}.
By varying v, we obtain a family of orthogonal projections to hyperhorospheres
parametrised by vectors in Sn−1

+ .

Theorem 3.1 The family of orthogonal projections in Hn
+(−1) to hyperhorospheres

is given by
PHS : Hn

+(−1)× Sn−1
+ → L

(p,v) 7→ (v, q(p, v))

where q(p,v) has the following expression

q(p, v) = − 1

〈p,v〉p−
1− 〈p,v〉2
2 〈p,v〉2 v.
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Proof. Let p ∈ Hn
+(−1) and v ∈ Sn−1

+ . Consider the two parallel hyperhorospheres
HP (v,−1)∩Hn

+(−1) and HP (v, 〈p, v〉)∩Hn
+(−1), the first contains the point e0 and

the second the point p. A geodesic orthogonal to one of these hyperhorospheres is also
orthogonal to the other, and the length of the segment of such geodesics between a
point on one hyperhorosphere and another point on the other hyperhorosphere is the
same for all such geodesics. The geodesic in Hn

+(−1) through e0 and orthogonal to
HP (v,−1) ∩Hn

+(−1) is parametrised by

c(t) = cosh(t)e0 + sinh(t)u, (1)

where u is orthogonal to HP (v,−1)∩Hn
+(−1) at e0 and satisfies 〈u,u〉 = 1. A short

calculation shows that
u = e0 − v.

We are seeking the expressions of cosh(t0) and sinh(t0) in (1) when c(t0) is on the
hyperhorosphere HP (v, 〈p,v〉) ∩Hn

+(−1). For such t0 we have

〈p, v〉 = 〈c(t0),v〉
= − cosh(t0) + 〈u,v〉 sinh(t0)
= − cosh(t0) + 〈e0 − v, v〉 sinh(t0)
= −(cosh(t0) + sinh(t0)).

Therefore
cosh(t0) + sinh(t0) = −〈p, v〉 .

Combining the above relation with the identity cosh2(t0)− sinh2(t0) = 1 yields

cosh(t0) = −〈p, v〉
2 + 1

2 〈p, v〉 ,

sinh(t0) = −〈p, v〉
2 − 1

2 〈p, v〉 .

Now the point q(p, v), which is the orthogonal projection of p to the hyperhoro-
sphere HP (v,−1) ∩Hn

+(−1) is given by

q(p, v) = cosh(−t0)p + sinh(−t0)w,

with w = p + 1/〈p, v〉v. Substituting the expressions for cosh(t0) and sinh(t0) yields
the expression of q(p, v) in the statement of the theorem. 2

The projection PHS can be interpreted as follows in the Poincaré ball model of
Hn

+(−1). Given a point v on the ideal boundary, the hyperhorospheres defined by v
are the hyperspheres in the ball that are tangent to the boundary at v. If we fix one
of them, then the projection q(p, v) is represented by the intersection of the geodesic
linking v and p with the fixed hyperhorosphere. One can also define a projection to
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the ideal boundary by considering the point of intersection of the geodesic linking v
and p with the ideal boundary. By varying v, we obtain a family of projections to
the ideal boundary. Under the identification between Sn−1

+ in the Minkowski model
and the ideal boundary in the Poincaré ball model via the canonical stereographic
projection, we also have the corresponding projection onto Sn−1

+ that we denote by
PLS.

Theorem 3.2 There is a bundle isomorphism taking PHS to PLS.

Proof. For any v ∈ Sn−1
+ , the tangent space of Sn−1

+ at v can be canonically identified
with the space

TvSn−1
+ = {w ∈ Rn

0 | 〈v,w〉 = 0 }.
We define the stereographic projection Πv : Sn−1

+ \ {v} → TvSn−1
+ by

Πv(u) = v +
v − u

〈u, v〉 − e0.

We consider the induced metric on Sn−1
+ \ {v} via the stereographic projection

from the Euclidean space TvSn−1
+ , so that Πv is an isometric diffeomorphism. We also

define a projection Pv
LS : Hn

+(−1)→ Sn−1
+ \{v} as follows. Given a point p ∈ Hn

+(−1),
the line joining p and v meets the lightcone at another point q. Then Pv

LS(p) is defined
to be the point q̃ ∈ Sn−1

+ \ {v}. One can show that

Pv
LS(p) =

˜
2p +

v

〈p, v〉 .

We remark that the restriction

Pv
LS|HP (v,−1)∩Hn

+(−1) : HP (v,−1) ∩Hn
+(−1)→ Sn−1

+ \ {v}

is an isometric diffeomorphism. Therefore,

Πv ◦ Pv
LS|HP (v,−1)∩Hn

+(−1) : HP (v,−1) ∩Hn
+(−1)→ TvSn−1

+

is an isometric diffeomorphism. Varying v in Sn−1
+ yields a family of mappings PLS :

Hn
+(−1)× Sn−1

+ → Sn−1
+ × Sn−1

+ given by PLS(p,v) = (v, Pv
LS(p)).

The tangent bundle of the lightcone hypersphere is

TSn−1
+ = {(v, w) ∈ Sn−1

+ × Rn
0 | 〈v,w〉 = 0 }.

Therefore we have a family of projections to the tangent bundle of Sn−1
+

PLS : Hn
+(−1)× Sn−1

+ → TSn−1
+
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defined by PLS(p, v) = (1Sn−1
+
×Πv) ◦PLS(p, v) = (v, Πv ◦Pv

LS(p)). A straightforward

calculation shows that Pv
LS(q(p, v)) = Pv

LS(p), where q(p,v) is as in Theorem 3.1.
Let Φ : L → TSn−1

+ be the mapping defined by Φ(v, q) = (v, Πv ◦ Pv
LS(q)). Since

Πv ◦ Pv
LS|HP (v,−1)∩Hn

+(−1) is an isometric diffeomorphism, Φ is a bundle isomorphism

and Φ ◦ PHS = PLS.
On the Poincaré ball model of Hn

+(−1), the ideal boundary can be identified with
Sn−1

+ through the canonical stereographic projection. Therefore, the bundle L can be
identified with the tangent bundle of the ideal boundary. 2

In this paper, the family of orthogonal projections of a given submanifold M in
Hn

+(−1) to hyperhorospheres refers to the restriction of the family PHS to M . We still
denote this restriction by PHS. We have the following result where the term generic is
defined in terms of transversality to submanifolds of multi-jet spaces (see for example
[10]).

Theorem 3.3 For a residual set of embeddings x : M → Hn
+(−1), the family PHS is

a generic family of mappings.

Proof. The theorem follows from Montaldi’s result in [25] and the fact that PHS |Hn
+(−1)

is a stable map. 2

We denote by Pv
HS the map Hn

+(−1) → Hn
+(−1), given by Pv

HS(p) = q(p,v), with
q(p,v) as in Theorem 3.1.

3.1 Projections of surfaces in H3(−1) to horospheres

We now study projections of embedded surfaces in H3
+(−1) to horospheres. For a given

v ∈ S2
+ and a point p0 ∈ M , one can choose local coordinates so that Pv

HS restricted
to M can be considered locally as a map-germ R2, 0 → R2, 0. These map-germs are
extensively studied. We refer to [27] for the list of the A-orbits with Ae-codimension
≤ 6, where A denotes the Mather group of smooth changes of coordinates in the source
and target. In Table 1, we reproduce from [27] the list of local singularities of Ae-
codimension ≤ 3. Some of these singularities are also called as follows: 42 (lips/beaks),
43 (goose), 5 (swallowtail), 6 (butterfly), 115 (gulls). The multi-local singularities of
Ae-codimension ≤ 2 are as follows:

codimension 0: double fold.
codimension 1: triple fold; double tangent fold; fold plus cusp.
codimension 2: quadruple fold; double cusp; double fold plus cusp; double tangent

fold plus fold; 3-point contact folds; cusp plus tangent fold;
swallowtail plus fold; lips/beaks plus fold.
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Table 1: Ae-codimension ≤ 3 local singularities of map-germs R2, 0→ R2, 0 ([27]).

Name Normal form Ae-codimension
Immersion (x, y) 0
Fold (x, y2) 0
Cusp (x, xy + y3) 0
4k (x, y3 ± xky), k = 2, 3, 4 k − 1
5 (x, xy + y4) 1
6 (x, xy + y5 ± y7) 2
7 (x, xy + y5) 3
112k+1 (x, xy2 + y4 + y2k+1), k = 2, 3 k
12 (x, xy2 + y5 + y6) 3
16 (x, x2y + y4 ± y5) 3

It follows from Theorem 3.3 that for generic embeddings of the surface only singu-
larities of Ae-codimension ≤ dim(S2

+) = 2 can occur in the members of the family of
orthogonal projections. So we have the following result.

Proposition 3.4 For a residual set of embeddings x : M → H3
+(−1), the projections

Pv
HS : M → H3

+(−1) in the family PHS have local singularities A-equivalent to one in
Table 1 whose Ae-codimension ≤ 2. Moreover, these singularities are versally unfolded
by the family PHS.

The members of PHS can also have multi-local local singularities A-equivalent to
one listed above with Ae-codimension ≤ 2, and these singularities are also versally
unfolded by the family PHS. In this paper, we deal mainly with the geometry of the
local singularities.

As Ap and Sp are self-adjoint operators on M we can define the notion of asymptotic
directions at p. We say that u ∈ TpM is a de Sitter (resp. horospherical ) asymptotic
direction if and only if 〈Ap.u, u〉 = 0 (resp. 〈Sp.u, u〉 = 0). There are 0/1/2 de Sitter
(resp. horospherical) asymptotic directions at every point where Ke(p) (resp. Kh(p))
0 > / = / < 0.

Given v ∈ S2
+ and a point q on the horosphere HP (v, 〈q, v〉)∩H3

+(−1), we denote
by v∗ the projection of v in the direction of q (considered as a vector in R4

1) to
the tangent space of the horosphere at q. We have v∗ = v + 〈q, v〉 q, and the map
v 7→ v∗/||v∗|| = − (v/〈q, v〉+ q) from S2

+ to TqH
3
+(−1)∩S2

1 is one-to-one. Also, given
two parallel horospheres defined by v ∈ S2

+ and a geodesic orthogonal to both of them
at p and q respectively, then the vector v∗ associated to v is the same at p and q. The
types of singularities in the following theorem are those in Table 1.

Theorem 3.5 Let M be an embedded surface in H3
+(−1) and v ∈ S2

+.
(1) The projection Pv

HS is singular at a point p ∈M if and only if v∗ ∈ TpM.
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(2) The singularity of Pv
HS at p is of type cusp or worse if and only if v∗ is a de

Sitter asymptotic direction at p. In particular, p is a de Sitter hyperbolic or parabolic
point.

(3) The singularities of Pv
HS of type 5 (swallowtail) occur generically on a curve

in the de Sitter hyperbolic region, labelled the horosphere flecnodal curve. This curve
can be characterised as the locus of points where the de Sitter asymptotic curves have
geodesic inflections.

(4) The singularities of Pv
HS at p is of type 42 or 43 if and only if p is a de Sitter

parabolic point but not a swallowtail point of the de Sitter Gauss map and v∗ is the
unique de Sitter asymptotic direction there. Singularities of type 115 occur at swallow-
tail points of the de Sitter Gauss map.

Proof. We shall take the surface M in hyperbolic Monge form (H-Monge form, see
[17]) at the point in consideration. In fact, by hyperbolic motions, we can suppose
that the point of interest is e0 = (1, 0, 0, 0) and the surface is given in H-Monge form

x(x, y) =
(√

f 2(x, y) + x2 + y2 + 1, f(x, y), x, y
)

,

with (x, y) in some neighbourhood of the origin. Here f is a smooth function with
f(0, 0) = 0 and fx(0, 0) = fy(0, 0) = 0. So a unit normal to M at e0 is given by
n(0, 0) = (0, 1, 0, 0). We shall write the Taylor expansion of f at the origin in the form

f(x, y) = a20x
2 + a21xy + a22y

2 +
3∑

i=0

a3ix
3−iyi +

4∑
i=0

a4ix
4−iyi + h.o.t.

Let v = (1, v1, v2, v3) ∈ S2
+, so that at e0 we have v∗ = (0, v1, v2, v3). Then

∂Pv
HS/∂x(0, 0) = (0, v1v2, 1 + v2

2, v2v3) and ∂Pv
HS/∂y(0, 0) = (0, v1v3, v2v3, 1 + v2

3) and
these two vectors are linearly dependent if and only if v1 = 0, if and only if v∗ ∈ Te0M ,
which proves (1).

For the remaining cases we take, without loss of generality, v = (1, 0, 0, 1). The
restriction of the projection π(x0, x1, x2, x3) 7→ (0, x1, x2, 0) to the horosphere is a
submersion at e0. As the singularities of Pv

HS and those of π ◦ Pv
HS are A-equivalent,

we study π ◦ Pv
HS instead. We have

π ◦ Pv
HS(x, y) = (

f(x, y)√
f 2(x, y) + x2 + y2 + 1

,
x√

f 2(x, y) + x2 + y2 + 1
).

We can now analyse the appropriate k-jets of π ◦ Pv
HS and interpret geometrically the

conditions for it to be A-equivalent to a given singularity. For example, we have a
fold singularity if and only if a20 6= 0, if and only if v∗ = (0, 0, 0, 1) is not a de Sitter
asymptotic direction at e0. The singularity is of type cusp if and only if a20 = 0 and
a21a33 6= 0, and is of type swallowtail if and only if a20 = a33 = 0 and a21a44 6= 0.
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The equation of the asymptotic curves in the parameter space is given by ldx2 +
2mdxdy + ndy2 = 0, where l, m, n are the coefficients of the de Sitter second fun-
damental form. Suppose that the projection in the direction of v = (1, 0, 0, 1) has a
singularity worse than fold at e0 and assume that this point is not a de Sitter parabolic
point, i.e. a20 = 0 and a21 6= 0. Then the de Sitter asymptotic curve tangent to v∗ is
parametrised by

γ(t) = (1 +
1

2
t2,−1

2
a33t

2,−3

2

a33

a21

t2, t) + h.o.t.

The geodesic curvature of this asymptotic curve at e0 is −3a33/a21 and its curva-
ture, as a curve in H3

+(−1) (see §2 for definition), is given by |a33|
√

1 + 9/a2
21. Both

these curvatures vanish at e0 if and only if a33 = 0, if and only if the singularity of
the projection is of type swallowtail or worse.

The analysis for remaining cases is similar to the one above. 2

We call the image of the critical set of Pv
HS the contour (or profile) of M in the

direction v. This is generically a curve on a horosphere. We shall suppose here that
it is a smooth curve. (The bifurcations of the contour as v varies in S2

+ are similar
to those of the contour of a surface in the Euclidean space R3 and can be found in
[1].) Let p be a point on M . We call the intersection of M with the 3-dimensional
space generated by the vectors p, v and e(p) the normal section of M at p along v.
Koenderink showed in [24] that for embedded surfaces in R3, the Gaussian curvature
of the surface at a given point is the product of the curvature of the contour with the
curvature of the normal section in the direction of projection. We have the following
result for projections of surfaces in H3

+(−1) to horospheres, where the curvature of a
curve in H3

+(−1) is as given in §2.

Theorem 3.6 (Koenderink type theorem) Let κc be the curvature of the contour and
κn the curvature of the normal section in the projection direction. Then the de Sitter
Gaussian curvature of the surface is given by

Ke = κn

√
κ2

c − 1.

Proof. We consider the H-Monge form setting of the proof of Theorem 3.5 and take
v = (1, 0, 0, 1). We assume that the singularity of the projection is a fold at e0, so
a22 6= 0. Then the 2-jet of the profile is given by

(1 +
1

2
t2,

4a20a22 − a2
21

4a22

t2, t− a21

2a22

t2,
1

2
t2),

so, following the formula in §2, its curvature at e0 is given by

κ2
c =

(4a20a22 − a2
21)

2

4a2
22

+ 1.
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The normal section of the surface along v is given by (
√

f(0, y)2 + y2 + 1, f(0, y), 0, y)
and its curvature at e0 is given by κn = 2a22. Given the fact that the de Sitter Gaussian
curvature Ke = 4a20a22 − a2

21 at e0, it follows that

κ2
c =

K2
e

κ2
n

+ 1.

We remark that KI ≡ 0 (i.e. flat in the intrinsic sense) for a horosphere, so that
Ke ≡ 1. This explains why we have +1 in the last formula. 2

3.2 Duality

We prove in this section duality result similar to those in [29] for central projections
of surfaces in RP 3. Following the notation in [29], let S be a two-dimensional surface
in RP 3 and q a point in RP 3. The pencil of lines through q form a two dimensional
projective space Q and one obtains a bundle RP 3 \ q → Q. The projection of the
surface S from the point q is the diagram S ↪→ RP 3 \ q → Q. For a generic surface, a
germ of a projection is equivalent to one of 14 non-equivalent types of projections [30].
Three of these types occur when one projects from a point in an open set of RP 3 and
the rest when projecting from points on the bifurcation set of the family of projections
parametrised by points in RP 3. One component of the bifurcation set is the ruled
surface Apar

2 swept out by the asymptotic lines with origins at the parabolic points
of S. Another stratum of the bifurcation set involving local singularities is the ruled
surface A3 swept out by the asymptotic lines of S which are tangent to S of order at
least three (the origin of such lines form a smooth curve on S). The projection can
have multi-local singularities. Three other ruled surfaces are considered in [29]. These
are the A3

1 whose lines are tangent to S at three points or more, A1×A2 whose lines are
tangent to S at three points or more, so that each line is asymptotic tangent at one of
the points, and the surface A1||A1 whose lines are tangent to S at two points, so that
for each line, the projective planes tangent to S at the points coincide. The following
result is proved in [29], where the dual surface S∗ is the wavefront of S ↪→ PT ∗RP 3.
(The projectivised cotangent bundle PT ∗RP 3 is given the canonical contact structure,
see [2] for more details.)

Theorem 3.7 ([29]) (1) Apar
2 is the front of the cuspidal edge of the surface S∗.

(2) A1||A1 is the front of the self-intersection line of the surface S∗.
(3) The surfaces A3, A3

1, A1×A2 are self-dual, i.e. the surface dual to these surfaces
are the corresponding objects of the surface S∗.

There are Euclidean analogues in [7] of the results in [29] (see also [3, 4, 6] for
related results). It is shown for example in [7] that the dual of the A2-stratum of the
bifurcation set of the family of height functions on a smooth surface in R3 is dual to the
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lips/beaks stratum of the family of orthogonal projections of the surface. (As pointed
out in §2, duality in [7] refers to the double Legendrian fibration S2 π1←− ∆

π2−→ S2,
where S2 is the unit sphere in R3 and ∆ = {(u, v) ∈ S2 × S2 | u.v = 0}. The contact
structure on ∆ is given by the 1-form θ = v.du|∆.)

Let M be an embedded surface in H3
+(−1). The situation here is different from

that in [29]. We shall use the duality concepts in [11, 12, 22] (see Section 2), so the
∆1-dual of the surface M does not live in the dual space of the ambient space H3

+(−1)
of the surface M . Also, the bifurcation set of the family of projections PHS is not a
subset of H3

+(−1). However, we still obtain results similar to those in [29].
We denote by Apar

2 the ruled surface in H3
+(−1) swept out by the geodesics in

H3
+(−1) with origins at the de Sitter parabolic points of M and whose tangent direc-

tions at these points are along the unique de Sitter asymptotic directions. We also
denote by A1||A1 the ruled surface swept out by the geodesics in H3

+(−1) that are
tangent to M at two points where the normals to M at such points are parallel. (So
the projection Pv

HS, with v well chosen, has a multi-local singularity of type double
tangent fold or worse.)

Theorem 3.8 Let M∗ be the ∆1-dual of the surface M embedded in H3
+(−1). Then,

(1) The ∆1-dual of the surface Apar
2 is the cuspidaledge of M∗.

(2) The ∆1-dual of the surface A1||A1 is the self-intersection line of M∗.

Proof. (1) We suppose that the de Sitter parabolic set K−1
e (0) is a regular curve.

This property holds for generic embeddings of surfaces in H3
+(−1). Let p(t), t ∈ I, be

a parametrisation of the de Sitter parabolic set of M and ui(t), i = 1, 2, denote the
unit principal directions of M at p(t). Suppose, without loss of generality, that the
unique asymptotic direction at p(t) is along u1(t). Then we have the following local
parametrisation of Apar

2 :

y(s, t) = cosh(s)p(t) + sinh(s)u1(t).

The normal to the surface Apar
2 (in H3

+(−1)) is along

y ∧ ys ∧ yt = cosh(s)p(t) ∧ u1(t) ∧ p′(t) + sinh(s)p(t) ∧ u1(t) ∧ u′1(t).

At a generic point p on the de Sitter parabolic set (i.e. away from swallowtail of the
de Sitter Gauss map), the de Sitter asymptotic direction is transverse to the parabolic
set, so p(t) ∧ u1(t) ∧ p′(t) is along e(p(t)). It follows from Lemma 3.11 below that
p(t) ∧ u1(t) ∧ u′1(t) is also along e(p(t)). Therefore y ∧ ys ∧ yt is along e(p(t)). So
the normal to the ruled surface Apar

2 is constant along the rulings and is given by the
normal vector e(p(t)) to M at p(t). This means that Apar

2 is a de Sitter developable
surface. Therefore, the ∆1-wavefront of Apar

2 is {e(p), p a de Sitter parabolic point}.
This is precisely the singular set (i.e. the cuspidaledge) of the ∆1-dual surface of M .
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(2) Suppose a multi-local singularity (double tangent fold) occurs at two points p1

and p2 on M . The surface A1||A1 is then a ruled surface generated by geodesics along
a curve C1 on M through p1 (or a curve C2 on M through p2). The normals to the
surface at points on C1 and C2 that are on the same ruling of A1||A1 are parallel. Let
q(t) be a local parametrisation of the curve C1 and u(t) be the unit tangent direction
to the ruling in A1||A1 through q(t). Then a parametrisation of A1||A1 is given by

w(s, t) = cosh(s)q(t) + sinh(s)u(t).

The normal to this surface is along cosh(s)V1(t) + sinh(s)V2(t) with V1(t) = q(t) ∧
u(t)∧ q′(t) and V2(t) = q(t)∧u(t)∧u′(t). These normals are parallel at two points on
any ruling, one point being on the curve C1 and the other on C2. Therefore V1(t) and
V2(t) are parallel, so the normal to the surface A1||A1 is constant along the rulings
of this surface. As these are along the normal to the surface at q(t), it follows that
the ∆1-wavefront of A1||A1 is {e(p), p ∈ C1} = {e(p), p ∈ C2}. This is precisely the
self-intersection line of M∗, the ∆1-dual surface of M . 2

With the notation in the proof of Theorem 3.8, the cuspidaledge of M∗ (the ∆1-dual
of M) is parametrised by E(p(t)) (recall that M∗ = E(M) by definition). Theorem 3.8
asserts that L(s, t) = (y(s, t),E(p(t))) is a Legendrian embedding into ∆1. This can
be checked directly using the parametrisation L(s, t).

We consider now other dualities pointed out in Section 2. We define a diffeomor-
phism Ψ1 : H3

+(−1)× S2
+ → ∆1 by

Ψ1(q, v) = (q,− v

〈q, v〉 − q).

The inverse mapping Ψ−1
1 : ∆1 → H3

+(−1)×S2
+ is given by Ψ−1

1 (q, w) = (q, q̃ + w),

so ˜p(t) + u1(t) gives a parametrisation of the stratum Bif(PHS, lips/beaks) in S2
+. Let

Σ(42) = {(q, v) ∈ H3
+(−1)× S2

+ | Pv
HS has a singularity at q of type 42},

so that π(Σ(42)) = Bif(PHS, lips/beaks), where π : H3
+(−1)×S2

+ → S2
+ is the canon-

ical projection. Therefore we have

Ψ1

(
Σ(42)

)
= {(q, w) | w is the unique asymptotic direction at q ∈ K−1

e (0) }.

Moreover, we define a surface in the lightcone by

z(s, t) = y(s, t) + E(p(t))
= cosh(s)p(t) + sinh(s)u1(t) + E(p(t))

with notation as in the proof of Theorem 3.8. We now define the mappings Φ12 :
∆1 → ∆2 and Φ13 : ∆1 → ∆3 by Φ12(q, w) = (q, q + w) and Φ13(q, w) = (q + w,w).
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These mappings are contact diffeomorphisms. Since y(s, t) and E(p(t)) are ∆1-dual,
it follows that y(s, t) and z(s, t) are ∆2-dual and z(s, t) and E(p(t)) are ∆3-dual. We
have therefore shown the following result.

Theorem 3.9 Let M∗ be the ∆1-dual of the surface M embedded in H3
+(−1). Then

the ∆2-dual of Apar
2 is the ∆3-dual of the cuspidaledge of M∗.

Remark 3.10 (The analogues of the other ruled surfaces in [29]). In Shcherback’s
Theorem 3.7, the surfaces A3, A3

1 and A1 ×A2 are self-dual. In our case, we need the
analogues of these surfaces for M∗. As M∗ is not in H3

+(−1), we need to define the
concept of projections for surfaces embedded in the de Sitter and lightcone pseudo-
spheres. This will be dealt with in a forthcoming paper.

In the proof of Theorem 3.8 we used the following result.

Lemma 3.11 Let M be a generic surface in H3
+(−1). Then the derivative of the

de Sitter (resp. lightcone) asymptotic direction along the de Sitter (resp. lightcone)
parabolic curve is tangent to the surface M .

Proof. We consider the de Sitter case and the lightcone case follows in a similar way.
We can suppose that the surface is parametrised by φ(x, y), where x = const. and
y = const. represent the lines of curvature of M . Let p(t) be a local parametrisation
of the de Sitter parabolic curve. Then the unique de Sitter asymptotic direction on
the parabolic set is also a principal direction. Suppose without loss of generality
that this principal direction is u1(t). Then u1(t) = λ(t)φx(p(t)) = λ(t)φx(x(t), y(t)),
where λ(t) = ||φx(x(t), y(t))||. Therefore u′1(t) = λ(t)(x′(t)φxx(p(t))+y′(t)φxy(p(t)))+
λ′(t)φx(p(t)). The coefficients of the de Sitter second fundamental form are given by
l = 〈φxx, e〉 = κ1/E, m = 〈φxy, e〉 = 0 and n = 〈φyy, e〉 = κ2/G (where E, F, G are
the coefficients of the first fundamental form). So

〈u′1(t), e(t)〉 = λ(t) (〈φxx(p(t)), e(t)〉x′(t) + 〈φxy(p(t)), e(t)〉 y′(t)) = λ(t)κ1(t)/E = 0,

and hence u′1(t) ∈ Tp(t)M . 2

4 Projections to hyperplanes

We begin, as in Section 3, by considering the general case of orthogonal projections
in Hn

+(−1), for n ≥ 3, to hyperplanes. Let HP (v, 0) be a timelike hyperplane (so
v ∈ Sn

1 , that is, 〈v,v〉 = 1). Given a point p ∈ Hn
+(−1), there is a unique geodesic

in Hn
+(−1) which intersects orthogonally the hyperplane HP (v, 0) ∩Hn

+(−1) at some
point r(p,v). We call the point r(p,v) the orthogonal projection of p in the direction
of v to the hyperplane HP (v, 0)∩Hn

+(−1). The space HP (v, 0) can be identified with
the tangent space of Sn

1 at v.
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Theorem 4.1 The family of orthogonal projections in Hn
+(−1) to hyperplanes is given

by
PP : Hn

+(−1)× Sn
1 → TSn

1

(p,v) 7→ (v, r(p, v))

where r(p,v) has the following expression

r(p, v) =
1√

1 + 〈v, p〉2
(
p− 〈p, v〉v)

.

Proof. Let p ∈ Hn
+(−1) and v ∈ Sn

1 . We consider the equidistant hypersurface
HP (v, 〈p, v〉) ∩Hn

+(−1) through p and the geodesic

c(t) = cosh(t)p + sinh(t)u (2)

orthogonal to HP (v, 〈p,v〉)∩Hn
+(−1) at p and to HP (v, 0)∩Hn

+(−1) at r(p, v). The
vector u is given by

u =
1√

1 + 〈p, v〉2
(
v + 〈p, v〉 p).

We are seeking the expressions of cosh(t0) and sinh(t0) in (2) when c(t0) is on the
hyperplane HP (v, 0). For such t0 we have

〈c(t0), v〉 = 〈p, v〉 cosh(t0) + 〈u, v〉 sinh(t0)

= 〈p, v〉 cosh(t0) +
√

1 + 〈p, v〉2 sinh(t0)

= 0

Therefore

sinh(t0) = − 〈p,v〉√
1 + 〈p, v〉2

cosh(t0).

Combining the above relation with the identity cosh2(t0)− sinh2(t0) = 1 yields

cosh(t0) =
√

1 + 〈p, v〉2
sinh(t0) = −〈p, v〉 .

The point r(p,v) is given by r(p, v) = cosh(t0)p + sinh(t0)u. Substituting the expres-
sions of cosh(t0), sinh(t0) and u yields the expression of r(p,v) in the statement of the
theorem. 2

The family of orthogonal projections of a given submanifold M in Hn
+(−1) to

hyperplanes is the restriction of the family PP to M . We still denote this restriction
by PP .
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Theorem 4.2 For a residual set of embeddings x : M → Hn
+(−1), the family PP is a

generic family of mappings.

Proof. The theorem follows from Montaldi’s result in [25] and the fact that PP |Hn
+(−1)

is a stable map. 2

We denote by Pv
P the map Hn

+(−1) → Hn
+(−1), given by Pv

P (p) = r(p, v), with
r(p, v) as in Theorem 4.1

4.1 Projections of surfaces in H3(−1) to planes

We consider now embedded surfaces in H3
+(−1). For a given v ∈ S3

1 and a point
p0 ∈M , one can choose local coordinates so that Pv

P restricted to M can be considered
locally as a map-germ R2, 0 → R2, 0. It follows from Theorem 4.2 that for generic
embeddings of the surface, only singularities of Ae-codimension ≤ dim(S3

1) = 3 can
occur in the members of the family of orthogonal projections. So we have the following
result.

Proposition 4.3 For a residual set of embeddings x : M → H3
+(−1), the projections

Pv
P : M → H3

+(−1) in the family PP have local singularities A-equivalent to one in
Table 1. Moreover, these singularities are versally unfolded by the family PP .

(The projection Pv
P can also have multi-local singularities of Ae-codimension ≤

3 and these singularities are versally unfolded by the family PP ; see §3.1 for the
codimension ≤ 2 singularities.)

Given v ∈ S3
1 and a point q on the equidistant surface HP (v, 〈q, v〉)∩H3

+(−1), we
denote by v∗ the projection of v in the direction of q to Tq(HP (v, 〈q, v〉) ∩H3

+(−1)).
Observe that when q is on HP (v, 0) ∩H3

+(−1), then v∗ = v. The map v 7→ v∗/||v∗||
from S3

1 → TqH
3
+(−1) ∩ S3

1 is a submersion. In this case, the pre-image of a unit
direction in TqH

3
+(−1) is a curve on S3

1 . The geodesic through a point q ∈ HP (v, 0)∩
H3

+(−1) with tangent v at q intersects orthogonally any equidistant surface at some
point p and its tangent there is the parallel transport of v to p, which is the vector
v∗/||v∗||.

Theorem 4.4 Let M be an embedded surface in H3
+(−1) and v ∈ S3

1 .
(1) The projection Pv

P is singular at a point p ∈ M if and only if the parallel
transport v∗ of v to the point p is in TpM.

(2) The singularity of Pv
P at p is of type cusp or worse if and only if v∗ is a de

Sitter asymptotic direction at p. In particular, p is a de Sitter hyperbolic or parabolic
point.

(3) The singularity of Pv
P at p is of type 5 (swallowtail) or worse if and only if v∗

is a de Sitter asymptotic direction and p is a point on the horosphere flecnodal curve
(see Theorem 3.5(3)).
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(4) The singularity of Pv
P at p is of type 6 if and only if v∗ is a de Sitter asymptotic

direction and p is a point on the horosphere flecnodal curve where the asymptotic
curve has a higher geodesic inflection. There is a unique direction v ∈ S3

1 where the
singularity becomes of type 7.

(5) The singularities of Pv
P at p is of type 4k, k = 2, 3, 4, if and only if p is a de

Sitter parabolic point but not a swallowtail point of the de Sitter Gauss map and v∗

is the unique de Sitter asymptotic direction there. There is a unique direction v ∈ S3
1

where the singularity becomes of type 43, and isolated points on the parabolic set where
it becomes of type 44. At a swallowtail point of the de Sitter Gauss map, the singularity
is of type 115 in general and for single directions v ∈ S3

1 , it becomes of type 117 or of
type 12.

Proof. The proof follows by similar calculations to those in the proof of Theorem 3.5.
We take the surface in H-Monge form at e0. When the projection is singular, we set
v = (v0, 0, 0, v3) and consider the singularities of the modified projection π ◦Pv

P given
by

π ◦ Pv
P (x, y) = (

f(x, y)

λv(x, y)
,

x

λv(x, y)
),

with λv(x, y) = (1 + (−v0

√
f 2(x, y) + x2 + y2 + 1 + v3y)2)1/2 and π is as in the proof

of Theorem 3.5. The results can then be obtained by analysing the map-germ π ◦Pv
P .

2

Theorem 4.5 (Koendrink type theorem) Let κc be the curvature of the contour and
κn the curvature of the normal section in the projection direction. In general, the de
Sitter Gaussian curvature of the surface depends also on v. However, if the point on
the surface is also on the plane of projection (alternatively, if v ∈ TpM) then

Ke = κnκc.

Proof. We consider the H-Monge form setting of the proof of Theorem 3.5 and take
v = (v0, 0, 0, v3) ∈ S3

1 . We assume that the singularity of the projection is a fold at
e0, so a22 6= 0. Then the 2-jet of the profile is given by

1√
1 + v2

0

(
(
3

2
+ v2

0)t
2,

4a20a22 − a2
21

4a22

t2, t− v0v3a21

2(1 + v2
0)a22

t2, v0v3 +
v0v3

2(1 + v2
0)

t2
)

.

A calculation shows that its curvature at e0 is given by

κ2
c = (1 + v2

0)
K2

κ2
n

+ v6
0

a2
21

a2
22

.
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The above expression depends on v. If v0 = 0 (equivalently, if v∗ = v which means
that e0 is on the hyperplane HP (v, 0)∩H3

+(−1) so v ∈ Te0M) then K2
e = (κcκn)2. 2

Remark 4.6 The locus of points on M ⊂ H3
+(−1) where degenerate singularities

occur for Pv
HS and Pv

P coincide (de Sitter parabolic set and the horosphere flecnodal
curve for the local singularities in Theorems 3.5 and 4.4). This is not surprising as
both maps measure the contact of M with geodesics in H3

+(−1). The families PHS

and PP have parameter spaces with different dimensions, so more singularities occur
in the family PP than in PHS. Also, the target spaces of the projections are different.
This influences the curvature of the profile and we get two different Koendrink type
theorems.

4.2 Duality

We consider here the ∆5-dual (see [11] and Section 2) of some components of the
bifurcation set of the family PP of orthogonal projections of an embedded surface M
in H3

+(−1) to planes. Here the concepts of asymptotic directions and parabolic points
are those associated to the de Sitter shape operator.

Let p(t), t ∈ I, be a parametrisation of the parabolic set of M and ui(t), i = 1, 2,
denote the unit principal directions of M at p(t). Suppose, without loss of generality,
that the unique asymptotic direction at p(t) is along u1(t).

Theorem 4.7 Let M∗ be the ∆1-dual of the surface M embedded in H3
+(−1). Then,

(1) The local stratum Bif(PP , lips/beaks) of the bifurcation set of PP , which consits
of vectors v ∈ S3

1 for which the projection Pv
P has a lips/beaks singularity, is a ruled

surface parametrised by (s, t) 7→ cosh(s)u1(t)+ sinh(s)p(t), with t ∈ I and s ∈ R. The
∆5-dual of Bif(PP , lips/beaks) is the cuspidaledge of M∗.

(2) The multi-local stratum Bif(PP , DTF ) of the bifurcation set of PP , which con-
sits of vectors v ∈ S3

1 for which the projection Pv
P has a multi-local singularity of

type double tangent fold, is a ruled surface. The ∆5-dual of this ruled surface is the
self-intersection line of M∗.

Proof. (1) It follows from Theorem 4.4(5) that the lips/beaks stratum of the family
PP is given by

Bif(PP , lips/beaks) = {v ∈ S3
1 |v∗ is an asymptotic direction at a parabolic point},

where v∗ denotes the parallel transport of v to the point p. So v∗ = u1(t) when
v ∈ Bif(PP , lips/beaks). We have then

u1(t) = v∗ =
1√

1 + 〈p(t),v〉2
(v + 〈p(t), v〉 p(t))
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and hence

v =

√
1 + 〈p(t),v〉2u1(t)− 〈p(t),v〉 p(t).

If we set sinh(s) = 〈p(t),v〉 we get

Bif(PP , lips/beaks) = {cosh(s)u1(t) + sinh(s)p(t), t ∈ I, s ∈ R}.

For the duality result, following Remark 2.2, we need to find the unit normal vector
to Bif(PP , lips/beaks). Following the same argument in the proof of Theorem 3.8(1)
and using Lemma 3.11, we find that the normal vector is constant along the rulings
of the surface Bif(PP , lips/beaks) and is along e(t), and the result follows.

(2) Let q(t) and u(t) be as in the proof of Theorem 3.8(2). Then u(t) = v∗, so

v =

√
1 + 〈q(t),v〉2u(t)− 〈q(t),v〉 q(t).

If we set sinh(s) = 〈q(t),v〉 we get

Bif(PP , DTF ) = {cosh(s)u(t) + sinh(s)q(t), t ∈ I, s ∈ R}.

The normal to this surface is along cosh(s)V1(t) + sinh(s)V2(t) with V1(t) = q(t) ∧
u(t)∧q′(t) and V2(t) = q(t)∧u(t)∧u′(t). The same argument in the proof of Theorem
3.8(2) shows that V1(t) and V2(t) are parallel, so the normal to Bif(PP , DTF ) is con-
stant along the rulings of this surface. On the curve u(t), the normal to Bif(PP , DTF )
is along the normal to the surface M at q(t), so the ∆5-wavefront of Bif(PP , DTF )
is {e(p), p ∈ C1} = {e(p), p ∈ C2}. This is precisely the self-intersection line of M∗,
the ∆1-dual surface of M . 2
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