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Abstract

We study in this paper orthogonal projections of embedded surfaces M in
H3

+(−1) along horocycles to planes. The singularities of the projections cap-
ture the extrinsic geometry of M related to the lightcone Gauss map. We give
geometric characterisations of these singularities and prove a Koenderink type
theorem which relates the hyperbolic curvature of the surface to the curvature
of the profile and of the normal section of the surface. We also prove duality
results concerning the bifurcation set of the family of projections.

1 Introduction

The work of this paper is part of a wider project of investigating the extrinsic ge-
ometry of submanifolds embedded in the pseudo-spheres in the Minkowski space Rn

1

via singularity theory. The extrinsic geometric information is obtained by considering
the contact of the submanifold with degenerate objects in the given pseudo-sphere.
By degenerate we mean, for instance, a flat object (that is, a submanifold with some
curvature vanishing everywhere).

We studied in [27] the contact of surfaces in the hyperbolic space with geodesics.
This is measured by the singularities of orthogonal projections of the surface along
geodesics to hyperplanes and horospheres. The expression of an orthogonal projection
along a geodesic is also given in [28] using a different method. The work in [27] is
analogous to that on orthogonal projections of surfaces in the Euclidean and projective
3-spaces (these are well studied; see for example [1, 3, 4, 6, 7, 9, 11, 29, 30, 32, 33, 34,
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35]). Analogous in [27] means that we view a line in the Euclidean space as a geodesic.
But a line in the Euclidean space can also be viewed as the limit of circles with radii
tending to infinity. In the hyperbolic space, the limit of circles with radii tending to
infinity is a horocycle. So it is natural to consider, as we do in this paper, projections
in the hyperbolic space along horocycles.

Another reason we consider projections along horocycles is the following. Given
p ∈ M , there is a well defined unit normal vector e(p) to M at p; see §2. (If M is
orientable, then e(p) is globally defined. However, it is always locally defined and our
investigation here is local in nature.) The vector e(p) is in the de Sitter space S3

1 and
we have the de Sitter Gauss map

E : M → S3
1

p → e(p)

The projections of M along geodesics pick up extrinsic geometric information about
M related to the de Sitter Gauss map, see [27]. For example, the projection along
a geodesic has a cusp singularity at p if and only if the tangent to the geodesic at
p is a de Sitter asymptotic direction. The points on M where the projection has a
swallowtail singularity is precisely the locus of points of geodesic inflections of the de
Sitter asymptotic curves. Also, the projection has a lips/beaks singularity at p if and
only if p is a de Sitter parabolic point and the tangent to the geodesic is along the
unique de Sitter asymptotic direction at p.

There is another Gauss map on the surface introduced in [19] and called the light-
cone Gauss map; see §2. The vector p± e(p) is lightlike (i.e., belongs to the lighcone
LC∗), so we have the lightcone Gauss maps

L± : M → LC∗

p → p± e(p)

Projecting along horocycles is a natural candidate to pick up extrinsic geometric
information about the surface related to the lightcone Gauss map. We expect, for
instance, the projection along a horocycle with tangent at p along a horo-asymptotic
direction (i.e., a direction u satisfying 〈dp(L±)(u), u〉 = 0) to have a cusp singularity
at p.

We give in §3 the expression of the family P of projections along horocycles to
orthogonal planes. The planes of projection are arbitrary, that is, projecting to parallel
orthogonal planes yields the same information. So we project to the planes that passe
through the point p0 = (1, 0, 0, 0). Then the horocycles of interest are determined by
a pair of vectors (l, v) in the set C = {(l, v) ∈ S2

+ × S2
0 | 〈l, v〉 = 0}, where S2

+ and S2
0

are spheres in LC∗ and S3
1 respectively. The set C is in fact the parameter space of

our family of projections. For (l, v) fixed, the map P(l,v) can be considered locally as a
map-germ from R2, 0→ R2, 0. We show in §4 that P(l,v) has a cusp singularity or worse
if and only if κ(v∗) = −〈l, e(p)〉 / 〈l, p〉 , where v∗ is the tangent to the horocycle (l, v)
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at p and κ(v∗) is the de Sitter normal curvature at p along v∗. The above relation yields
several interesting geometric properties of M (Theorem 4.2). For instance, κ(v∗) = ±1

if and only if v∗ is a horo-asymptotic direction and l = L̃±(p), where L̃±(p) is the radial
projection of L±(p) to S2

+. We also show that the points p ∈M where the projection

along the horocycle (L̃±(p), v) has a swallowtail singularity at p is precisely the locus
of geodesic inflections of the horo-asymptotic curves (Proposition 4.3). We then prove
a Koenderink type theorem which relates the hyperbolic curvature of the surface to
the curvature of the profile and of the normal section of the surface (Theorem 4.4).

We prove in §5 a duality result between some surfaces associated to M and some
special curves on the ∆2-dual surface M (2,∗) of M ; (see §6). The result is analogous to
that of Shcherback in [34]. We also prove a duality result concerning the bifurcation
sets of the families of projections, analogous to that of Bruce-Romero Fuster in [9]. In
§5, we use the duality concepts introduced in [13, 14]; see §6 for details.

2 Preliminaries

The Minkowski space (R4
1, 〈, 〉) is the 4-dimensional vector space R4 endowed with

the pseudo scalar product 〈x, y〉 = −x0y0 +
∑3

i=1 xiyi, where x = (x0, x1, x2, x3) and
y = (y0, x1, x2, y3) in R4

1. We say that a vector x in R4
1 \ {0} is spacelike, lightlike or

timelike if 〈x, x〉 > 0, = 0 or < 0 respectively. The norm of a vector x ∈ R4
1 is defined

by ‖x‖ =
√
|〈x, x〉|.

Given a vector v ∈ R4
1 and a real number c, the hyperplane with pseudo normal v

is defined by
HP (v, c) = {x ∈ R4

1 | 〈x, v〉 = c}.
We say that HP (v, c) is a spacelike, timelike or lightlike hyperplane if v is timelike,

spacelike or lightlike respectively. We have the following three types of pseudo-spheres
in R4

1:

Hyperbolic 3-space : H3(−1) = {x ∈ R4
1 | 〈x, x〉 = −1},

de Sitter 3-space : S3
1 = {x ∈ R4

1 | 〈x, x〉 = 1},
(open) lightcone : LC∗ = {x ∈ R4

1 \ {0} | 〈x, x〉 = 0}.
We also define the lightcone sphere

S2
+ = {x ∈ LC∗ | 〈x, x〉 = 0, x0 = 1}

and the Euclidean sphere

S2
0 = {x ∈ S3

1 | 〈x, x〉 = 1, x0 = 0}.
For x ∈ LC∗, we have x0 6= 0 so

x̃ =

(
1,

x1

x0

,
x2

x0

,
x3

x0

)
∈ S2

+.
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The hyperbolic space has two connected components. We only consider embedded
surfaces in H3

+(−1) = {x ∈ H3(−1)| x0 ≥ 1} as the study is similar for those embedded
in H3

−(−1) = {x ∈ H3(−1)| x0 ≤ −1}.
The wedge product of 4 vectors a1, a2, a3 ∈ R4

1 is given by

a1 ∧ a2 ∧ a3 =

∣∣∣∣∣∣∣∣

−e0 e1 e2 e3

a1
0 a1

1 a1
2 a1

3

a2
0 a2

1 a2
2 a2

3

a3
0 a3

1 a3
2 a3

3

∣∣∣∣∣∣∣∣
,

where {e0, e1, e2, e3} is the canonical basis of R4
1 and ai = (ai

0, a
i
1, a

i
2, a

i
3), i = 1, 2, 3.

One can check that 〈a, a1 ∧ a2 ∧ a3〉 = det(a, a1, a2, a3), so the vector a1 ∧ a2 ∧ a3 is
pseudo orthogonal to all the vectors ai, i = 1, 2, 3.

Some aspects of the extrinsic geometry of hypersurfaces in the hyperbolic space are
studied in [13]–[23] and [26, 27]. Let M be a surface embedded in H3

+(−1). Given a
local chart i : U →M , where U is an open subset of R2, we denote by x : U → H3

+(−1)
such embedding, identify x(U) with U through the embedding x and write M = x(U).
Since 〈x,x〉 ≡ −1, we have 〈xui

,x〉 ≡ 0, for i = 1, 2, where u = (u1, u2) ∈ U. We
define the spacelike unit normal vector e(u) to M at x(u) by

e(u) =
x(u) ∧ xu1(u) ∧ xu2(u)

‖x(u) ∧ xu1(u) ∧ xu2(u)‖ .

It follows that the vector x± e is a lightlike vector. Let

E : U → Sn
1 and L± : U → LC∗

be the maps defined by E(u) = e(u) and L±(u) = x(u) ± e(u). These are called,
respectively, the de Sitter Gauss map and the lightcone Gauss map (or hyperbolic
Gauss indicatrix) of M ([19]). For any p = x(u0) ∈ M and v ∈ TpM, one can
show that DvE ∈ TpM, where Dv denotes the covariant derivative with respect to
the tangent vector v. Since the derivative dx(u0) can be identified with the identity
mapping 1TpM on the tangent space TpM, we have dL±(u0) = 1TpM ± dE(u0), under
the identification of U and M via the embedding x.

The linear transformation Ap = −dE(u0) is called the de Sitter shape operator. Its
eigenvalues κi, i = 1, 2, are called the de Sitter principal curvature and the correspond-
ing eigenvectors pi, i = 1, 2, are called the de Sitter principal directions.

The linear transformation S±p = −dL±(u0) is labelled the lightcone shape operator
of M at p. It has the same eigenvectors as Ap but its eigenvalues are distinct from
those of Ap. In fact the eigenvalues κ̄±i of S±p satisfy κ̄±i = −1± κi, i = 1, 2.

We call Ke(p) = det(Ap) = κ1(p)κ2(p) (resp. Kh(p) = det(S±p ) = κ̄1(p)κ̄2(p)) the
de Sitter (resp. hyperbolic) Gauss-Kronecker curvature of M at p. The curvature Ke is
also called the extrinsic Gaussian curvature. The set of points where Ke(p) = 0 (resp.
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K±
h (p) = 0) is labelled the de Sitter (resp. horospherical, horo- for short) parabolic set

of M . The restriction of the pseudo-scalar product to the hyperbolic space is a scalar
product, so H3

+(−1) is a Rimaniann manifold. We have the sectional curvature KI of
M which is also called the intrinsic Gaussian curvature. It is known that Ke = KI +1
(see §2.2 in [10]).

The operators Ap and S±p are self-adjoint operators on M , so we can define the
notion of asymptotic directions at p. We say that u ∈ TpM is a de Sitter (resp. horo-)
asymptotic direction if and only if 〈Ap(u), u〉 = 0 (resp.

〈
S±p (u), u

〉
= 0). There are

0/1/2 de Sitter (resp. horo-) asymptotic directions at every point where Ke(p) (resp.
Kh(p)) 0 > / = / < 0.

We also define the de Sitter normal curvature at p along a direction u ∈ TpM to be
κ(u) = 〈Ap(u), u〉 / 〈u, u〉. The horo-normal curvature at p along a direction u ∈ TpM
is defined similarly and is given by κ±h (u) =

〈
S±p (u), u

〉
/ 〈u, u〉.

A surface given by the intersection of H3
+(−1) with a spacelike, timelike or lightlike

hyperplane is called respectively sphere, equidistant surface or horosphere. The inter-
section of the surface with timelike hyperplane through the origin is called simply a
plane. Planes are the only surfaces with everywhere zero de Sitter Gaussian curvature
([21]). Horospheres are the only surfaces with everywhere zero hyperbolic curvature
([21]).

3 The family of projections along horocycles

We need some preliminaries about curves in H3
+(−1). Let γ : I → H3

+(−1) be a
regular curve. Since H3

+(−1) is a Riemannian manifold, we can parametrise γ by
arc-length and assume that γ(s) is unit speed. Let t(s) = γ′(s), with ||t(s)|| = 1.
The vector t′(s) is not in the tangent space Tγ(s)H

3
+(−1), so we project it along γ to

this tangent space. The resulting vector is t′(s) − γ(s). Now if 〈t′(s), t′(s)〉 6= −1,
then ||t′(s) − γ(s)|| 6= 0. In this case, we define the unit normal vector to the curve

as the vector n(s) = t′(s)−γ(s)
||t′(s)−γ(s)|| . If e(s) = γ(s) ∧ t(s) ∧ n(s), then we have a pseudo

orthogonal frame {γ(s), t(s), n(s), e(s)} in R4
1 along γ. Frenet-Serret type formulae,

similar to those for a space curve in R3, can be proved for the curve γ ([22]) and are
as follows





γ′(s) = t(s)
t′(s) = γ(s) + κh(s)n(s)
n′(s) = −κh(s)t(s) + τh(s)e(s)
e′(s) = −τh(s)n(s)

where κh(s) = ||t′(s) − γ(s)|| and τh(s) = −det(γ(s), γ′(s), γ′′(s), γ′′′(s))/κh(s)
2. The

quantities κh(s) and τh(s) are called the curvature (resp. torsion) of the curve γ at
γ(s). The condition 〈t′(s), t′(s)〉 6= −1 above is in fact equivalent to κh(s) 6= 0. (See
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[22] for more results on curves in the hyperbolic plane.)
When the curve γ is not parametrised by arc length, the formula for the curvature

is

κh(θ) = || 1

l′(θ)3
(γ′′(θ)l′(θ)− γ′(θ)l′′(θ))− γ(θ)||,

where

l(θ) =

∫ θ

0

||γ′(α)||dα.

A horocycle in H3
+(−1) is the intersection of a horosphere with a plane orthogonal

to the horosphere. Let HS3(l, c) = H3
+(−1)∩HP (l, c), with l ∈ S2

+ ⊂ LC∗ and c ∈ R,
denote a horosphere in H3

+(−1). Then a horocycle is given by HS3(l, c) ∩ HP (v, 0),
with v ∈ S3

1 and 〈l, v〉 = 0. Fixing l and v and varying c gives parallel horocycles.
A smooth curve in H3

+(−1) is a horocycle if and only if κh ≡ 1 and τh ≡ 0 ([18]).
Also, for a curve in a hyperbolic plane (which is the case of a horocycle), κh = κg, where
κg denotes its geodesic curvature, and the hyperbolic curvature Kh = κg− 1 = κh− 1.
Therefore, for a horocycle we have Kh ≡ 0, which means that they are flat objects.

We are considering here orthogonal projections along horocycles to planes. Pro-
jecting to two parallel planes yields the same information, so we choose those that
pass through the point p0 = (1, 0, 0, 0). These are parametrised by the sphere S2

0 . So
parallel horocycles in H3

+(−1) that are of interest are those determined by the elements
of the set

C = {(l, v) ∈ S2
+ × S2

0 | 〈l, v〉 = 0}.
Given a plane HP (v, 0) ∩ H3

+(−1), with v ∈ S2
0 , and a point p ∈ H3

+(−1), there
is a unique horocycle through p, determined by a unique (l, v) ∈ C, which intersects
orthogonally the given plane at some point q(p, (l, v)). We call the point q(p, (l, v))
the orthogonal projection of p along the horocycle (l, v).

Let π : C → S2
0 be the projection π(l, v) = v and i : S2

0 → S3
1 be the inclusion

i(v) = v. Let
F = {(v, w) ∈ TS3

1 | 〈w, w〉 = −1} → S3
1

be the timelike unit spherical bundle over S3
1 .

Theorem 3.1 The family of projections along horocycles in H3
+(−1) is given by

P : H3
+(−1)× C → (i ◦ π)∗F
(p, (l, v)) 7→ ((l, v), q(p, (l, v)))

where

q(p, (l, v)) = p− 〈p, v〉 v +
1

2

〈p, v〉2
〈p, l〉 l.
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Proof. A parametrisation of the horocycle (l, v) which is orthogonal to the plane
HP (v, 0) ∩H3

+(−1) at q(p, (l, v)) is given by

c(s) = q(p, (l, v)) + sv +
s2

2
λl.

for some scalar λ, see [24]. The horocycle c(s) passes through p if p = q(p, (l, v)) +

s0v +
s2
0

2
λl for some s0 ∈ R. So q(p, (l, v)) = p− s0v − s2

0

2
λl. We have

〈q(p, (l, v)), v〉 = 〈p, v〉 − s0 = 0,

which gives s0 = 〈p, v〉 . As c(s0) ∈ H3
+(−1), 〈c(s0), c(s0)〉 = −1, we have

〈q(p, (l, v)), λl〉 = 〈p, λl〉 = −1,

therefore l = −1/〈p, l〉. Hence q(p, (l, v)) = p− 〈p, v〉 v + 1
2
〈p,v〉2
〈p,l〉 l. 2

In this paper, the family of orthogonal projections of a given surface M in H3
+(−1)

along horocycles refers to the restriction of the family P to M . We still denote this
restriction by P . We have the following result where the term generic is defined in
terms of transversality to submanifolds of multi-jet spaces (see for example [12]).

Theorem 3.2 For a residual set of embeddings x : M → H3
+(−1), the family P is a

generic family of mappings.

Proof. The theorem follows from Montaldi’s result in [31] and the fact that P :
H3

+(−1)× C → (i ◦ π)∗F is a stable map. 2

We denote by P(l,v) the map H3
+(−1) → H3

+(−1), given by P(l,v)(p) = q(p, (l, v)),
with q(p, (l, v)) as in Theorem 3.1. We also keep the same notation for the restriction
of P(l,v) to the surface M ⊂ H3

+(−1).
For a given (l, v) ∈ C and a point p0 ∈ M , one can choose local coordinates so

that P(l,v) restricted to M can be considered locally as a map-germ R2, 0 → R2, 0.
These map-germs are extensively studied. We refer to [32] for the list of the A-orbits
with Ae-codimension ≤ 6, where A denotes the Mather group of smooth changes of
coordinates in the source and target. In Table 1, we reproduce from [32] the list of
local singularities of Ae-codimension ≤ 3. Some of these singularities are also called
as follows: 42 (lips/beaks), 43 (goose), 5 (swallowtail), 6 (butterfly), 115 (gulls).

It follows from Theorem 3.2 that for generic embeddings of the surface only sin-
gularities of Ae-codimension ≤ dim(C) = 3 can occur in the members of the family of
orthogonal projections. So we have the following result.

Proposition 3.3 For a residual set of embeddings x : M → H3
+(−1), the projections

P(l,v) : M → H3
+(−1) in the family P have local singularities A-equivalent to one in

Table 1 whose Ae-codimension ≤ 3. Moreover, these singularities are versally unfolded
by the family P .
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Table 1: Ae-codimension ≤ 3 local singularities of map-germs R2, 0→ R2, 0 ([32]).

Name Normal form Ae-codimension
Immersion (x, y) 0
Fold (x, y2) 0
Cusp (x, xy + y3) 0
4k (x, y3 ± xky), k = 2, 3, 4 k − 1
5 (x, xy + y4) 1
6 (x, xy + y5 ± y7) 2
7 (x, xy + y5) 3
112k+1 (x, xy2 + y4 + y2k+1), k = 2, 3 k
12 (x, xy2 + y5 + y6) 3
16 (x, x2y + y4 ± y5) 3

The members of P can also have multi-local local singularities with Ae-codimension
≤ 3, and these singularities are also versally unfolded by the family P . However, in
this paper, we deal mainly with the geometry of the local singularities.

4 Characterisations of the singularities of P(l,v)

Given (l, v) ∈ C and a point p ∈M , we denote by v∗ the tangent at p to the horocycle
through p and q(p, (l, v)). Then

v∗ = c′(s0) = v − 〈p, v〉〈p, l〉 l.

where c(s) and s0 are as in the proof of Theorem 3.1. Let S2
p = TpH

3
+(−1) ∩ S3

1 ,
Cp = {(l, w) ∈ S2

+ × S2
p | 〈l, w〉 = 0} and

Fp : C → Cp

(l, v) 7→ (l, v∗)

Proposition 4.1 The map Fp is a diffeomorphism.

Proof. The map Fp is clearly of class C∞. It is injective as the vector v is spacelike
and l is lightlike. To show that it is surjective, let (l, w) ∈ Cp and consider the
horocycle c(s) = p + sw − s2/(2 〈p, l〉)l through p. We are seeking a vector v =
w− (s1/〈p, l〉)l tangent to the horocycle at c(s1) and orthogonal to a plane that passes
through p0 = (1, 0, 0, 0). So we require 〈p0, v〉 = 0. This gives s1 = 〈p0, w〉 〈p, l〉 / 〈p0, l〉
and v = w − 〈p0, w〉/〈p0, l〉l. The inverse map F−1

p (l, w) = (l, w − 〈p0, w〉/〈p0, l〉l) is
clearly of class C∞. 2
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Let p be a point on an embedded surface M in H3
+(−1) and w ∈ TpM . Then as

a consequence of Proposition 4.1, if (l, w) ∈ Cp, there is a unique v ∈ S2
0 such that

w = v∗.
We have the following geometric characterisations of the singularities of P(l,v), where

“worse” means more degenerate, alternatively, has a higher Ae-codimension.

Theorem 4.2 Let M be an embedded surface in H3
+(−1) and (l, v) ∈ C.

(1) The projection P(l,v) is singular at p ∈M if and only if v∗ ∈ TpM.
(2) For v ∈ S2

0 fixed and p ∈ M , there is a circle of directions l ∈ S2
+ ⊂ LC∗ such

that v∗ ∈ TpM . This circle contains the directions L̃±(p) = ˜p± e(p).
(3) The projection P(l,v) has a singularity of type cusp or worse at p ∈ M if and

only if v∗ ∈ TpM and κ(v∗) = −λ(p, l), where λ(p, l) = 〈e(p), l〉 / 〈p, l〉. So, for l fixed,
there are at most two directions v∗ ∈ TpM for which the singularity of P(l,v) is of type
cusp or worse.

(4) The projection P(l,v) has a singularity of type lips/beaks or worse at p ∈ M if
and only if v∗ is a principal direction and −λ(p, l) is its associated de Sitter principal
curvature. There are two directions l that satisfy κ1 = −λ(p, l) (or κ2 = −λ(p, l)).

(5) The curves κi = constant, i = 1, 2, are the loci of points where the two directions
in (3) coincide. They foliate the region −1 ≤ κi ≤ 1, i = 1, 2. (Recall that the curves
κi = ±1, i = 1, 2, are part of the horo-parabolic set associated to K±

h .)

(6) The equality κ(v∗) = −λ(p, l) = ±1 holds if and only if l = L̃±(p) and v∗ is
a horo-asymptotic direction. So the projection P(eL±(p),v) has a singularity of type cusp
at p or worse if and only if v∗ is a horo-asymptotic direction. The singularity is of
type lips/beaks or worse if and only if p is a horo-parabolic point and v∗ is the unique
horo-asymptotic direction at p (which is also a principal direction).

(7) Let p be an umbilic point, l ∈ S2
+ with |κ1| < 1. Then the projection P(l,v) has

a singularity of type lips/beaks or worse for any v ∈ S2
0 with v∗ ∈ TpM and l ∈ S2

+

with −λ(p, l) = κ1. For all directions v∗ ∈ TpM , except a finite number of them, the
singularity is genuinely of type lips/beaks. There are generically 0, 2, 4, 6 directions in
TpM where the singularity becomes of type 115 and 0, 2, 4, 6, 8 where it becomes of type
43.

Proof. The statements in the theorem are of local nature, so we shall take the surface
M in hyperbolic Monge form (H-Monge form, see [19]) at the point in consideration. In
fact, by hyperbolic motions, we can suppose that the point of interest is p0 = (1, 0, 0, 0)
and the surface given locally by

x(x, y) =
(√

f 2(x, y) + x2 + y2 + 1, f(x, y), x, y
)

,

with (x, y) in some neighbourhood of the origin. Here f is a smooth function with
f(0, 0) = 0 and fx(0, 0) = fy(0, 0) = 0. So a unit normal to M at p0 is given by

9



e(0, 0) = (0, 1, 0, 0). We shall write the Taylor expansion of f , at the origin, in the
form

f(x, y) = a20x
2 + a21xy + a22y

2 +
3∑

i=0

a3ix
3−iyi +

4∑
i=0

a4ix
4−iyi + h.o.t.

Let v = (0, v1, v2, v3) ∈ S2
+. In order to make the contribution of 〈p0, l〉 apparent,

we take l on a sphere in LC∗ with l0 = constant. Then l0 = 〈p0, l〉. (If l ∈ S2
+, then

〈p0, l〉 = 1.) We assume that 〈l, v〉 = 0. We have v∗ = v at p0 and

∂P(l,v)/∂x(0, 0) = (0,−v1v2, 1− v2
2,−v2v3),

∂P(l,v)/∂y(0, 0) = (0,−v1v3,−v2v3, 1− v2
3).

These two vectors are linearly dependent if and only if v1 = 0, if and only if v∗ ∈ Tp0M ,
which proves (1).

(2) We suppose from now on that v1 = 0. Then v2
2 +v2

3 = 1 and l = (l0, l1,−tv3, tv2)

with l21 + t2 = l20. We still denote L̃±(p) the projection of p + e(p) to the sphere l0 =

constant. We have L̃±(p0) = (l0,±l1, 0, 0), so 〈L̃±(p0), v〉 = 0 for any v = v∗ ∈ Tp0M .
(3), (4) and (5) We write P(l,v)[i] for the ith coordinate function of P(l,v). The

tangent plane Π of HP (v, 0)∩H3
+(−1) at p0 is generated by the two vectors (0, 1, 0, 0)

and (0, 0,−v3, v2). Let π : HP (v, 0)∩H3
+(−1)→ Π denotes the linear projection along

the vector v. Consider the composite map

π ◦ P(l,v) = (0, P(l,v)[2], v3(v3P(l,v)[3]− v2P(l,v)[4]),−v2(v3P(l,v)[3]− v2P(l,v)[4])),

which is A-equivalent to the map-germ R2, 0→ R2, 0 given by

P̃(l,v) = (P(l,v)[2], v3P(l,v)[3]− v2P(l,v)[4]).

As the singularities of P(l,v) restricted to M and those of P̃(l,v) are A-equivalent, we

work with the map-germ P̃(l,v). We reduce the appropriate k-jets of P̃(l,v) to the form
(x, g(x, y)) and interpret geometrically the conditions for this germ to be A-equivalent
to one in Table 1. A calculation shows that

j2P̃(l,v) ∼A
(
x, (2l0(a20v

2
2 + a21v2v3 + a22v

2
3)− l1)y

2 + ((2a20v2 + v3a21)l0 − v2l1)xy
)
.

The singularity of P(l,v) at p0 is of type cusp or worse if and only if the coefficient
of y2 in the above expression vanishes. This is the case if and only if

2(a20v
2
2 + a21v2v3 + a22v

2
3) =

l1
l0

,

which can be written as

κ(v∗) = −〈e(p0), l〉
〈p0, l〉 . (1)
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Since l ∈ LC∗, l21 + l22 + l23 = l20, so |l1/l0| ≤ 1. (Alternatively, we can choose
p0, e(p0), v

∗, v∗⊥ as an orthonormal basis of R4
1, where v∗⊥ is a unit orthogonal vector

to v∗ in Tp0M . We have 〈l, v∗〉 = 0, so l = 〈p0, l〉 p0 + 〈e(p0), l〉 e(p0)+
〈
v∗⊥, l

〉
v∗⊥. But

l ∈ LC∗, so −〈p0, l〉2 + 〈e(p0), l〉2 +
〈
v∗⊥, l

〉2
= 0, which gives |〈e(p0), l〉/〈p0, l〉| ≤ 1.)

Now, κ(v∗) = cos2 θκ1 + sin2 θκ2, with θ the angle v∗ makes with the principal
direction p1 associated to κ1. Therefore κ1 ≤ κ(v∗) ≤ κ2, so for equation (1) to
have a solution (in v or l) we need m = min(|κ1|, |κ2|) ≤ 1. If m > |λ(p0, l)| where
λ(p0, l) = 〈e(p0), l〉 / 〈p0, l〉 = −l1/l0, then there are no solutions to κ(v∗) = −λ(p0, l).
If m < |λ(p0, l)|, for any λ there are two directions in the tangent space that satisfy the
equation κ(v∗) = −λ(p0, l). A short calculation shows that the two directions coincide
if and only if

(
l1
l0

)2 − 2(a22 + a20)
l1
l0

+ 4a20a22 − a2
21 = 0.

This means that −λ(p0, l) is a de Sitter principal curvature, and the direction v∗ is
the associated principal direction. When this is the case, the coefficient of xy in the
expression for the 2-jet of P̃(l,v) also vanishes. So the singularity becomes of type
lips/beaks or worse.

(6) In the above setting, if |λ(p0, l)| = 1, then
〈
v∗⊥, l

〉
= 0. This means that

l = 〈p0, l〉 (p0 ± e(p0)), therefore l̃ = L̃±(p0).
We know that κ̄±(v∗) = −1 ± κ(v∗), so κ(v∗) = ±1 if and only if κ̄±(v∗) = 0, if

and only if v∗ is a horo-asymptotic direction.
(7) Follows by analysing the 3-jet of P̃(l,v) at an umbilic point. 2

Proposition 4.3 The projection P(eL±(p),v) has a singularity of type swallowtail (115)
or worse at p if and only if v∗ is a horo-asymptotic direction and p is a geodesic
inflection on the associated horo-asymptotic direction. The locus of such points form
generically a smooth curve on M that we label the horo-flecnodal curve of M .

Proof. We choose the setting of the proof of Theorem 4.2, take p = p0 and analyse the
3-jet of P(eL±(p0),v). We write this 3-jet in the form (x, g(x, y)). Then p0 is a is swallowtail

singularity (or worse) of P(eL±(p0),v), if and only if ∂2g/∂y2(0, 0) = ∂3g/∂y2(0, 0) = 0.
Calculations show that this is the case if and only if

(1± 2a20)v
2
2 ± 2a21v2v3 + (1± 2a22)v

2
3 = 0

(i.e., v∗ = (0, 0, v2, v3) is a horo-asymptotic direction) and

C(v2, v3) = a30v
3
2 + a31v

2
2v3 + a32v2v

2
3 + a33v

2
3 = 0

where C is the cubic part of f . To simplify the calculations, we rotate the axis
in the tangent plane and suppose that (0, 0, 1, 0) is a horo-asymptotic direction, so
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1 ± 2a20 = 0. Then the singularity is of type swallowtail or worse if and only if
a30 = 0.

The equation of the horo-asymptotic curves in the parameter space is given by
l̄dx2 + 2m̄dxdy + n̄dy2 = 0, where l̄, m̄, n̄ are the coefficients of the hyperbolic second
fundamental form. Then the horo-asymptotic curve tangent to v∗ = (0, 0, 1, 0) is
parametrised by

γ(t) = (1 +
1

2
t2,∓1

2
t2, t,−3

2

a30

a21

t2) + h.o.t.

The geodesic curvature of this asymptotic curve at p0 is 3a30/(2a21). This vanishes
when a30 = 0, equivalently when the singularity of the projection is of type swallowtail
or worse.

To show that the horo-flecnodal curve is generically a smooth curve, one can follow
the method in [5] (see also [8]) and consider the Monge-Taylor map φ : U → J3(2)
which associates to (x, y) ∈ U the 3-jet of f at (x, y), where f is the function in the
parametrisation of the surface x(U) in H-Monge form. The swallowtail singularities
form a smooth variety in J3(2) and for generic surfaces φ(U) intersects this variety
transversally. The horo-flecnodal curve is the pre-image of this intersection, so is
generically a smooth curve. 2

We call the image of the critical set of P(l,v) the contour (or profile) of M . We

shall suppose here that it is a smooth curve and restrict to the case where l = L̃±(p0)
at some point p0 ∈ M . We call the intersection of M with the 3-dimensional space
generated by the vectors p0, v∗ and e(p0) the normal section of M at p0 along v∗.
Koenderink showed in [30] that for embedded surfaces in R3, the Gaussian curvature
of the surface at a given point is the product of the curvature of the contour with the
curvature of the normal section in the direction of projection. We have the following
result for the projections P(eL±(p0),v), where the curvature of a curve in H3

+(−1) is as
given in §3.

Theorem 4.4 (Koenderink type theorem) Let κc be the curvature of the contour and
κn the curvature of the normal section. If the point on the surface is also on the plane
of projection (alternatively, if v ∈ TpM), then

K±
h = (κc + 1)(κn ∓ 1).

Otherwise, the left hand side of the above equality depends on 〈v∗, p〉.
Proof. We take, without loss of generality, the surface in the H-Monge form as in the
proof of Theorem 4.2, v = v∗ = (0, 0, 0, 1) and l = (1,±1, 0, 0) at p0 = (1, 0, 0, 0). We
assume that the singularity of the projection is a fold at p0, so 2a22± 1 6= 0. Then the
2-jet of the profile is given by

(1 +
1

2
t2,

(4a20a22 − 2a20 − a2
21)

2(2a22 − 1)
t2, t, 0).
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Following the formula in §3, its curvature at p0 is given by

κc =
4a20a22 − a2

21 ∓ 2a20

2a22 ∓ 1
.

The normal section of the surface along v is given by (
√

f(0, y)2 + y2 + 1, f(0, y), 0, y)
and its curvature at p0 is given by κn = 2a22. Given the fact that the hyperbolic
curvature of the surface at p0 is K±

h = 4a20a22 − a2
21 ∓ 2a20 ∓ 2a22 + 1, it follows that

κc =
K±

h

κn ∓ 1
− 1,

equivalently,
K±

h = (κc + 1)(κn ∓ 1).

We now show that the above formula does not hold if p0 does not belong to the
plane of projection. Let λ ∈ R and consider the map

hc : HP (v, 0) ∩H3
+(−1) → HP (v, λ) ∩H3

+(−1)

q 7→ q + λv − λ2

2〈q,l〉 l

that takes a point on the plane determined by v ∈ S2
0 to a point on another parallel

plane along the horocycles (l, v) ∈ C. It is not difficult to show that the curvature of a
curve γ(t) ⊂ HP (v, 0)∩H3

+(−1) is distinct from that of hc(γ(t)) ⊂ HP (v, λ)∩H3
+(−1)

when λ 6= 0. So if we project to HP (v, λ) ∩ H3
+(−1) instead, the left hand side of

the above equality remains the same while the value of κc changes as λ varies. So the
equality does not hold in this case. 2

5 Duality

We prove in this section duality result similar to those in [34] for central projections
of surfaces in RP 3 and to those in [9] for orthogonal projections of surfaces in R3.

Let M be an embedded surface in H3
+(−1). We shall use the duality concepts in

[13, 14, 25], see §6 for details. In [24] is introduced the notion of a horocyclic surface
which is defined to be a one-parmeter family of horocylces in H3

+(−1). We denote by

Ah-par
2 the horocyclic surface in H3

+(−1) swept out by the horocycles in H3
+(−1) passing

through a horo-parabolic point of M and with tangent direction there the unique horo-
asymptotic direction. We also denote by (Ah-par

2 )(1,∗) the ∆1-dual of Ah-par
2 .

A bi-tangent horosphere of M is a horosphere HS3(l, c) tangent to M at two distinct
points. If there exist points p1, p2 ∈M such that L±(p1) = L±(p2) and 〈p1,L±(p1)〉 =
〈p2,L±(p2)〉, then we have the bi-tangent horosphere HS3(L±(p1), 〈p1,L±(p1)〉) at p1

and p2. In this case, there exists a unique horocycle in HS3(L±(p1), 〈p1,L±(p1)〉)
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passing through p1 and p2. We call such horocycle a bi-tangent horocycle to M relative
to L±(p1) = L±(p2). We denote by Ah

1 ||Ah
1 the horocyclic surface swept out by the bi-

tangent horocycles to M relative to the lightcone normal at points on the bi-tangent
locus of horospheres to M.

Theorem 5.1 Let M be an embedded surface in H3
+(−1) and M (2,∗) its ∆2-dual.

Then,
(1) The ∆2-dual of the surface Ah-par

2 is the cuspidaledge of M (2,∗).
(2) The ∆2-dual of the surface Ah

1 ||Ah
1 is the self-intersection curve of M (2,∗).

(3) The ∆3-dual of the surface (Ah-par
2 )(1,∗) is the cuspidaledge of −M (2,∗), where

−M (2,∗) denotes the antipodal surface of M (2,∗).

Proof. We consider a local parametrisation x : U → H3
+(−1) of M (i.e., M = x(U)).

In this case M (2,∗) = L±(U).
(1) We suppose that the horo-parabolic set K±

h = 0 is a regular curve. This
property holds for generic embeddings of surface M in H3

+(−1). Let p(t), t ∈ I,
be a parametrisation of the horo-parabolic set of M and u(t) the unique unit horo-
asymptotic direction at p(t). There exists a curve γ : I → U such that x(γ(t)) = p(t)
and u(t) ∈ Tγ(t)M. Then we have e(t) = E(γ(t)), so that L±(γ(t)) = p(t) ± e(t).
Since p(t) = x(γ(t)) is a parametrisation of K−1

h (0) which is the singular locus of L±,
L±(γ(t)) = p(t)± e(t) is the cuspidaledge of M (2,∗) = L±(U).

The horocyclic surface Ah-par
2 is parametrised by

y(s, t) = p(t) + su(t) +
s2

2
(p(t)± e(t)).

We have

∂y

∂s
(s, t) = u(t) + s(p(t)± e(t)) and

∂y

∂t
(s, t) = p′(t) + su′(t) +

s2

2
(p′(t)± e′(t)).

Since u(t) ∈ Tγ(t)M and L±(γ(t)) = p(t)± e(t) is a lightlike normal to M , we have

〈
∂y

∂s
(s, t),L(γ(t))

〉
= 0.

We remark that p′(t) ∈ Tγ(t)M and 〈p′(t)± e′(t), p(t)± e(t)〉 = 0. Therefore, we have

〈
∂y

∂t
(s, t), p(t)± e(t)

〉
= s〈u′(t), p(t)± e(t)〉.

Taking the derivative of the relation 〈p(t)± e(t), u(t)〉 = 0, we have

〈dL±(γ(t))p′(t), u(t)〉 = 〈(L±)′(γ(t)), u(t)〉 = −〈p(t)± e(t), u′(t)〉.
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The fact that p(t) is the parametrisation of horo-parabolic set means that the image
of dL±(γ(t)) is one dimensional, so that there exists λ ∈ R such that

dL±(γ(t))p′(t) = λdL±(γ(t))u(t).

Since u(t) is the unique asymptotic direction, we have

〈dL±(γ(t))p′(t), u(t)〉 = λ〈dL±(γ(t))u(t), u(t)〉 = 0.

It follows that 〈
∂y

∂t
(s, t),L±(γ(t))

〉
= 0.

So the lightlike normal to the horocyclic surface Ah-par
2 is constant along each horocycle.

(This means that the image of the lightcone normal to Ah-par
2 is a curve in LC∗, which

implies that Ah-par
2 is a horo-flat horocyclic surface in H3

+(−1); see [24].) Moreover,
we have 〈y(s, t),L±(γ(t))〉 = −1. Therefore y(s, t) and L±(γ(t)) are ∆2-dual.

(2) Suppose that there exists a bi-tangent horocycle to M at two points p1 and p2

on M . The surface Ah
1 ||Ah

1 is then a horocyclic surface generated by horocycles along
a curve C1 on M through p1 (or a curve C2 through p2). The lightlike normals L± of
M along C1 and C2 coincide. Let q(t) be a local parametrisation of the curve C1 and
v(t) be the unit tangent direction to the horocycle in Ah

1 ||Ah
1 through q(t). We also

denote by e(t) the de Sitter normal to M along C1, so that the lightcone normal to
M along C1 is given by L±(t) = q(t)±e(t). Then a local parametrisation of Ah

1 ||Ah
1 is

given by

z(s, t) = q(t) + sv(t) +
s2

2
(q(t)± e(t)).

It follows that

∂z

∂s
(s, t) = v(t) + s(q(t)± e(t)) and

∂z

∂t
(s, t) = q′(t) + sv′(t) +

s2

2
(q′(t)± e′(t)).

By the same arguments in case (1), we have
〈

∂z

∂s
(s, t), q(t)± e(t)

〉
= 0 and

〈
∂z

∂t
(s, t), q(t)± e(t)

〉
= s〈v′(t), q(t)± e(t)〉.

Since C1 and C2 are disjoint, C2 can be parametrised by q2(t) = z(s(t), t) for some
non-zero smooth function s(t). On C2, we have

0 =

〈
∂z

∂t
(s(t), t), q(t)± e(t)

〉
= s(t)〈v′(t), q(t)± e(t)〉.

Since s(t) 6= 0, we have 〈v′(t), q(t)± e(t)〉 = 0, so that
〈

∂z

∂t
(s, t), q(t)± e(t)

〉
= 0.

15



So the lightlike normal to the horocyclic surface Ah
1 ||Ah

1 is constant along each horocy-
cle. (This means that the image of the lightcone normal to Ah

1 ||Ah
1 is a curve in LC∗,

which implies that Ah
1 ||Ah

1 is a horo-flat horocyclic surface in H3
+(−1); see [24].) More-

over, we have 〈z(s, t),L±(t)〉 = −1. This means that z(s, t) and L±(t) are ∆2-dual.
The maps q(t) = z(t, 0) and z(t, s(t)) are parametrisations of C1 and C2 respec-

tively. Therefore, L±(t) is the common lightcone normal to M at q(t) and z(t, s(t)),
which is the self intersection curve of M (2,∗).

(3) We use here the notation in case (1) and define the contact diffeomorphism
Ψ31 : ∆3 → ∆1 by Ψ31(v, w) = (v − w,−w). We also define the mapping

w(s, t) = ±e(t)− su(t)− s2

2
(p(t)± e(t)).

One can easily show that w(s, t) ∈ S3
1 and 〈p(t)± e(t), w(s, t)〉 = 1. By almost the

same calculations as those in case (1), we can show that

〈
∂w

∂s
(s, t), q(t)± e(t)

〉
= 0 and

〈
∂w

∂t
(s, t), q(t)± e(t)

〉
= 0.

This means that L±(γ(t)) = p(t)± e(t) and w(s, t) are ∆3-dual. We also have

Ψ31(L±(γ(t)), w(s, t)) = (y(s, t),−w(s, t)).

Therefore y(s, t) is the ∆1-dual of −w(s, t). Since y(s, t) gives a local parametrisation of
Ah-par

2 , −w(s, t) is a local parametrisation of (Ah-par
2 )(1,∗). By definition, ∆3 is invariant

under the antipodal action on R4
1, so (Ah-par

2 )(1,∗) is the ∆3-dual of −L±(γ(t)) which
is the cuspidaledge of −M (2,∗). 2

There are Euclidean analogues in [9] of the results in [34] (see also [3, 4, 7] for
related results). Given an embedded surface M in the Euclidean space R3 the family
of height functions on M is given by

HE : M × S2 → R× S2

(q, v) 7→ q.v

and the family of orthogonal projections is given by

PE : M × S2 → TS2

(q, v) 7→ (q, q − (q.v)v)

where S2 denotes the unit sphere and “.” the scalar product in R3. The local bi-
furcation set Bif(HE) of HE (resp. Bif(PE) of PE) is the set of u ∈ S2 for which
there exist p ∈ M such that HE(−, u) (resp. PE(−, u)) has a non-stable singularity
at p. The A2-stratum of Bif(HE) is the set of unit normals at the parabolic points of
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M . The lips/beaks stratum of Bif(PE) is the set of unit asymptotic directions at the
parabolic points of M . It is shown in [9] that the A2-stratum of Bif(HE) is dual to
the lips/beaks stratum of Bif(PE). The duality in [9] refers to the double Legendrian
fibration S2 π1←− ∆

π2−→ S2, where ∆ = {(u, v) ∈ S2 × S2 | u.v = 0}. The contact
structure on ∆ is given by the 1-form θ = v.du|∆.

We seek an analogous duality result for the family of projections along horocycles.
The family of lightcone height functions on M ⊂ H3

+(−1) is introduced in [19] and is
given by

H : M × S2
+ → R× S2

+

(p, l) 7→ 〈p, l〉
The A2-stratum of Bif(H) is the set of lightcone vectors L̃±(p), with p a horo-parabolic
point of M . We know from Theorem 4.2 that the projection P(eL±(p),v) has a lips/beaks
singularity when p a horo-parabolic point and v∗ is a horo-asymptotic direction at p.

The set C = {(l, v) ∈ S2
+×S2

0 | 〈l, v〉 = 0} can be given a contact structure associated
to the 1-form θ = 〈v, dl〉|C. The smooth fibre bundles π1 : C → S2

+ and π2 : C → S2
0

are Legendrian fibrations. Therefore, given a Legendrian curve i : L → C, π1(i(L))
is dual to π2(i(L)) and vice-versa. We call this duality C-duality. (See §6 for more
details on Legendrian duality.)

Suppose that the horo-parabolic set of M ∈ H3
+(−1) is smooth (which is generically

the case) and is parametrised locally by p(t), t ∈ I. Let u(t) be the unique horo-

asymptotic direction at p(t) and (L̃±(p(t)), v(t)) = F−1
p(t)(L̃

±(p(t)), u(t)), with Fp the
map in Proposition 4.1. We have the following consequence of the C-duality.

Proposition 5.2 The curve L = {(L̃±(p(t)), v(t)), t ∈ I} is a Legendrian curve in
C. Therefore π1(L) and π2(L) are C-dual curves. That is, the A2-stratum of the
bifurcation set of the family of lightcone height functions is C-dual to the set of unit
horo-asymptotic directions at horo-parabolic points transported along horocycles to S2

0 .

The set of unit horo-asymptotic directions at horo-parabolic points transported
along horocycles to S2

0 is not of course the lips/beaks stratum of the bifurcation set
of the family of projections along horocycles. The lips/beaks stratum of this family is

generically a 2-dimensional surface in C. However, the curve L = {(L̃±(p(t)), v(t)), t ∈
I} is special on this stratum. To show this, let

S(42) = {(p, (l, v)) ∈M × C |P(l,v) has a singularity at p of type lips/beaks},
The surface S(42) is generically smooth. Consider the projections

π1 : S(42) ⊂M × C →M and π2 : S(42) ⊂M × C → C.
Proposition 5.3 Suppose that p is not an umbilic point. Then the projection π1 is
singular if and only if p is a horo-parabolic point, l = L̃±(p) and v∗ is the unique

horo-asymptotic direction at p. Therefore L = {(L̃±(p(t)), v(t)), t ∈ I} = π2(Σ(π1)).
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Proof. The proof follows by direct calculations using the H-Monge form setting. 2

6 Appendix

We require some properties of contact manifolds and Legendrian submanifolds for the
duality results in this paper (for more details see for example [2]). Let N be a (2n+1)-
dimensional smooth manifold and K be a field of tangent hyperplanes on N . Such
a field is locally defined by a 1-form α. The tangent hyperplane field K is said to
be non-degenerate if α ∧ (dα)n 6= 0 at any point on N. The pair (N, K) is a contact
manifold if K is a non-degenerate hyperplane field. In this case K is called a contact
structure and α a contact form.

A submanifold i : L ⊂ N of a contact manifold (N, K) is said to be Legendrian if
dim L = n and dix(TxL) ⊂ Ki(x)

at any x ∈ L. A smooth fibre bundle π : E → M is

called a Legendrian fibration if its total space E is furnished with a contact structure
and the fibres of π are Legendrian submanifolds. Let π : E → M be a Legendrian
fibration. For a Legendrian submanifold i : L ⊂ E, π ◦ i : L → M is called a
Legendrian map. The image of the Legendrian map π ◦ i is called a wavefront set of i
and is denoted by W (i).

The duality concepts we use in this paper are those introduced in [13, 14, 25], where
five Legendrian double fibrations are considered on the subsets ∆i, i = 1, . . . , 5 below,
of the product of two of the pseudo spheres Hn(−1), Sn

1 and LC∗. The geometric
ideas behind the choice of the subsets ∆i and the Legendrian double fibrations are as
follows (for more details see [13, 14, 25]).

To any hypersurface x : U → Hn(−1) is associated the de Sitter Gauss map
E : U → Sn

1 . It is easy to show that the pair (x,E) : U → Hn(−1)×Sn
1 is a Legendrian

embedding into the set ∆1 = {(v, w) ∈ Hn(−1) × Sn
1 | 〈v, w〉 = 0}. (The contact

structure on ∆1 is given below.) This means that M = x(U) and M (1,∗) = E(U) are
dual. We call this duality the ∆1-duality. This is a direct analogue of the spherical
duality in the Euclidean space.

Consider now the lightcone Gauss map L± : U → Hn(−1) × LC∗ which satisfies
〈x(u),L±(u)〉 = −1. The pair (x,L±) : U → Hn(−1)×LC∗ determines a Legendrian
embedding into the set ∆2 = {(v, w) ∈ Hn(−1) × LC∗ | 〈v, w〉 = −1}, so M = x(U)
and M (2,∗) = L±(U) are dual. We call this duality the ∆2-duality.

Similarly, we have 〈E(u) ± x(u),E(u)〉 = 1 and 〈L+(u),L−(u)〉 = −2 and these
lead to the concepts of ∆3-duality and ∆4-duality respectively.

For spacelike hypersurfaces embedded in one of the pseudo-spheres in the Minkowski
space (i.e. surfaces whose tangent spaces at all points are spacelike), we need to con-
sider only the above four ∆i-dualities, i = 1, . . . , 4. However, if we consider timelike
hypersurfaces in Sn

1 , (i.e. surfaces whose tangent spaces at all points are timelike) we
need the concept of ∆5-duality below which is also a direct analogue to the spherical
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duality in the Euclidean space. To summarise, we have the following five Legendrian
double fibrations.

(1) (a) Hn(−1)× Sn
1 ⊃ ∆1 = {(v, w) | 〈v, w〉 = 0},

(b) π11 : ∆1 → Hn(−1), π12 : ∆1 → Sn
1 ,

(c) θ11 = 〈dv, w〉|∆1, θ12 = 〈v, dw〉|∆1.

(2) (a) Hn(−1)× LC∗ ⊃ ∆2 = {(v, w) | 〈v, w〉 = −1 },
(b) π21 : ∆2 → Hn(−1),π22 : ∆2 → LC∗,
(c) θ21 = 〈dv, w〉|∆2, θ22 = 〈v, dw〉|∆2.

(3) (a) LC∗ × Sn
1 ⊃ ∆3 = {(v, w) | 〈v, w〉 = 1 },

(b) π31 : ∆3 → LC∗,π32 : ∆3 → Sn
1 ,

(c) θ31 = 〈dv, w〉|∆3, θ32 = 〈v, dw〉|∆3.

(4) (a) LC∗ × LC∗ ⊃ ∆4 = {(v, w) | 〈v, w〉 = −2 },
(b) π41 : ∆4 → LC∗,π42 : ∆4 → LC∗,
(c) θ41 = 〈dv, w〉|∆4, θ42 = 〈v, dw〉|∆4.

(5) (a) Sn
1 × Sn

1 ⊃ ∆5 = {(v, w) | 〈v, w〉 = 0},
(b) π51 : ∆5 → Sn

1 ,π52 : ∆5 → Sn
1 ,

(c) θ51 = 〈dv, w〉|∆5, θ52 = 〈v, dw〉|∆5.

Above, πi1(v, w) = v and πi2(v, w) = w for i = 1, . . . , 5, 〈dv, w〉 = −w0dv0 +∑n
i=1 widvi and 〈v, dw〉 = −v0dw0 +

∑n
i=1 vidwi. The 1-forms θ−1

i1 and θ−1
i2 , i = 1, . . . , 5,

define the same tangent hyperplane field over ∆i which is denoted by Ki.
We have the following duality theorem on the above spaces.

Theorem 6.1 ([13, 14, 25]) The pairs (∆i, Ki), i = 1, . . . , 5, are contact manifolds
and πi1 and πi2 are Legendrian fibrations.

We have the following general remarks, some of which follow from the discussion
proceeding Theorem 6.1.

Remark 6.2 1. Given a Legendrian submanifold i : L → ∆i, i = 1, . . . , 5, Theorem
6.1 states that πi1(i(L)) is the ∆i-dual of πi2(i(L)) and vice-versa.

2. We have the following geometric properties for a Legendrian submanifold L ⊂
∆i, i = 1, . . . , 5. Take the case i = 1. If π11(i(L)) is smooth at a point π11(i(u)), then
π12(i(u)) is the normal vector to the hypersurface π11(i(L)) ⊂ Hn

+(−1) at π11(i(u)).
Conversely, if π12(i(L)) is smooth at a point π12(i(u)), then π11(i(u)) is the normal
vector to the hypersurface π12(i(L)) ⊂ Sn

1 . The same holds for the ∆i-dualities,
i = 2, . . . , 5, where we take the normal to a hypersurface M ⊂ LC∗ at p ∈ M as the
direction given by the intersection of the normal plane to TpM in Rn+1

1 with TpLC∗.
3. Since the normal of a hypersurface in Hn(−1) is always spacelike, we have no

good duality relationship in Hn(−1)×Hn(−1).
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[3] J. W. Bruce, Generic geometry and duality. Singularities (Lille, 1991), 29–59, London
Math. Soc. Lecture Note Ser. 201, Cambridge Univ. Press, Cambridge, 1994.

[4] J. W. Bruce, Generic geometry, transversality and projections. J. London Math. Soc.
49 (1994), 183–194.

[5] J. W. Bruce, Projections and reflections of generic surfaces in R3. Math. Scand. 54
(1984), 262–278.

[6] J. W. Bruce and P. J. Giblin, Outlines and their duals. Proc. London Math. Soc. 50
(1985), 552–570.

[7] J. W. Bruce, P. J. Giblin and F. Tari, Families of surfaces: height functions and pro-
jections to plane. Math. Scand. 82 (1998), 165–185.

[8] J. W. Bruce, P. J. Giblin and F. Tari, Families of surfaces: height functions, Gauss
maps and duals. Real and complex singularities (São Carlos, 1994). Pitman Res. Notes
Math. Ser. 333 (1995), 148–178.

[9] J. W. Bruce and M. C. Romero-Fuster, Duality and projections of curves and surfaces
in 3-space. Quart. J. Math. Oxford Ser. 42 (1991), 433–441.

[10] R. L. Bryant, Surfaces of mean curvature one in hyperbolic space. in Théorie des
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